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CHAPTER 1

INTRODUCTION

Type-logical grammars (Moortgat 1997, Morrill 1994) are a family of logical
calculi — with, as the name suggests, a strong relation to the theory of types
— for natural language analysis and natural language semantics. Type-logical
grammars were introduced by Lambek (1958), who extends the work of Aj-
dukiewicz (1935) and Bar-Hillel (1964) — which have only elimination rules
— by adding the corresponding introduction rules and giving cut-elimination
and decidability proofs. The addition of the introduction rules, besides being
desirable from a logical point of view has descriptive advantages as well, per-
mitting a treatment of wh extraction (at least in peripheral cases) and quantifier
scope ambiguities (again with some limitations).

Given that it has long been suspected that Lambek grammars generate only
context-free grammars — though this was proved only in (Pentus 1997) — dif-
ferent extensions to the Lambek calculus have been proposed in the literature,
notably to deal with linguistic phenomena for which no satisfactory Lambek
calculus treatment exists, such as medial extraction or the crossing dependen-
cies of Dutch subordinate clauses. These additions are the use of modes to dis-
tinguish different modes of composition each with their own family of con-
nectives. The addition of structural rules to allow more flexibe compisition of
categories and the addition of unary control operators. The resulting logic takes
the non-associative Lambek calculus NL as a base, adds modes and unary con-
trol operators and a set of structural rulesR, a small set of structural rules fixed
for a grammar. The resulting logic is called NL✸R, or, whenR = ∅, just NL✸.

Relatively little is known about the exact class of languages generated by
NL✸R. Moot (2002) shows that when we disallow structural rules to increase
the total number of unary connectives then NL✸R generates exactly the context-
sensitive languages, which implies that the decision problem for NL✸R is
PSPACE complete. It is also known that NL✸ generates exactly the context-
free languages and polynomial algorithms are known in this case (de Groote
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1999, Capelletti 2007). While these results establish interesting upper and lower
bounds, we would like to find fragments of NL✸R which generate a bit more
than just the context-free languages, though less than the full class of context-
sensitive languages while maintaining a polynomial time parsable formalism.
The class of mildly context-sensitive grammar formalisms appears to be a good
compromise between parsing complexity and language classes generated.

In order to indentify mildly context-sensitive and polynomially parsable
fragments of NL✸R, we will related two classes of (hyper-)graph languages:
hyperedge replacement grammars and proof nets a graph-like representation of
proofs in NL✸R.

Hyperedge replacement grammars (introduced in Chapter 2) are a type of
context-free graph grammar where we replace a hyperedge by a hypergraph
(Engelfriet 1997). Hyperedge replacement grammars have been well-studied in
the context of theoretical computer science and many results about the classes
of string languages, tree languages and graph languages generated are known
(Engelfriet 1997, Drewes, Habel & Kreowski 1997, both give good overviews of
many of the results for hyperedge replacement grammars).

Proof nets (introduced in Chapter 3) are a graph-like presentation which
has several advantages over the other calculi. They are redundancy-free, in the
sense that different proof nets correspond to different lambda-term semantics,
much like natural deduction for the (→, ∧) fragment of intuitionistic logic. In
addition, they have been shown to share some proporties with human sentence
processing (Morrill 1998, Johnson 1998).

In Chapter 4, I will relate hyperedge replacement grammars to type-logical
proof nets. In particular, I will give hyperedge replacement grammars for sev-
eral different, commonly used but restricted, Lambek calculi, NL✸, NL✸R (for
several instances of R) and LG and show that for each of these systems there
is a strongly equivalent hyperedge replacement grammar. Note however, that
in the cases with structural rules (LG and NL✸R) these results apply only to
fragments with formula restrictions, the so-called well-bracketed fragments dis-
cussed in Section 3.7.

This has several important consequences: first of all it gives a characteri-
zation of the tree languages generated by several interesting type-logical frag-
ments, which is exactly the class of tree languages generated by tree adjoining
grammars. Secondly, it gives us new polynomial parsing algorithms for these
restricted fragments and opens the door for the treatment other fragments.



CHAPTER 2

HYPEREDGE REPLACEMENT GRAMMARS

2.1 Hypergraphs

A hypergraph generalises the notion of graph by allowing the edges, called hy-
peredges, to connect not just two but any number of nodes. Hypergraphs will
de the data structure used both for type-logical proof nets and for hyperedge
replacment grammars. There are slight differences between authors on the def-
inition of hypergraphs. In the current paper, I will follow Engelfriet (1997), but
use σ instead of Σ for the alphabet of selectors, reserving Σ for the alphabet of
non-terminal word labels later.

Definition 2.1 Let Γ be an alphabet of edge labels and let σ be an alphabet of selectors.
A hypergraph over Γ and σ is a tuple 〈V,E, lab, nod, ext〉, where

V is the finite set of vertices,

E is the finite set of hyperedges disjoint with V ,

lab is the labeling function, from E to Γ, assigning an edge label to each hyperedge,

nod is the incidence function that associates with each edge e ∈ E a partial function
nod(e) : σ → V , that is, it selects a vertex for every selector σ of the edge.

ext is the external function, a partial function from σ to V , that is, for every selector
σ of the hypergraph it select a vertex.

Definition 2.2 The type of a hypergraph H is the domain of the external function,
type(H) = dom(ext). The type of an edge e is the domain of the incidence fuction
type(e) = dom(nod(e)).
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Figure 2.1: Hypergraph of a flowchart

To simplify the results and discussion which follow, we will assume that
edge labels are (σ-)typed, that is to say that every edge e with label lab(e) will
always appear with the same set of selectors.

The external nodes are special nodes in the graph which are identified by
the selectors. Their goal is to define the embedding mechanism of hyperedge
replacement grammars, where we will replace a hyperedge of a certain type by
a hypergraph of the same type.

Example 2.3 As an example, inspired by Habel & Kreowski (1987), Figure 2.1 gives a
hypergraph representing the flowchart of a very simple program. The selector alphabet
σ has member i (input), o (output), t (true) and f (false). The complete hypergraph has
one input, the external vertex labeled (i) and one output, the external vertex labeled
(o). The hyperedge t is of type {i, t, f}. It represents a boolean test with a false branch
exiting this piece of code immediately and a true branch executing a basic program p
(of type {i, o}) then returning to the boolean test. As should be clear from the intended
meaning of this hypergraph, it is an abstract representation of a while loop.

2.2 Hyperedge Replacement

The operation of hyperedge replacement replaces a hyperedge by a hyper-
graph H of the same type. Basically, we delete the hyperedge then add a (dis-
joint copy of) H and finally we identify each external node of H with the node
adjacent to the same selector of the deleted hyperedge. Formally, this is defined
as follows.

Definition 2.4 Let H and K be two disjoint hypergraphs with the same set of edge
labels Γ and the same set of selectors σ. Let e be an edge of H such that type(e) =
type(K). The hyperedge replacement of e by G, H [e := G] = 〈V,E, lab, nod, ext〉
is defined as follows.

V = VH ∪ VK

E = (EH − e) ∪Ek
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Figure 2.2: Hyperedge replacement

lab = labH ∪ labK restricted to the members of E.

nod = nodH ∪ nodK restricted to the members of E.

ext = extH

For all s ∈ type(e), nodH(e, s) = extK(s).

Example 2.5 Figure 2.2 shows how the hyperedge labeled b of graph H is replaced by
hypergraph K .

It is well-known that hyperedge replacement is both confluent and associa-
tive (Courcelle 1987, Lautemann 1990). Confluent in this context means that
whenever we have a hypergraph H with two distinct hyperedges e1 and e2
then H [e1 := K1][e2 := K2] = H [e2 := K2][e1 := K1]. That is to say we
can change the order of the replacement of two distinct hyperedges without
changing the resulting hypergraph.

In this context, associative means that when we have a hyperedge e1 of H
and a hyperedge e2 of K1, then H [e1 := K1][e2 := K2] = H [e1 := K1[e2 := K2]].
That is to say we can perform a substitution ...

