Repairs of A_1 w.r.t. T:

\{AProf(ann), Prof(ann), Teach(ann, c)\}
\{FProf(ann), Prof(ann), Teach(ann, c)\}
\{Postdoc(ann), MemberOf(ann, dpt), Teach(ann, c)\}

Note: Teach(ann, ann) not in any repair since it is T-inconsistent
Repairs of A_1 w.r.t. \mathcal{T}:

\{AProf(ann), Prof(ann), Teach(ann, c)\}
\{FProf(ann), Prof(ann), Teach(ann, c)\}

Note: Teach(ann, ann) not in any repair since it is \mathcal{T}-inconsistent

Repairs of A_2 w.r.t. \mathcal{T}:

\{AProf(ann), MemberOf(ann, dpt), Teach(ann, c)\}
\{FProf(ann), MemberOf(ann, dpt), Teach(ann, c)\}
\{Postdoc(ann), MemberOf(ann, dpt), Teach(ann, c)\}
Repairs of A_3 w.r.t. T:

\[
\{\text{AProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{Teach}(\text{ann}, c_2)\}\nn\{\text{AProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{Teach}(c_2, c_1)\}\nn\{\text{AProf}(\text{ann}), \text{Teach}(\text{ann}, c_2), \text{Teach}(c_1, c_2)\}\n\]
Repairs of A_3 w.r.t. T:

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{Teach}(\text{ann}, c_2)\}$

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{Teach}(c_2, c_1)\}$

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_2), \text{Teach}(c_1, c_2)\}$

Repairs of A_4 w.r.t. T:

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{Teach}(\text{ann}, c_2)\}$

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_1), \text{APProf}(c_2)\}$

$\{\text{APProf}(\text{ann}), \text{Teach}(\text{ann}, c_2), \text{APProf}(c_1)\}$

$\{\text{APProf}(\text{ann}), \text{APProf}(c_1), \text{APProf}(c_2)\}$
Query $q(x) = \exists yz \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$

For ABox \mathcal{A}_1:
• $\{\text{Prof}(ann), \text{Teach}(ann, c)\}$ is a \mathcal{T}-support of $q(ann)$, due to
 Prof \sqsubseteq PhD, Prof \sqsubseteq \existsWorkFor, MemberOf, WorkFor \sqsubseteq MemberOf
Query \(q(x) = \exists y z \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z) \)

For ABox \(\mathcal{A}_1 \):

- \(\{\text{Prof}(\text{ann}), \text{Teach}(\text{ann}, c)\} \) is a \(\mathcal{T} \)-support of \(q(\text{ann}) \), due to \(\text{Prof} \sqsubseteq \text{PhD}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{MemberOf}, \text{WorkFor} \sqsubseteq \text{MemberOf} \)
- \(\{\text{Prof}(\text{ann}), \text{Teach}(\text{ann}, c)\} \) belongs to intersection of repairs of \(\mathcal{A}_1 \)
- hence, \((\mathcal{T}, \mathcal{A}_1) \models_{IAR} q(\text{ann}) \)
- also have: \((\mathcal{T}, \mathcal{A}_1) \models_{AR} q(\text{ann}), (\mathcal{T}, \mathcal{A}_1) \models_{\text{brave}} q(\text{ann}) \)
Query $q(x) = \exists yz \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$

For ABox A_1:
- $\{\text{Prof}(\text{ann}), \text{Teach}(\text{ann}, c)\}$ is a \mathcal{T}-support of $q(\text{ann})$, due to $\text{Prof} \sqsubseteq \text{PhD}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{MemberOf}, \text{WorkFor} \sqsubseteq \text{MemberOf}$
- $\{\text{Prof}(\text{ann}), \text{Teach}(\text{ann}, c)\}$ belongs to intersection of repairs of A_1
- hence, $(\mathcal{T}, A_1) \models_{IAR} q(\text{ann})$
- also have: $(\mathcal{T}, A_1) \models_{AR} q(\text{ann}), (\mathcal{T}, A_1) \models_{brave} q(\text{ann})$

For ABox A_2:
- $\{\text{AProf}(\text{ann}), \text{Teach}(\text{ann}, c)\}, \{\text{FProf}(\text{ann}), \text{Teach}(\text{ann}, c)\}$ and $\{\text{Postdoc}(\text{ann}), \text{MemberOf}(\text{ann}, dpt), \text{Teach}(\text{ann}, c)\}$ are all \mathcal{T}-supports of $q(\text{ann})$
- each repair of A_2 contains at least one of these supports
- this shows $(\mathcal{T}, A_2) \models_{AR} q(\text{ann})$, also $(\mathcal{T}, A_2) \models_{brave} q(\text{ann})$
- but $(\mathcal{T}, A_2) \not\models_{IAR} q(\text{ann})$ since $q(\text{ann})$ not entailed from intersection of repairs, $\{\text{MemberOf}(\text{ann}, dpt), \text{Teach}(\text{ann}, c)\}$
Query $q(x) = \exists yz \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$

