
inconsistency-tolerant
querying of description
logic knowledge bases
Meghyn Bienvenu

Part of ”Logic and Languages” module

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!
∙ when K unsatisfiable, cert(q,K) contains all possible tuples

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

2/31

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!
∙ when K unsatisfiable, cert(q,K) contains all possible tuples

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

2/31

example: reasonable inferences

TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃teaches− ⊑ Course Lect ⊑ ¬Fellow

Consider following ABoxes:

A1 = {Prof(anna), Lect(anna), Fellow(alex)}
A2 = {Prof(anna), Fellow(alex), Lect(alex)}

Which assertions would be reasonable to infer from these two KBs?

Prof(anna) Lect(anna) Fac(anna)
Fellow(alex) Lect(alex) Fac(alex)

3/31

example: reasonable answers

TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃teaches− ⊑ Course Lect ⊑ ¬Fellow

ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), teaches(csc343, julie), Fellow(alex), teaches(alex, csc486)

Question: what are reasonable answers for our example queries?

q1(x) = Fac(x) q2(x) = ∃y teaches(x, y)
q3(x) = ∃y Fac(x) ∧ teaches(x, y) q4(x, y) = Fac(x) ∧ teaches(x, y)

4/31

alternative semantics

In general: no single best way to define answers for inconsistent KBs
⇒ consider many different inconsistency-tolerant semantics

Formally: a semantics S associates a set of query answers to every
KB and query
∙ if K is satisfiable, should return certain answers
∙ for unsatisfiable K, can give different answers than classical
semantics

Write K |=S q(a⃗) if a⃗ answer to q w.r.t. K under semantics S
(and use K |= q(a⃗) for certain answer semantics, i.e. a⃗ ∈ cert(q,K))

Consider different ways of comparing semantics

5/31

consistency properties

An ABox A is T -consistent if the KB (T ,A) is satisfiable

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) (T , C) |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).
∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other

6/31

consistency properties

An ABox A is T -consistent if the KB (T ,A) is satisfiable

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) (T , C) |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).
∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other

6/31

consistency properties

An ABox A is T -consistent if the KB (T ,A) is satisfiable

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) (T , C) |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).
∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other
6/31

comparing different semantics

Given two semantics S and S′, we say that:

∙ S′ is an under-approximation (or: sound approximation) of S just
in the case that

K |=S′ q(a⃗) ⇒ K |=S q(a⃗)

∙ S′ is an over-approximation (or: complete approximation) of S
just in the case that

K |=S q(a⃗) ⇒ K |=S′ q(a⃗)

Consistency properties are preserved by under-approximations:
S′ is an under-approximation of S & S satisfies P⇒ S′ also satisfies P

here P ∈ {Consistent Support, Consistent Results}

7/31

repairs

Many semantics are based upon the notion of repair

Repair of an ABox A w.r.t. a TBox T
= inclusion-maximal subset of A that is T -consistent

Intuition: different ways of achieving consistency while retaining as
much of the original data as possible

Denote by Rep(A, T) the set of repairs of A w.r.t. T
∙ abbreviate to Rep(K) when K = (T ,A)

Every KB has at least one repair
∙ inconsistent KB⇒ typically multiple repairs

8/31

example: repairs

Reconsider the TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃teaches− ⊑ Course Lect ⊑ ¬Fellow

and ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), teaches(csc343, julie), Fellow(alex), teaches(alex, csc486)

Recall the minimal Tuniv-inconsistent subsets:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}

{Fellow(julie), teaches(csc343, julie)}

Question: How many repairs of Auniv w.r.t. Tuniv?
9/31

example: repairs (cont.)