2.3 Hyperedge Replacement Grammars

Hyperedge replacement grammars were introduced by Bauderon & Courcelle
(1987) and Habel & Kreowski (1987) and have been applied to ...

Engelfriet (1997) gives an overview of hyperedge and node replacement
grammars and several of the resuls obtained for them.

Definition 2.6 A hyperedge replacement grammar (or HR grammar) is a tuple
G = 〈N, T, σ, P, S〉 such that.
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Figure 2.3: Hyperedge replacement grammar for flowcharts — statements

N is the alphabet of nonterminal edge labels.

T is the disjoint alphabet of terminal edge labels.

σ is the alphabet of selectors.

P is the finite set of productions.

S ∈ N is the start nonterminal symbol.

Example 2.7 Example 2.3 showed a hypergraph representation of a flowchart. Fig-
ures 2.3 and 2.4 show a hyperedge replacement grammar, very close to the one pro-
posed by Habel & Kreowski (1987), generating such hypergraphs. The grammar has
two nonterminal symbols: S (for statement) of type {i, o} and B (for boolean) of
type {i, t, f}.

As shown in Figure 2.3, a statement is either an elementary program statement
pn, a combination of two statements, a while loop, which executes a statement until a
boolean test returns false or an if ... then ... else statement, which executes one of two
program statements depending on whether a boolean returns true or false.

Boolean tests for our toy programming language are shown in Figure 2.4. Again,
a boolean test can be an elementary test tn. But if can also be a combination of two
boolean tests: either by and leaving by the (f) node as soon as one of the two tests fails
or by or leaving by the (t) node as soon as one of the two tests succeeds.

The notation of derivation and of languages generated generalize easily
from those of context-free string languages.

Definition 2.8 Let G be a hyperedge replacement grammar and H a hypergraph. We
say that G derives H iff there is a sequence

S → . . .→ H

such that S is the start symbol of the grammar and every step in the derivation corre-
sponds to a hyperedge replacement according to a production in P
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Figure 2.4: Hyperedge replacement grammar for flowcharts — booleans

Definition 2.9 Let G be a hyperedge replacement grammar. The language generate
by G is the set of hypergraphs without hyperedges labeled by nonterminal edge labels
derivable from S.

2.4 Basic Results for Hyperedge Replacement Gram-

mars

As attested by the aforementioned overviews (Engelfriet 1997, Drewes et al.
1997), hyperedge replacement grammars have are an area of active research
with many results. In this section, I will provide an admittedly ecclectic selec-
tion of results which will prove useful later.

Definition 2.10 The rank of a terminal or nonterminal symbol is the number of its
tentacles.

The rank of a hyperedge replacement grammar is the maximum rank of a nonter-
minal symbol in the grammar.

Given that each additional tentacle permits us to have access to an addi-
tional vertex in the hypergraph, it should come as no surprise that increasing
the rank of a hyperedge replacement grammar increases the language gener-
ated by the grammar.

It will often be convenient to look at hyperedge replacement grammars
where we require all tentacles to reach distinct vertices and where we require
all external vertices to be distinct. This last condition corresponds to not allow-
ing a nonterminal to rewrite to the empty string in context-free string gram-
mars.

Definition 2.11 Let g be a hyperedge replacement grammar and H the right hand
side of a rule in g.

• g is loop-free iff for every nonterminal e of every right hand side H of a rules
in g and for all s1, s2 ∈ type(e) whenever nodH(e, s1) = nodH(e, s2) then
s1 = s2.
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• g is identification-free iff for every right hand side H of a rule in g and for all
s1, s2 ∈ type(H) whenever extH(s1) = extH(s2) then s1 = s2.

Lemma 2.12 ((Engelfriet & Heyker 1992)) For every hyperedge replacement gram-
mar g there is a hyperedge replacement grammar g′ which is loop-free and identification-
free and which generates the language L(g′) = {H ∈ L(g)|H is identification-free.

I will not consider loops in the current paper and therefore make the quiet
assumption that all tentacles with different labels will reach different nodes.
However, it is sometimes convenient to allow rules in our grammar to identify
nodes. Even though by Lemma 2.12 they can be removed from the hyperedge
replacement grammars I propose — and for parsing the hyperedge replace-
ment grammars in this article it is generally necessary that they are — in the
interest of keeping the grammars as compact as possible, I will use hyperedge
replacement rules which identify nodes.



CHAPTER 3

PROOF NETS FOR TYPE-LOGICAL GRAMMARS

Proof nets are a way of representing proofs in linear logic introduced by Gi-
rard (1987). Proof nets naturally factor out the ‘bureaucratic’ rule permutations
which are possible in the sequent calculus and natural deduction formulations
of linear logic.

Proof nets are usually described in three steps: first, we start with a more
general set of structures which includes all provable statements but also some
non-provable statements. These structures are proof structures. For the second
step, we ‘forget’ about a lot of the information of the proof structures. For ex-
ample, for the Danos-Regnier switching criterion (Danos & Regnier 1989) we
forget about the actual formulas in the proof structure and obtain just a set of
graphs, the correction graphs. Similarly, we obtain abstract proof structures by
forgetting about the internal formulas of a proof structure and by forgetting
most of the names of the logical rules used. Finally, we state a correctness con-
dition such that any proof structure of which the underlying abstract structure
satisfies this condition is a proof net. For the Danos-Regnier criterion we verify
that all correction graphs are acyclic and connected. For the type-logical proof
nets, we use a contraction criterion in the style of Danos (1990).

For the description of proof nets in the current chapter, I follow Moot &
Puite (2002) but define the proof structures in terms of hypergraphs to make
the equivalence proof with hyperedge replacement grammars simpler.

3.1 Proof Structures

Definition 3.1 A proof structure P is a tuple 〈H,V,A, frm, pre, con〉 such that H
is a hypergraphwith selectors σ = {s1, s2, t}1 and edge labels.

1The selector labels represent ‘source 1’, ‘source 2’ and ‘target’ respectively: in the notation of
Habel & Kreowski (1987) the source selector labels would be arrows entering the hyperedge and the
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h, c of type {s1}
a+, a− of type {s1} for all a ∈ A
L✸,R✸, L✷,R✷ of type {s1, t}
L/,R/, L•,R•, L\,R\ of type {s1, s2, t}

and the empty set of external nodes.
V is the set of vertices in the hypergraph.
A is the set of atomic formulas. As shown above, each atomic formula a ∈ A

induces a positive hyperedge a+ as well as a negative hyperedge a−.
frm is a function from vertices to formulas such that for all v ∈ V , frm(v) is a

member of the set of formulas F , such that the neighborhood of every hyperedge is of
one of the forms shown in Figure 3.1.

con and pre are functions from edge labels Γ to lists of selectors, such that for an
edge e with label lab(e) = l , pre(l) ∈ σ∗. That is, the function pre returns is a list
of selectors indicating the list of premisses of the edges with label l: if selector s is a
member of pre(l), then for an edge e with this label, the vertex nod(e, s) is a premiss of
the edge and if selector s1 precedes selector s2 in pre(l) then vertex nod(e, s1) occurs
to the left of vertex nod(e, s2). The function con(l) is a list of selectors indicating the
list of conclusions of the edge.

For every edge label l of type t, pre(l) and con(l) partition the set t into two disjoint
subsets: every member of t occurs exactly once in either pre(l) or con(l).

Every vertex is incident to exactly two hyperedges: once as a premiss and once as a
conclusion.

Table 3.1 shows the value of the premisses and the conclusions for the different link
types. Remark the following:

• In Figure 3.1 the premisses are drawn from left to right above the edge whereas
the conclusions are drawn from left to right below it. Note, however, than only
the labels are important and that sometimes it will be convenient when drawing
a graph to abandon this convention.