For ABox \mathcal{A}_3:
- \{AProf(\text{ann}), \text{Teach}(\text{ann}, c_1)\} and \{AProf(\text{ann}), \text{Teach}(\text{ann}, c_2)\} are \mathcal{T}-supports of $q(\text{ann})$
- each repair of $(\mathcal{T}, \mathcal{A}_3)$ contains at least one of them.
- hence: $(\mathcal{T}, \mathcal{A}_3) \models_{\text{AR}} q(\text{ann}), (\mathcal{T}, \mathcal{A}_3) \models_{\text{brave}} q(\text{ann})$
- but $(\mathcal{T}, \mathcal{A}_3) \not\models_{\text{IAR}} q(\text{ann})$ since $q(\text{ann})$ not entailed from intersection of repairs, which is \{AProf(\text{ann})\}
EXERCICE 10, PART 2

Query $q(x) = \exists y z \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$

For ABox \mathcal{A}_3:
- \{AProf(ann), Teach(ann, c_1)\} and \{AProf(ann), Teach(ann, c_2)\} are \mathcal{T}-supports of $q(ann)$
- each repair of $(\mathcal{T}, \mathcal{A}_3)$ contains at least one of them.
- hence: $(\mathcal{T}, \mathcal{A}_3) \models_{AR} q(ann), (\mathcal{T}, \mathcal{A}_3) \models_{brave} q(ann)$
- but $(\mathcal{T}, \mathcal{A}_3) \not\models_{IAR} q(ann)$ since $q(ann)$ not entailed from intersection of repairs, which is \{AProf(ann)\}

For ABox \mathcal{A}_4:
- the \mathcal{T}-supports of $q(ann)$ are \{AProf(ann), Teach(ann, c_1)\} and \{AProf(ann), Teach(ann, c_2)\}
- some repairs of \mathcal{A}_4 w.r.t. \mathcal{T} contain one of these supports, so $(\mathcal{T}, \mathcal{A}_2) \models_{brave} q(ann)$
- the repair \{AProf(ann), AProf(c_1), AProf(c_2)\} doesn’t contain any support, so $(\mathcal{T}, \mathcal{A}_2) \not\models_{AR} q(ann)$ and $(\mathcal{T}, \mathcal{A}_2) \not\models_{IAR} q(ann)$
Want to compute FO-rewritings of $q(x) = \exists y \text{Prof}(x) \land \text{Teach}(x, y)$ w.r.t. the IAR and brave semantics

Start by rewriting $q^r(x)$ in the classical way:

$$q^r(x) = \exists y (\text{Prof}(x) \land \text{Teach}(x, y))$$
$$\lor \exists y (\text{AProf}(x) \land \text{Teach}(x, y))$$
$$\lor \exists y (\text{FProf}(x) \land \text{Teach}(x, y))$$

$q^r(x)$ is such that for every \mathcal{T}-consistent ABox \mathcal{A}, we have $(\mathcal{T}, \mathcal{A}) \models q(c)$ iff $\mathcal{I}_\mathcal{A} \models q^r(c)$
Now modify $q^r(x)$ to ensure that it can only map onto ABox assertions that are not involved in any contradictions:

$$(\exists y \text{Prof}(x) \land \text{Teach}(x, y) \land \neg \text{Postdoc}(x) \land \neg \text{Student}(x)$$
$$\land \neg \text{Course}(x) \land \neg (\exists z \text{Teach}(z, x)) \land \neg \text{Person}(y) \land \neg \text{PhD}(y) \land \neg \text{Postdoc}(y)$$
$$\land \neg \text{Prof}(y) \land \neg \text{AProf}(y) \land \neg \text{FProf}(y) \land \neg (\exists z \text{Teach}(y, z))$$
$$\lor (\exists y \text{AProf}(x) \land \text{Teach}(x, y) \land \neg \text{FProf}(x) \land \neg \text{Postdoc}(x) \land \neg \text{Student}(x)$$
$$\land \neg \text{Course}(x) \land \neg (\exists z \text{Teach}(z, x)) \land \neg \text{Person}(y) \land \neg \text{PhD}(y)$$
$$\land \neg \text{Postdoc}(y) \land \neg \text{Prof}(y) \land \neg \text{AProf}(y) \land \neg \text{FProf}(y) \land \neg (\exists z \text{Teach}(y, z))$$
$$\lor (\exists y \text{FProf}(x) \land \text{Teach}(x, y) \land \neg \text{AProf}(x) \land \neg \text{Postdoc}(x) \land \neg \text{Student}(x)$$
$$\land \neg \text{Course}(x) \land \neg (\exists z \text{Teach}(z, x)) \land \neg \text{Person}(y) \land \neg \text{PhD}(y) \land \neg \text{Postdoc}(y)$$
$$\land \neg \text{Prof}(y) \land \neg \text{AProf}(y) \land \neg \text{FProf}(y) \land \neg (\exists z \text{Teach}(y, z))$$)
Modify q^r to ensure that ABox assertions matching disjuncts of the rewriting give a \mathcal{T}-consistent subset:

$$(\exists y \text{Prof}(x) \land \text{Teach}(x, y) \land x \neq y)$$
$$\lor (\exists y \text{AProf}(x) \land \text{Teach}(x, y) \land x \neq y)$$
$$\lor (\exists y \text{FProf}(x) \land \text{Teach}(x, y) \land x \neq y)$$

- first disjunct: add $x \neq y$ since any image of $\text{Prof}(x) \land \text{Teach}(x, x)$ is \mathcal{T}-inconsistent (due to $\exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Course}, \text{Person} \sqsubseteq \neg \text{Course}$) and \mathcal{T}-consistent when $x \neq y$
- second and third disjuncts: similarly need to add $x \neq y$ to prevent same kind of contradiction