Twelve repairs of Auniv w.r.t. Tuniv:

R1 = {Prof(anna), Prof(kim), Fellow(julie)} ∪ AInt

R2 = {Lect(anna), Lect(kim), Fellow(julie)} ∪ AInt

R3 = {Fellow(anna), Prof(kim), Fellow(julie)} ∪ AInt

R4 = {Prof(anna), Lect(kim), Fellow(julie)} ∪ AInt

R5 = {Lect(anna), Prof(kim), Fellow(julie)} ∪ AInt

R6 = {Fellow(anna), Lect(kim), Fellow(julie)} ∪ AInt

R7 = {Prof(anna), Prof(kim), teaches(csc343, julie)} ∪ AInt

R8 = {Lect(anna), Lect(kim), teaches(csc343, julie)} ∪ AInt

R9 = {Fellow(anna), Prof(kim), teaches(csc343, julie)} ∪ AInt

R10 = {Prof(anna), Lect(kim), teaches(csc343, julie)} ∪ AInt

R11 = {Lect(anna), Prof(kim), teaches(csc343, julie)} ∪ AInt

R12 = {Fellow(anna), Lect(kim), teaches(csc343, julie)} ∪ AInt

where the ABox AInt that is common to all the repairs is as follows:

AInt = {Fellow(alex), teaches(alex, csc486)}

10/31

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ (T ,B) |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

11/31

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ (T ,B) |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

11/31

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ (T ,B) |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

11/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as (Tuniv,R7) ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

12/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as (Tuniv,R7) ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

12/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:

∙ Kuniv ̸|=AR q1(julie) as (Tuniv,R7) ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

12/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as (Tuniv,R7) ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

12/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q2 = ∃y teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as (Tuniv,R3) ̸|= ∃y teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

13/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q2 = ∃y teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as (Tuniv,R3) ̸|= ∃y teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

13/31

example: ar semantics

Reconsider our example KB Kuniv = (Tuniv,Auniv)

For the query q2 = ∃y teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as (Tuniv,R3) ̸|= ∃y teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

13/31

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ (T ,B) |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Satisfies both Consistent Support and Consistent Results

14/31

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ (T ,D) |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

15/31

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ (T ,D) |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

15/31

example: iar semantics

Reconsider our example KB (Tuniv,Auniv)

Intersection of the repairs of (Tuniv,Auniv):

AInt = {Fellow(alex), teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as (Tuniv,AInt) |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

16/31

example: iar semantics

Reconsider our example KB (Tuniv,Auniv)

Intersection of the repairs of (Tuniv,Auniv):

AInt = {Fellow(alex), teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as (Tuniv,AInt) |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

16/31

example: iar semantics

Reconsider our example KB (Tuniv,Auniv)

Intersection of the repairs of (Tuniv,Auniv):

AInt = {Fellow(alex), teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as (Tuniv,AInt) |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

16/31

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ (T ,D) |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

17/31

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ (T ,B) |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results

18/31

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ (T ,B) |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results

18/31

example: brave semantics

Reconsider the KB Kuniv = (Tuniv,Auniv) and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) (Tuniv,Ri) |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

19/31

example: brave semantics

Reconsider the KB Kuniv = (Tuniv,Auniv) and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) (Tuniv,Ri) |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

19/31

example: brave semantics

Reconsider the KB Kuniv = (Tuniv,Auniv) and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) (Tuniv,Ri) |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

19/31

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ (T ,B) |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results Why?

20/31

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

21/31

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

21/31

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

21/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, instance checking, and KB consistency can be
performed by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ instance checking is NL-complete in combined complexity

22/31

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and (T ,A′) ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)

23/31

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and (T ,A′) ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)

23/31

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and (T ,A′) ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)
23/31

bad news: intractability of ar semantics (cont.)

In fact: CQ answering is coNP-hard for simple TBox T = {T ⊑ ¬F}

Reduction from 2+2UNSAT: φ = c1 ∧ . . . ∧ cm over v1, . . . , vk,⊤,⊥
each clause has two positive and two negative literals

Intractability of CQA semantics
Have coNP-hardness in data complexity for following settings:

- Atomic queries + DL-Lite ontology
- Acyclic conjunctive queries + class disjointness

� = c1 ^ ... ^ cm over v1, ..., vk,>,?

q =
N1

N2

vj

cic1 cm

vlv1 vk

... ...