• The left and right link of a connective are inverse to eachother with respect to
premisses and conclusions, that is to say for any connective c we have pre(Lc) =
con(Rc) and con(Lc) = pre(Rc). These are the symmetries of our logical calcu-
lus.

All vertices which are incident to an h edge are called the hypotheses of the proof
structure. All vertices which are incident to a c edge are called the conclusions of the
proof structure.

There are few graphical and notational differences with the proof structures
of Moot & Puite. I will discuss each of them in turn.

1. I use special h and c hyperedges to indicate the hypotheses and conclu-
sions of the proof structure. This makes our proof structures more regular
in that every formula is now the premiss exactly one link and the conclu-
sion of exactly one link.

target selector and arrow leaving it, which is the way the links are presented in (Moot & Puite 2002)
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Figure 3.1: Hyperedges for NL✸ proof structures

pre(h) =[] con(h) =[s1]
pre(c) =[s1] con(c) =[]
pre(L✸)=[t] con(L✸)=[s1]
pre(R✸)=[s1] con(R✸)=[t]
pre(L✷)=[t] con(L✷)=[s1]
pre(R✷)=[s1] con(R✷)=[t]
pre(L/) =[t, s2] con(L/) =[s1]
pre(R/) =[s1] con(R/) =[t, s2]
pre(L•) =[s1, s2] con(L•) =[t]
pre(R•) =[t] con(R•) =[s1, s2]
pre(L\) =[s1, t] con(L\) =[s2]
pre(R\) =[s2] con(R\) =[s1, t]

Table 3.1: The functions pre and con for proof structures

2. I use explicit hyperedges corresponding to the positive and negative atomic
formulas, the axiom/cut rule discussed below allows us to eliminate a
postive and negative atomic hyperedge by identifying the vertices which
are incident to the two links.

3. The list of premisses and list of conclusions of links are replaced by the
functions pre and con.

4. The main formula of a link is the vertex which is reached by the t selector,
the active formulas are the vertices reached by the s1 and s2 selectors.
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5. The difference between par and tensor links is not indicated explicitly
but can be trivially recovered from the edge labels: L/, R•, L\, L✷ and R✸
(the entire top row of Figure 3.1) are tensor links and R/, L•, R\, R✷ and
L✸ (the entire bottom row of the figure) are par links.

Definition 3.2 If a vertex is incident to two selectors ∈ {s1, s2}, we will call it an
axiomatic vertex, if it is incident to one s and one t selector we will call it a flow
vertex and if it is incident to two t selectors we will call it a cut vertex.

Proof nets for intuitionistic logic often use a notion of polarity to distinguish
negative (antecedent) formulas from positive (succedent) formulas. It is possi-
ble to assign polarities to the vertices in proof structures here as well, but we
need to keep in mind that axiom and cut formulas perform the role of both a
positive and a negative formula. The way to see this is that an axiom is a neg-
ative formula with respect to the hyperedge of which it is a conclusion and a
positive formula with respect to the hyperedge of which it is a premiss.

Figure 3.2 shows the different types of vertices. In all cases, the vertex is a
conclusion of the hyperedge with the tentacle connecting it from above and a
premiss of the hyperedge with the tentacle connecting it at the bottom.

The hyperedges corresponding to positive and negative atomic formulas
are eliminated by means of the axiom or cut rule, shown in Figure 3.3. This rule
allows us to connect two arbitrary formulas of opposite polarity; they need not
be disjoint as suggested by the figure.
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Figure 3.4: Example lexical graphs and a possible set of axiom connections

Definition 3.3 Let F be an NL✸ formula. Its negative unfolding is the proof struc-
ture we obtain by letting every subformula occurrence f of F correspond to a vertex
v ∈ V such that frm(v) = f , each local neighborhood corresponds to one of the forms
shown in Figure 3.1, the vertex with frm(v) = F is incident to an h hyperedge and all
atomic vertices are incident to either an a+ or a− hyperedge in such a way that:

• all vertices adjacent to an a+ or a− hyperedge are axiomatic vertices,

• all other vertices except are flow vertices.

The positive unfolding of an NL✸ formula F is defined analogously, but with
the vertex such that frm(v) = F incident to a c hyperedge.

Example 3.4 As an example Figure 3.4 gives the negative unfoldings of the formulas
n, (n\n)/(s/✸✷np), np and (np\s)/np and the positive unfolding of n.

The grey lines indicate a possibility for the axiom identifications, the result of which
is the proof structure shown in Figure 3.5.

In the example above, all identifications are of atomic formulas and they
result in axiomatic vertices in the resulting proof structure. Connecting an
axiomatic vertex with a flow vertex will simply result in a new flow vertex,
whereas connective two flow vertices will result in a cut vertex. Given that the
axiom hyperedges are of type {s1}, these are the only possibilities.
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Though the cut vertices don’t present any problems for the proof net cal-
culus, they can be eliminated without problem giving a shorter conversion se-
quence to the final tensor tree (Moot & Puite 2002). From the point of view of
proof search, we therefore want to look at cut-free proof nets. Indeed, we can
see that cut elimination is immediate for the cases where the axiom/cut rule
produces an axiomatic or flow vertex, it corresponds simply to a composition
of proofs similar to what we have in natural deduction.

Figure 3.5 shows an example of a proof structure corresponding to the se-
quent

n, (n\n)/(s/✸✷np), np, (np\s)/np ⊢ n

on the left of the figure. The five axiomatic vertices in the proof structure have
been circled. The only positive vertex, a premiss of the [R/] link by the t selector
and a conclusion of the [L/] link by the s2 selector has a grey color. All other
vertices are negative flow vertices. Remark that I have rotated the [R/] link,
displaying the s2-selected vertex above the node label instead of below it, in
spite of it being a conclusion of the link. Similarly, the s2-selected vertex of the
topmost [L/] link is portray below the node label, even though it is a premiss
of its link.

3.2 Abstract Proof Structures

An abstract proof structure erases some of the distinctions made by proof struc-
tures. For example, the different tensor links with the same number of tentacles
are no longer distinguished and the formula function is no longer defined for
all vertices but only for the hypotheses and conclusions of the structure.

We keep the different par links, but because the tensor links are now indis-
tinguishable, we lose nearly all information about axiom, flow and cut vertices.

Definition 3.5 An abstract proof structure is a tuple 〈H,V, frm, pre, con〉 such that
H is a hypergraph with selectors {1, 2, 3} and edge labels

h, c of type {1}
〈〉 of type {1, 2}
◦ of type {1, 2, 3}
L✸,R✷ of type {1, 2}
R/, L•,R\ of type {1, 2, 3}

such that every vertex is incident to exactly two hyperedges, once as a premiss and
once as a conclusion. pre and con are the premiss and conclusion functions as before,
but with the definitions for the edge labels of abstract proof structures as shown in
Table 3.2.

The formula function frm is a partial function from edges to formulas. frm(e) is
defined iff e is an h or c edge.
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Figure 3.5: An example proof structure and the corresponding abstract proof
structure

Definition 3.6 Let P be a proof structure. The abstract proof structure corresponding
to P , A = aps(P) is defined as follows.

• VA = VP .

• EA = tr(EP), where tr is the edge translation function shown in Figures 3.6
and 3.7.

• frmA = frmP(nod(e, s1)) for all e ∈ eP such that lab(e) = h or lab(e) = c and
undefined in all other cases.

On the right of Figure 3.5 we see the conversion of the example proof struc-
ture into its abstract proof structure.

From the definition of the translation function it is clear that we can still
recover some of the active and main vertices of an abstract proof structure: for
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pre(h) =[] con(h) =[1]
pre(c) =[1] con(c) =[]
pre(〈 〉) =[1] con(〈 〉) =[2]
pre(◦) =[1, 2] con(◦) =[3]
pre(L✸)=[1] con(L✸)=[2]
pre(R✷)=[1] con(R✷)=[2]
pre(R/) =[3] con(R/) =[1, 2]
pre(L•) =[3] con(L•) =[1, 2]
pre(R\) =[3] con(R\) =[1, 2]

Table 3.2: The functions pre and con for abstract proof structures

a R/ link, the main formula is the one incident to 1, for a R\ link it is incident
to 2 and for a L• link it is incident to 3. Similary, the main formula of a R✷ link
is incident to 1 and the main formula of a L✸ link is incident to 2.

Lemma 3.7 If P is a proof structure thenA = aps(P) is an abstract proof structure.

Proof This is fairly trivial. It amounts to verifying is all cases that the in-
cidence function reaches the same vertices with the renamed selector and that
the hypotheses and conclusions of a hyperedge are the same list of vertices in
each case. Since the translation is a simple renaming, this is trivial. The for-
mula function frm has the required property of assigning a formula to all and
only the h and c edges by construction. ✷

Definition 3.8 A tensor tree T is an abstract proof structure containing only edges
with labels h, c, 〈〉 and ◦.

3.3 Contractions and Structural Rules

For abstract proof structures, we define the contraction operation as follows.
The configurations we contract are shown in Figure 3.8: in all cases a tensor
link and a par link are connected to eachother by all tentacles of the two links
which have the same selector except one and the difference between the par
links is the tentacle chosen to be ‘external’, that is, pointing to the top and
bottom vertices in the Figure.

Definition 3.9 If a hypergraph H contains a subgraph of one of the forms shown in
Figure 3.8, a contraction in one step is H → H ′ is obtained by deleting the two links
as well as the vertices which are incident to both links, then identifing the two exterior
vertices.

We will say H →∗ H ′ or H contracts to H ′ by taking the→∗ to be the reflexitive,
transitive closure of→.
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Lemma 3.10 If H → H ′ then H is an NL✸ abstract proof structure iff H ′ is an
abstract proof structure.

Proof Take H = 〈E, v, frm, pre, con〉 to be an abstract proof structure and e1
and e2 to be two hyperedges such that their neighbourhood is as shown in
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Figure 3.8, with v1 and v2 being the two internal vertices and vh the vertex
which is a hypothesis of its link — and therefore the conclusion of another
link — and vc the vertex which is a conclusion of its link — and therefore the
hypothesis of another link. To obtain H we delete hyperedges e1 and e2 and
vertices v1 and v2. Furthermore we identify the two nodes vc and vh, making it
a vertex which is a conclusion of one link and a premiss of one link. Given that
no hyperedges labeled h or c can disappear frm remains the same, whereas pre
and con are the natural restriction of the same functions of H to the hyperedges
of H ′. ✷

In addition to the contractions, which are a fixed component of all instan-
tiations of NL✸R, a logic can specify a (finite and typically quite small) set
of structural rules R. These structural rules rewrite a tensor tree into another
tensor tree, with the requirement that both tensor trees have the same set of
distinct leaves, though we are allowed to change the order of the leaves. I will
present some structural rules which have been used very frequently in the liter-
ature on multimodal categorial grammars (Moortgat & Oehrle 1993, Moortgat
& Oehrle 1994, Moortgat 1997, Moortgat 1999, Vermaat 2005).

One of the first sets of structural rules used to extend the descriptive power
of the non-associative Lambek calculus are the mixed associativity and mixed
commutativity postulates. Figure 3.9 shows these postulates in their extraction
formulation (the arrows pointing towards the central graph) as well as in their
infixation formulation (the arrows pointing away from the central graph). In
all cases, there is an interaction between a mode 0 and a mode 1 where the same
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vertex — labeled x in the figure — is the leftmost daughter of the hyperedge
labeled ◦1 on both sides of the rule.

Figure 3.10 shows the symmetric set of postulates. This time the vertex
label by z is the right daughter of the hyperedge labeled ◦1 on both sides of the
rule. Again there is the possibility of extraction (the arrows pointing towards
the central graph) and infixation (the arrows pointing away from the central
graph).

Another possibility for expressing controlled associativity and commuta-
tivty in a multimodal calculus is by using unary control. This time we have
just a single binary mode interacting with a single unary mode. The unary
mode marks the element which licenses the restructuring operations. In Fig-
ure 3.11 this is the element x (compare this figure with the version of these
structural rules without unary control in Figure 3.9). There is again the possi-
bility to specify these structural rules in the form of infixation and in the form
of extraction rules.

Figure 3.12 displays a version of the right branch extraction and infixation
rules of Figure 3.10 with unary control. In both cases the z node moves from
one right branch to another.

Definition 3.11 Let H be a hypergraph which is an abstract proof structure for some
logic NL✸R with a set of structural rulesR, a conversion in one step is H →R H ′
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is obtained by either:

• performing a contraction,

• given a rule r ∈ R which is of the form T → T ′ such that T is a subgraph of H
and H ′ is H with the subgraph T of H replaced by T ′.

We will say H →∗
R H ′ or H converts to H ′ by taking→∗

R to be the reflexitive,
transitive closure of→R.

Lemma 3.12 If H →R H ′ then H is an NL✸R abstract proof structure iff H ′ is an
abstract proof structure.
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Proof This is a trivial extension of the previous lemma. For every structural
rule, the internal nodes are a premiss and a conclusion of a link, as required.
For the external nodes: the leaves which are premisses of the links of the struc-
tural rule on both the left hand side and the right hand side of the rule and
therefore all the conclusion of some other link. Given structural rules preserve
the leaves, the situation doesn’t change from left hand side to the right hand
side of a rule of vice verse. For the conclusion, we can make the same argu-
ment. It is a conclusion of a link in the structural rule and therefore a hypothe-
sis of another link in the abstract proof structure before a structural conversion
iff it is the hypothesis of this same link after the structural conversion. ✷

3.4 The Lambek-Grishin Calculus

The Lambek-Grishin calculus LG was introduced by Grishin (1983). It adds
symmetric connectives to the Lambek calculus: reversing the left hand and
right hand side of the turnstile, or, in our proof net case, adding up-down sym-
metric connectives, which turn each premiss into a conclusion and each con-
clusion into a premiss. In addition, Grishin explores the possible interaction
principles between the connectives.

Bernardi & Moortgat (2007) explore the possiblities of using the Lambek-
Grishin calculus, giving an analysis of quantifier scope using Grishin’s interac-
tion principles and an interpretation of the scope possiblities in terms of con-
tinuation semantics.

Figure 3.13 shows the contractions for proof nets in the Lambek-Grishin
calculus. The contractions for Lambek connectives [R\], [L•] and [R/] are the
same as before, but note how the Grishin connectives [L;], [L⊙] and [R⊘] are
just the up-down symmetric versions of the Lambek connectives, given that ‘;’
is the inverse of ‘◦’.

Grishin has proposed a number of interaction principles for LG divided
into four classes. Class I and class IV will interest us here since they concern the
interaction between a Lambek connector ‘◦’ and an inverse Grishin connector
‘;’.

Figures 3.14 and 3.15 show all structural rules in Grishin classes I and IV.
The inward pointing arrows, with the primed rule names, correspond to the
structural rules of class I, whereas the outward pointing arrows correspond to
the structural rules of class IV.

Let me take a moment to point out the similarity between Figure 3.14 and
Figure 3.9 and between Figure 3.15 and Figure 3.10. Apart from the fact that v
is a conclusion of the rule in Figure 3.14 and that x is a hypothesis of the rule
in Figure 3.9 the two figures display the same configuration up to a relabeling
of the selectors and hyperedges. The easiest way to see this is to rotate the
‘;’ hyperedge to the right in such a way that v is displayed at the top of the
hyperedge.

Similarly, in Figure 3.15, when we abstract away of the fact that one vertex
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Figure 3.13: Contractions for LG abstract proof structures
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is a hypothesis and the other a conclusion, w plays the role of z in Figure 3.10
and a rotation of the ‘;’ hyperedge — to the left this time — again gives an
isomorphism of the graphs up to a relabeling of the hyperedges and selectors
labels.
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3.5 Proof Nets

We are now in a position to define proof nets. For NL✸ a proof net is simply
a proof structure where we can convert its abstract proof structure to a tensor
tree, that is to say we eliminate all par rules (labeled [R\], [L•], [R/], [R✷] and
[L✸]) and the resulting structure is a tree with the leaves labeled by h edges
and the root by a c edge.