...

N2
N1

> ?

ci = v1 � vk � ¬vj � ¬vl

Reduction from 2+2UNSAT:
where each clause has two positive and two negative literals

T � ¬F

T ,A |=CQA q iff ' unsat

T =A =

[Lembo et al. 2010]
[Bienvenu 2012]

TF TF TF TF T F

FF T T

P1
P2 P2

P1

Can show φ unsatisfiable⇔ T ,A |=AR q

24/31

bad news: intractability of ar semantics (cont.)

In fact: CQ answering is coNP-hard for simple TBox T = {T ⊑ ¬F}

Reduction from 2+2UNSAT: φ = c1 ∧ . . . ∧ cm over v1, . . . , vk,⊤,⊥
each clause has two positive and two negative literals

Intractability of CQA semantics
Have coNP-hardness in data complexity for following settings:

- Atomic queries + DL-Lite ontology
- Acyclic conjunctive queries + class disjointness

� = c1 ^ ... ^ cm over v1, ..., vk,>,?

q =
N1

N2

vj

cic1 cm

vlv1 vk

... ...

...

N2
N1

> ?

ci = v1 � vk � ¬vj � ¬vl

Reduction from 2+2UNSAT:
where each clause has two positive and two negative literals

T � ¬F

T ,A |=CQA q iff ' unsat

T =A =

[Lembo et al. 2010]
[Bienvenu 2012]

TF TF TF TF T F

FF T T

P1
P2 P2

P1

Can show φ unsatisfiable⇔ T ,A |=AR q

24/31

good news: iar and brave

For IAR and brave semantics,
have same low data complexity as classical semantics

Theorem CQ answering under IAR semantics are
in AC0 in data complexity

Theorem CQ answering under brave semantics are
in AC0 in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

25/31

good news: iar and brave

For IAR and brave semantics,
have same low data complexity as classical semantics

Theorem CQ answering under IAR semantics are
in AC0 in data complexity

Theorem CQ answering under brave semantics are
in AC0 in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

25/31

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) = Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

∃y.(teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

26/31

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) = Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

∃y.(teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

26/31

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) = Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. teaches(z, x)) ∨

∃y.(teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

26/31

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form teaches(a,a)

27/31

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form teaches(a,a)

27/31

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form teaches(a,a)

27/31

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form teaches(a,a)

27/31

complexity landscape for dl-lite

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical in AC0 in AC0 NP NL
AR coNP coNP Πp

2 coNP
IAR in AC0 in AC0 NP NL
brave in AC0 in AC0 NP NL

Note: IQs is for “ instance queries”, aka instance checking

28/31

towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime
∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers

∙ three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:
∙ in most cases, IAR and brave enough to decide if tuple is
AR-answer⇒ few calls to SAT solvers

∙ SAT encodings are typically small and easy to solve

29/31

towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime
∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers

∙ three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:
∙ in most cases, IAR and brave enough to decide if tuple is
AR-answer⇒ few calls to SAT solvers

∙ SAT encodings are typically small and easy to solve
29/31

beyond dl-lite: lightweight dls

Lightweight DL EL⊥: constructors ⊤,⊥,⊓,∃r.C

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical P P NP P
AR coNP coNP Πp

2 coNP
IAR coNP coNP ∆p

2 [O(log n)] coNP
brave NP NP NP NP

Observe: IAR and brave are no longer tractable
∙ no bound on size of minimal T -inconsistent subsets

30/31

beyond dl-lite: expressive dls

Expressive DL ALC: constructors ⊤,⊥,¬,⊓,⊔,∃r.C,∀r.C

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical coNP coNP Exp Exp
AR Πp

2 Πp
2 Exp Exp

IAR Πp
2 Πp

2 Exp Exp
brave Σp

2 Σp
2 Exp Exp

Observe:
∙ IAR and brave no easier than AR
∙ increased data complexity, no increase in combined complexity

31/31