Theorem 3.13 (Moot & Puite) An proof structure S for NL✸ is a proof net if and
only if its underlying abstract proof structure contracts to a tensor tree.

The result extends naturally when we add any set R of structural rules to
NL✸ to obtain NL✸R. A structural rule in this context is a rewrite of one tensor
tree with n distinct hypotheses as its leaves into another tensor tree with the
same n distinct leaves, though not necessarily in the same order.

Theorem 3.14 (Moot & Puite) An proof structure S for NL✸R is a proof net if
and only if its underlying abstract proof structure converts to a tensor tree using the
contractions and the structural rules inR.

Finally, moving to LG not a lot changes. The only change is that interaction
principles proposed by Grishin are defined on structures having two conclu-
sions in addition to two hypotheses.

Theorem 3.15 (Moot) An proof structure S for LG is a proof net if and only if its
underlying abstract proof structure converts to a tensor tree using the contractions
and any subset of the Grishin interaction principles.
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Figure 3.16: Applying a structural conversion to the abstract proof structure of
Figure 3.5.

Example 3.16 Everything is now in place to show that the proof structure shown
in Figure 3.5 is a proof net, given that we have the structural rules for right branch
extraction with unary control shown in Figure 3.12.

Figure 3.16 shows the abstract proof structure of Figure 3.5 on the left. There are
two possibilities here: either we perform the [L✸] contraction — in which case we have
a dead end where neither structural rules nor contractions apply — or we perform the
single structural rule which is possible in this configuration, moving the unary branch
out as shown on the right of Figure 3.16.

To convince yourself that the part of Figure 3.16 marked in gray is just Figure 3.12,
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Figure 3.17: Applying an L✸ contraction to the abstract proof structure of Fig-
ure 3.16.

remark that only the selector labels and the nodes connected to the rest of the graph are
important. Figure 3.16 has turned the selector 2 of the top ‘◦’ node has downward and
has inversed the ‘〈〉’ node, but the gray subgraph on the left is still isomorphic to the
graph on the left of Figure 3.12 wheres the gray subgraph on the right is isomorphic to
the graph in the middle of Figure 3.12.

Figure 3.17 shows repeats the result of the structural conversion at the left. Now
the are no other possibilities for applying structural rules since only the extraction
structural rules are available. In terms of the contractions, the redex for the [L✸]
contraction is marked in gray on the left of the figure and it contracts to the single
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Figure 3.18: Applying an R/ contraction to the abstract proof structure of Fig-
ure 3.17.

vertex shown in gray on the right of the figure.
Finally, we have the abstract proof structure shown in Figure 3.18 on the right. As

shown in gray, we are in the right configuration to apply the final [R/] contraction,
giving us the tensor tree shown on the right.

3.6 Type-logical Grammars

We now have everything in place to define type-logical grammars and the tree
and string languages generated by them. In essence, as shown by the follow-
ing definition, it corresponds to the simple addition of a lexicon to either an
instance of NL✸R or an instance of LG.

Definition 3.17 A type-logical grammarG is a tuple 〈Σ, A, C, lex,R, S〉 such that.

Σ is the alphabet of non-terminal symbols,

A is a finite set of atomic formulas,
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C is a set of logical connectives each with an arity,

lex is a function from Σ to ℘(F ), that is from non-terminals to sets of formulas. We
will assume without loss of generality that lex never assigns the empty set to a
member of Σ.

R is a finite set of structural rules.

S ∈ F is a special formula, call the start formula or the goal formula.

The definition above is deliberately vague about the connectives. Moot
(2007) lists the possibilities, but for the moment we will only consider the fol-
lowing two instantiations.

• the multimodal categorial grammar vocabulary, consisting of binary con-
nectives {/i, •i, \i} for members i of a finite set of binary modes I together
with unary connectives {✸j ,✷j} for members j of a finite set of unary
modes J .

• the Lambek-Grishin vocabulary consisting of the Lambek connectives
{/, •, \} and the Grishin connectives {⊘,⊙,;}.

For the structural rulesR, I will only consider subsets of the rules discussed
in Section 3.3 for the multimodal vocabulary and I will only consider subsets
of the structural rules dicussed in Section 3.4 for the Lambek-Grishin calculus.

Example 3.18 Given a single unary and a single binary mode, the set of structural
rules U3 and U4 for their combination, the lexical assignments shown in Figure 3.4
and goal formula n we have a (minimal) type-logical grammar Gwh for wh extraction
in English.

Definition 3.19 Given a type-logical grammarG and a sequence of words w1, . . . , wn,
such that wi ∈ Σ and n > 0, we say that G→ w1, . . . , wn iff A1, . . . , An ⊢ S where
for each i, Ai ∈ lex(wi).

Definition 3.20 Let G be a type-logical grammar. The string language generated
by G is the set of sequences of words such that G → w1, . . . , wn. The tree language
generated by G is the set of tensor trees T such that for each t ∈ T , G ⊢ t.

3.7 Analysis of the Structural Rules

The structural rules allow us to rewrite a tensor tree into a tensor tree with the
same external nodes. Even with the condition posed in (Moot 2002) — that the
number of unary tensor links on the right hand side of a tensor rules is equal
to or less than the number of unary tensr links on the left hand side of a rule —
this gives us extactly the context-sensitive languages and a PSPACE decision
problem.
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As we have seen in Section 2.3, hyperedge replacement grammars are con-
text free graph grammars (Engelfriet 1997): while the right hand side of a rule
can be any complex graph of the right type, the left hand side is always a single
nonterminal hyperedge. The structural rules, on the other hand, have (typi-
cally non-trivial) trees on the left hand side of the rule. In this section we will
investigate some very frequently used structural rules and ways to characterize
the proof nets generated by using them in a context-free way.

Now, let’s analyse the combinatorial possibilities of the combinations of the
structural rules of Sections 3.3 and 3.4. Some combinations are know to have
undesirable side-effects, such as collapse to an associative, commutative sys-
tem but we will eliminate these combinations after discussing the total combi-
natorics. We will end up with a number of restrictions on the final grammar
permitting us to describe the generated proof nets as a hyperedge replacement
grammar while factoring out the structural rules.

The basic assumption we make in this analysis is that the final tensor trees
in the grammar have a certain form: in particular, for the multimodal structural
rules of Figures 3.9 and 3.10 we assume that mode 1 is grammar-internal and
that no hyperedges labeled ◦1 occur in the final tensor tree. All ternary hyper-
edges in the final tensor tree are labeled ◦0 using the external mode 0 (we can
extend this by adding other external modes without problem, requiring only
that such additional modes do not interact with either mode 0 or mode 1).

We deploy a similar restriction to the structural rules with unary control,
requiring that all unary branches are eliminated from the final tree and to the
structural rules of the Lambek-Grishin calculus, requiring that all Grishin con-
nectives ; are eleminated.

Definition 3.21 Given a structural rule r with connectives c1, . . . , cn on the left hand
side and connectives d1, . . . , dn on the right hand side a trace is a bijection associating
each element ci with an element of dj .

Definition 3.22 Let P be a proof structure, A its corresponding abstract proof struc-
ture and ρ be a conversion sequence covertingA. For a hyperedge e of P the trace of e
in ρ is defined as the prefix of ρ such that:

• ...

Definition 3.23 Let P be a proof net. It is well-bracketed iff there are no two con-
tractions c1 and c2 in the conversion sequence of A such that such that on any of the
paths between the two traces t1a and t1b of c1 there is just one of the traces of c2.

Intuitively, the combination of well-bracketedness and traces guarantee that
every path in a proof net can be described by a context free grammar, in much
the same way as this is possible for several mildly context-sensitive grammar
formalisms (Vijay-Shanker, Weir & Joshi 1987).

Lemma 3.24 Any NL✸ proof net is well-bracketed.
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Figure 3.19: A proof net violating the well-bracketing conditions

Proof Looking backwards at a conversion sequence ending in a tensor tree,
we see that every contraction corresponds to expanding a single vertex into
two adjacent hyperedges with the empty path between their traces. All we
need to verify is that whenever we apply such an expension the (output) result
abstract proof structure is well-bracketed whenever the input was.

Suppose we have such a well-bracketed input and we apply an expansion.
This operation has the effect that all paths passing through the vertex of the
input which is expanded will be extended in the output graph, but extended
in such a way all paths necessarily pass through both traces of the new hyper-
edges. ✷

Unfortunately, Lemma 3.24 doesn’t extend in general to logics with struc-
tural rules. Figure 3.19 shows a non-wellbracketed proof net on the left, which
we can contract after application of a mixed commutativity rule as shown on
the right of the figure.

The configuration shown in Figure 3.19 can easily be adapted to the other
binary par links and to the other sets of mixed associativity and mixed com-
mutativity structural rules: those with unary control and the Lambek-Grishin
interactions.

In order to provide conditions under which well-bracketing of the contrac-
tions can be guaranteed, I will introduce the notion of an inert mode.

Definition 3.25 Given a grammar G with a set of structural rules R, a mode m is
inert with respect to this grammar and these structural rules if we can appy all its
contractions before applying any structural rules.



30 Proof Nets for Type-logical Grammars

In other words, when a mode is inert, its contractions do not depend on any
structural rules.

Definition 3.26 Given a grammar G with a set of modes M a grammar can select a
subset E of M the member of which are called the external modes. All other modes are
called internal.

The distinction between external and internal modes is implicit in the work
of many authors. A typical use of grammar-internal modes is feature-checking,
where a unary branch of a certain mode — for example n for nominative case
— is introduced.

Observe that when a mode is both inert and internal, then all its occurrences
will contract to a single vertex. The property of having certain substructures
which contract to a single vertex is required if we want to compile away the
structural rules into the rules of the hyperedge replacement grammar and cor-
responds, in essence, to a formula restriction.

Proposition 3.27 Let P be a proof net. The internal modes of P occur only in pairs
of par and tensor links.

Proof This is a direct consequence of the fact the internal modes are not al-
lowed to occur on the final tensor tree and that contractions eliminate a tensor
and a par link at the same time. ✷

Definition 3.28 An NL✸R or LG grammar G is well-bracketed iff all proof nets we
can construct from the lexical entries of G are well-bracketed.

Note that in the presence of structural rules being well-bracketed implies
both a restriction on the set of structural rules and on the formulas in the gram-
mar.

Some of the sets of structural rules which we can, with the appropriate
formula restriction, compile away are the following.

• {P1, P2, P3, P4}

• {P1′, P2′}

• {P3′, P4′}

• {Gr1, Gr2, Gr3, Gr4}

• {Gr1′, Gr2′}

• {Gr3′, Gr4′}

Figure 3.20 shows the case for P1, P2 on the left, for P3, P4 on the right
and for P1′, P2′, P3′, P4′ in the middle. Let’s look in more detail at the way
in which looking at the structural rules this way imposes restriction on the
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Figure 3.20: Generalised contractions for NL✸R abstract proof structures

grammar, looking only at the case of the left of Figure 3.20. A first restriction to
guarantee well-bracketing is that the subgraph displayed as an oval does not
contain mode 1 on the path from the top hyperedge to the bottom hyperedge. A
second restriction is that the vertex which directly connects the two hyperedges
must contract to a single vertex without using structural rules: in other words,
it must consist exclusively of inert, internal modes. When a grammar satisfies
both restrictions, then we can use the “compiled” structural rule exclusively.
In other cases, the compiled rule is sound but possibly incomplete.

Figure 3.21 and Figure 3.21 shows similar figures for the unary controlled
extraction structural rules and the Lambek-Grishin interaction rules. Again,
the grammar needs to satisfy the same conditions: no part of another redex
inside the displayed subgraph (though all of another redex would be fine)
and the vertices connecting the portrayed hyperedges (outside of the oval sub-
graph) must all contract to a point without structural rules.

Definition 3.28 defines well-bracketing as a condition of all proof nets we
can construct using a given grammar. It would be useful to provide a set
of conditions which we can check directly on the formulas which occur in a
given grammar which would ensure that the lexicon plus the structural rules
together give only well-bracketed grammars. A step in this direction would be
to require that mode 1 (for the structural rules on the left of Figure 3.20) only
occurs in the context (A/1B) •1 C. This is admittedly somewhat brute force,
and still in need of a garantee that B generates only trees where the path to C
does not contain mode 1. We leave a more detailed treatment of this important
question to further research.
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CHAPTER 4

TYPE-LOGICAL GRAMMARS AS HR GRAMMARS

Given that the data structures used for proof structures and abstract proof
structures are both hypergraphs, it makes sense to try to provide hyperedge
replacement grammars for both. I will do this in steps, adding more details at
each step until the at final result we have a hyperedge replacement grammar
for type-logical grammars.

As a first step, Section 4.1 presents a hyperedge replacement grammar for
abstract proof nets, that is, abstract proof structures which contract to a tensor
tree. The second step adds the rules fof converting an abstract proof structure
to a proof structures, which are exactly the inverse rules of Section 3.2. Then
we add additional information keeping track of the axiomatic, flow and cut
formulas in the proof net, which will allow us to tell where we have to split up
the proof net. Finally, special hyperedge replacement rules for different sets of
structural rules will be discussed.

The correspondence is very strong: except for the structural rules, which
are ‘compiled away’ we will generate the same sets of hypergraphs using the
hyperedge replacement grammars as we doing generating the proof nets.

4.1 A Hyperedge Replacement Grammar for Abstract

Proof Nets

The hyperedge replacement grammar HR(APN) is defined as follows.

HR(APN) = ({S, T, V }, {h, c, ◦, 〈〉, /, •, \,✸,✷}, {s1, s2, t, 1, 2, 3}, P, S)

The set of productions P is shown in Figures 4.1, 4.2 and 4.3.
Figure 4.1 shows the start configuration. It rewrites the S nonterminal of

type ∅ to a tree T of type {1, 2} with the 1 tentacle connected to a hypothesis
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Figure 4.1: Abstract proof nets: start rule

vertex (ie. a vertex which is connected to the single s1 tentacle of an h hyper-
edge) and the 2 tentacle connected to the conclusion vertex (ie. a vertex which
is connected to the single s1 tentacle of an c hyperedge).

The intuition behind the T rules (T for ‘tensor tree’) shown in Figure 4.2
is that we construct a tensor tree with binary und unary branches (we obtain
the tree by interpreting 1 as indicating the left daugter, 2 as indicating the right
daughter and 3 as indicating the parent node for binary branches and by in-
terpreting 1 as indicating the single daughter and 2 the parent node for unary
branches.

The tree is constructed top-down, that is to say the nonterminal hyperedge
connected to the root (conclusion) external node — the external node (2) — is
an abstract proof structure contracting to a single vertex, indicated by the V
nonterminal. This way, the T rules construct a tree of tensor links where every
vertex in the tensor tree is represented by a single V nonterminal.

The V rules are shown in Figure 4.3: again we descend the graph top-down.
In order for an abstract proof net to contract to a single vertex, we need to be
able to find a 1-1 correspondance between tensor links and par links. Figure 4.3
simply states that an abstract proof structure contracts to a single vertex when-
ever the two active vertices of a tensor and a par link are connected after con-
tracting any intervening structure, as indicated by the V hyperedges between
the active vertices in all grammar rules. Finally, we can have a graph contract-
ing to a single vertex which is followed by another sequence to be contracted
(remember that the contraction of the first hyperedge doesn’t necessarily occur
with the last hyperedge).

The final case contracts the V hyperedge to a single vertex, identifying the
two distinct nodes it connected before.
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Figure 4.2: Abstract proof nets: tensor rules

4.2 A Hyperedge Replacement Grammar for Proof

Nets

The hyperedge replacement grammar HR(PN) is defined as follows.

HR(PN) = ({S, T, V, ◦, 〈〉, /, •, \,✸,✷},

{h, c, L/,R/, L•,R•, L\,R\, L✸,R✸, L✷,R✷}, {s1, s2, t}, P, S)

where the set of productions P contains — in addition to all the productions
of HR(APN) — the following additional productions.

Remember that proof nets are relatively close to abstract proof nets. We
have to distinguish the different possible instantiations of the ‘◦’ and the ‘〈〉’
tensor links in the abstract proof structures — as shown in Figure 4.4 — but
for the par links this is just a simple matter of relabeling the hyperedges and
tentacles.

4.3 Soundness and Completeness

With everything in place it is time to prove the main theorem, that the proof
nets generated by the hyperedge replacement grammar of the previous section
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Figure 4.3: Abstract proof nest: par rules

and the proof nets of Section 3 are the same. To facilitate this proof, I will first
prove two normal form lemma for the hyperedge replacement grammars.

Definition 4.1 A HR(APN) derivation is in normal form iff it is of the following
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Figure 4.5: Converting par links from abstract proof nets to proof nets

form

t0 → . . .→ ti → v0 → . . .→ vj → v′0 → . . .→ v′k

where each tn rewrites a T nonterminal, each vn expands a V nonterminal, i.e.
applies on of the V rules except the last one which contracts the V edge, and finally
each v′n corresponds to a contraction of a V edge.
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Lemma 4.2 For every HR(APN) derivation d there is a derivation d′ ending in the
same graph which is in normal form.

Definition 4.3 A HR(PN) derivation is in normal form iff it is of the following form

a0 → . . .→ ai → p0 → . . .→ pj

where each the sequence a0, . . . ai is an HR(APN) derivation in normal form and
the sequence p0 → . . .→ pj contains only HR(PN) rules not in HR(APN).

Lemma 4.4 For every HR(PN) derivation d there is a derivation d′ ending in the
same graph which is in normal form.

Theorem 4.5 An proof structure S for NL✸ is a proof net if an only if it is generated
by HR(PN).

PN→ HR(PN) Given that S is a proof net, we know that there is a conversion
sequence ρ which converts the abstract proof structure A of S to a tensor tree
T . We proceed by induction on the length l of ρ. The induction hypothesis
is that for every abstract proof structure in the conversion sequence we have
a V edge for every vertex in the abstract proof structure which can expand
into a pair of links. Starting from the tensor tree at the end of the conversion
sequence we move to the beginning of the conversion sequence generating the
initial abstract proof net then finally we convert it to the proof net.

In case l = 0, we know that A is a tensor tree. We apply the T rules to obtain
the same tensor tree, but where every vertex in this tensor tree is now a V edge.

In case l > 0, we know by the induction hypothesis that the abstract proof
structure has a V edge for each of its vertices. The contraction expands a vertex
into two edges and we apply the corresponding HR rule to add the two links
to the abstract proof structure.

After all contractions have been performed, we have obtained an abstract
proof net with some extra V edges. We replace these edges with single nodes
to obtain an HR(APN) derivation producing a hypergraph which is isomor-
phic to the original APN. Finally, using the links of the proof net we extend
this HR(APN) derivation to a HR(PN) derivation which is isomorphic to the
original proof net.

HR(PN) → PN Suppose that d is a HR(PN) derivation in normal form. Let
S be the proof structure at the end of the conversion sequence and let A be
the abstract proof structure at the end of the subsequence d′ of d which is a
HR(APN) derivation. In order to show that S is a proof net we have to prove
that A contracts to a tensor tree, which we do by induction on the number of
expansions e in d′.

Suppose d′ contains no expansions, then d′ ends in a tensor tree we have a
proof net.

If d′ does contain expansions, we look at the last one. Given that there are
no further expansions, all V nodes in the rule are converted to vertices to abtain
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Figure 4.6: Cut, flow and axiom vertices and the corresponding hyperedges

the abstract proof structure and therefore the abstract proof structure is of the
correct form to apply the contraction. ✷

4.4 A Hyperedge Replacement Grammar for Type-

Logical Grammars

The main theorem states that proof nets generated by hyperedge replacement
and proof nets conforming to the contraction criterion coincide for NL✸. How-
ever, we haven’t yet taken the axiom connections and the structural rules into
account.

In order to add the axiom connections to the hyperedge replacement gram-
mar of the previous sections, we are confronted with the problem that in order
to distinguish between cut, flow and axiom vertices we need to know the labels
of the two tentacles adjacent to the vertex and the hyperedge replacement rules
can distinguish only between hyperedge labels, we cannot rewrite a vertex based
on its incident labels. The solution is very simple: since the V hyperedges al-
ready correspond to the vertices in the hypergraph of a proof structure, we
simply need to distinguish the four different cases (cut, flow up, flow down
and axiom) in the hyperedge label. So the hyperedge label V is replaced by a
hyperedge label Vij where i, j ∈ {0, 1}. i is 0 in case the vertex is the hypothesis
of a link by means of its t tentacle and 1 in case it is its hypothesis by means of
an s tentacle. Similarly, j is 0 in case it is the conclusion of a link by means of its
t tentacle and 1 in case it is the conclusion by means of an s tentacle. Figure 4.6
repeats Figure 3.2 while adding the different corresponding V hyperedges.

The single T hyperedge labels is likewise replaced by four instances T11

(axiom), T01 (flow down), T10 (flow up) and T00 (cut).

However, given that these vertex types depend crucially on the instantia-
tions of the ◦, 〈〉 and ; labels, we need to compile out the different possibilities.
This multiplication results in a hyperedge replacement grammar with a bigger
number of rules, though it reduces a hyperedge replacement grammar of or-
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Figure 4.7: Hyperedge replacement rules with and without separating the dif-
ferent V edges

der three to a hyperedge replacement grammar of order two. Figure 4.7 shows
how this addition changes the hyperedge replacement rules.
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Figure 4.8: The example structure of Figure 3.5 with the axiom vertices encir-
cled (left) and with explicit axiom hyperedges (right)
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Figure 4.9: Applying a T01 rule



CHAPTER 5

CONCLUSIONS

We have shown that proof nets for different multimodal Lambek calculi and
different fragments of the Lambek-Grishin calculus can be generated by means
of hyperedge replacement grammars.
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APPENDIX A

COMPLETE HR GRAMMAR FOR NL✸

This is the full NL✸ HR2 grammar, that is to say it is a hyperedge replace-
ment grammars where all non-terminals have two tentacles. All ternary non-
terminals haven been compiled away and the axiom/cut/flow disctintions
have been factored in. The non-terminal symbols of the grammar are S, T00

(tree, cut), T01 (tree, flow down), T10 (tree, flow up), T11 (tree, axiom), V00 (ver-
tex, cut), V01 (vertex, flow down), V10 (vertex, flow up), V11 (vertex, axiom).

A.1 Start: Initial Axiom

The initial axiom rewrites S to a T11 (axiom) vertex which is both a hypothesis
and a conclusion of the abstract proof net.

S →

•

h
1

•

•

T e
11

2

1

•

c
1

A.2 Tensor: Binary

The T binary tensor rules construct the final tensor tree where every vertex in
the tensor tree is a V edge.
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A.3 Tensor: Unary

The two unary tensor rules and the base case, where we rewrite a tensor tree
Tij to a single vertex Vij .
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A.4 Par: L•

The par rules are all instances of the same schema: a par link is linked to a
tensor link by all its tentacles except one, making sure the connecting tentacles
have the same selector at both ends.
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A.5 Par: R/
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A.6 Par: R\
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A.7 Par: L✸
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A.8 Par: R✷
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A.9 End: Cut/Flow/Axiom

These rules end the derivation. Flow up (V01) and flow down (V10) edges are
deleted. Axiom and cut edges are separated into their positive and negative
parts. To obtain cut-free proof nets, simply erase all rules containing occur-
rences of either T00 or V00.
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APPENDIX B

ADDING STRUCTURAL RULES: HRG FOR NL✸R

B.1 Multimodality

A first extension to NL✸ is multimodality. Instead of having a single family
of connectives, an NL✸R grammar G can have a set M of modes. For every
m ∈M there is a set of connectives {/m, •m, \m,✸m,✷m}. In addition there are
structural connectives {◦m, 〈 〉m} for each mode. Finally, there is a set E ⊆M of
external modes. These are the modes which are allowed to appear as structural
connectives on the final tensor tree.

The rules of Appendix A already implement the multimodal version of
NL✸. For every external mode e ∈ E there is a T e tree rule constructing a
tree with a structural connective e and for every mode m ∈ M , the internal
modes include, there is a V vertex rule contracting a tensor and par link of
mode m.

B.2 Mixed Associativity and Mixed Commutativity

Mixed assiociativity and commutativity use an external mode 0 and an internal
mode 1.

The case for embedding tree adjoining grammars, using (A/1B) •1 B uses
the following schema. The contraction for mode 0 uses the normal HR rule,
while mode 1 next to it differs just in the choice of T instead of V , which per-
mets a tensor tree to insert itself at the place of the vertex in the original rule.
To show this rule is correct, we need to show that for any tensor tree T in
the position indicate in the contraction the structural rules allow us to rewrite
them.

Note that the V10 on the left branch of the rule on the right is a restriction
on the allowed proof nets necessary to garantee well-bracketing, following the
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discussion in Section 3.7.
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B.3 Mixed Associativity and Mixed Commutativity

With Unary Control

For mixed associativity and mixed commutativity with unary control, we only
consider two very restricted cases: either positive occurrences of A/0✸0✷0B
together with U1 and U2 or positive occurences of ✸0✷0B\0A together with
U3 and U4.
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B.4 The K1, K2 interaction rules

The K1 and K2 interaction rules are easy to implement. Given that the unary
mode 0 is internal to the grammar, we know that every R✸0 and L✷0 rule must
be paired to either an L✸0 or an R✷0 rule.
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APPENDIX C

HR RULES FOR LAMBEK-GRISHIN

The grammars of Appendix A and B extend easily to the Lambek-Grishin cal-
culus. We can even incorporate the Grishin class IV interactions in a way sim-
ilar to the incorporation of mixed associativity and mixed commutativity in
Appendix B.2

C.1 Start: Initial Axiom

The initial axiom rewrites S to a T11 (axiom) vertex which is both a hypothesis
and a conclusion of the abstract proof net.

S →

•

h
1

•

•

T11

2

1

•

c
1

C.2 Tensor: Binary

As usual, the T rules construct the final tensor tree, but we require it consists
of Lambek constructors only.
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•

•

Tij

2

1

→

• •

•

R•
1 2

3

•

•

T1j

2

1

•

•

Ti1

2

1

•

•

T11

2

1
•

h
1

(2)

(1)

|

• •

•

L/
1 2

3

•

•

T1j

2

1

•

•

Ti0

2

1

•

•

T11

2

1
•

h
1

(2)

(1)

|

• •

•

L\
1 2

3

•

•

T1j

2

1

•

•

Ti0

2

1

•

•

T11

2

1
•

h
1

(2)

(1)

C.3 Par: L•

•

•

Vij

2

1

→

• •

•

L•
1 2

3

•

•

V11

2

1

•

•

V11

2

1

• •

•

R•
1 2

3

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L•
1 2

3

•

•

V10

2

1

•

•

V11

2

1

• •

•

L/
1 2

3

•

•

Vi0

2

1

(2)

(1)

•

•

V1j

2

1

|

• •

•

L•
1 2

3

•

•

V11

2

1

•

•

V10

2

1

• •

•

L\
1 2

3

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)
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C.4 Par: R⊙

•

•

Vij

2

1

→

• •

•

L⊙
1 2

3

•

•

V11

2

1

•

•

V11

2

1

• •

•

R⊙
1 2

3

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

R⊘
1 2

3

•

•

V01

2

1

•

•

V11

2

1

• •

•

R⊙
1 2

3

•

•

Vi1

2

1

(2)

(1)

•

•

V0j

2

1

|

• •

•

R;

1 2

3

•

•

V11

2

1

•

•

V01

2

1

• •

•

R⊙
1 2

3

•

•

Vi1

2

1

(2)
•

•

V0j

2

1

(1)

C.5 Par: R\

•

•

Vij

2

1

→

• •

•

R•
1 3

2

•

•

V11

2

1

•

•

V01

2

1

• •

•

R\
1 3

2

•

•

Vi1

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L/
1 3

2

•

•

V01

2

1

•

•

V11

2

1

• •

•

R\
1 3

2

•

•

Vi1

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L\
1 3

2

•

•

V11

2

1

•

•

V11

2

1

• •

•

R\
1 3

2

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)
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C.6 Par: L;

•

•

Vij

2

1

→

• •

•

L;

1 3

2

•

•

V11

2

1

•

•

V10

2

1

• •

•

L⊙
1 3

2

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L;

1 3

2

•

•

V10

2

1

•

•

V11

2

1

• •

•

R⊘
1 3

2

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L;

1 3

2

•

•

V11

2

1

•

•

V11

2

1

• •

•

R;

1 3

2

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

C.7 Par: R/

•

•

Vij

2

1

→

• •

•

R•
2 3

1

•

•

V11

2

1

•

•

V01

2

1

• •

•

R/
2 3

1

•

•

Vi1

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L/
2 3

1

•

•

V11

2

1

•

•

V11

2

1

• •

•

R/
2 3

1

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L\
2 3

1

•

•

V01

2

1

•

•

V11

2

1

• •

•

R/
2 3

1

•

•

Vi1

2

1

(2)
•

•

V0j

2

1

(1)
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C.8 Par: L⊘

•

•

Vij

2

1

→

• •

•

L⊘
2 3

1

•

•

V11

2

1

•

•

V10

2

1

• •

•

L⊙
2 3

1

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L⊘
2 3

1

•

•

V11

2

1

•

•

V11

2

1

• •

•

R⊘
2 3

1

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L⊘
2 3

1

•

•

V10

2

1

•

•

V11

2

1

• •

•

R;

2 3

1

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

C.9 End: Cut/Flow/Axiom

The end rules remain unchanged.

•

•

V00

2

1

→

•

cut+F
1

(2)

•

cut−F

1

(1)

•

•

V11

2

1

→

•

ax−
a

1

(2)

•

ax+a

1

(1)

•

•

V01

2

1

→
(1)
•
(2)

•

•

V10

2

1

→
(1)
•
(2)
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C.10 The Class IV Interactions

•

•

Tij

2

1

→

• •

•

L;

1 3

2

•

•

V11

2

1

•

•

T10

2

1

• •

•

L⊙
1 3

2

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L;

1 3

2

•

•

V10

2

1

•

•

T11

2

1

• •

•

R⊘
1 3

2

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L;

1 3

2

•

•

V11

2

1

•

•

T11

2

1

• •

•

R;

1 3

2

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

•

•

Tij

2

1

→

• •

•

L⊘
2 3

1

•

•

T11

2

1

•

•

V10

2

1

• •

•

L⊙
2 3

1

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)

|

• •

•

L⊘
2 3

1

•

•

T11

2

1

•

•

V11

2

1

• •

•

R⊘
2 3

1

•

•

Vi0

2

1

(2)
•

•

V0j

2

1

(1)

|

• •

•

L⊘
2 3

1

•

•

T10

2

1

•

•

011

2

1

• •

•

R;

2 3

1

•

•

Vi0

2

1

(2)
•

•

V1j

2

1

(1)


