
Hybrid Type-Logical Grammars,

First-Order Linear Logic and the Descriptive

Inadequacy of Lambda Grammars∗

Richard Moot

May 30, 2014

1 Introduction

Hybrid type-logical grammars (Kubota & Levine 2012, Kubota & Levine 2013c,
Kubota & Levine 2013a) are a relatively new framework in computational lin-
guistics, which combines insights from the Lambek calculus (Lambek 1958) and
lambda grammars (Oehrle 1994, Muskens 2001, Muskens 2003) — lambda gram-
mars are also called, depending on the authors, abstract categorial grammars
(de Groote 2001) and linear grammars (Pollard 2011), though with somewhat
different notational conventions1. The resulting combined system solves some
know problems of both the Lambek calculus and of lambda grammars and the
additional expressiveness of Hybrid type-logical grammars permits the treat-
ment of linguistic phenomena such as gapping which have no satisfactory solu-
tion in either subsystem.

The goal of this paper is to prove that Hybrid type-logical grammars are a
fragment of first-order linear logic. This embedding result has several important
consequences: it not only provides a simple new proof theory for the calculus,
thereby clarifying the proof-theoretic foundations of Hybrid type-logical gram-
mars, but, since the translation is simple and direct, it also provides several new
parsing strategies for Hybrid type-logical grammars. Second, NP-completeness
of Hybrid type-logical grammars follows immediately.

The main embedding result also sheds new light on problems with lambda
grammars, which are a subsystem of Hybrid type-logical grammars and hence
a special case of the translation into first-order linear logic. Abstract categorial
grammars are attractive both because of their simplicity — they use the simply

∗This work has benefitted from the generous support of the French agency Agence Nationale
de la Recherche as part of the project Polymnie (ANR-12-CORD-0004).

1I prefer the term lambda grammars, since I think it most clearly describes the system.
Though the term abstract categorial grammars appears to be more common, and I use it from
time to time in this article, I will argue in Section 7 that abstract categorial grammars/lambda
grammars are unlike all other versions of categorial grammars in important ways.

1

typed lambda calculus, one of the most widely used tools in formal semantics,
to compute surface structure (strings) as well as to compute logical form (mean-
ings) — and because of the fact that they provide a natural account of quantifier
scope and extraction; for both, the analysis is superior to the Lambek calcu-
lus analysis. So it is easy to get the impression that lambda grammars are an
unequivocal improvement over Lambek grammars.

In reality, the picture is much more nuanced: while lambda grammars have
some often discussed advantages over Lambek grammars, there are several cases
— notably coordination, but we will see in Section 7 that this is true for any
analysis where the Lambek calculus uses non-atomic arguments — where the
Lambek grammar analysis is clearly superior. Many key examples illustrat-
ing the elegance of categorial grammars with respect to the syntax-semantics
interface fail to have a satisfactory treatment in abstract categorial grammars.

However, whether or not lambda grammars are an improvement over the
Lambek calculus is ultimately not the most important question. Since there
is a large number of formal systems which improve upon the Lambek calcu-
lus, it makes much more sense to compare lambda grammars to these exten-
sions, which include, among many others, Hybrid type-logical grammars, the
Displacement calculus (Morrill, Valent́ın & Fadda 2011) and multimodal type-
logical grammars (Moortgat 1996b, Moortgat 1997). These extended Lambek
calculi all keep the things that worked in the Lambek calculus but improve on
the analysis in ways which allow the treatment of more complex phenomena
in syntax and especially in the syntax-semantics interface. Compared to these
systems, the inadequacies of lambda grammars are evident: even for the things
lambda grammars do right (quantifier scope and extraction), there are phenom-
ena, such as reflexives and gapping, which are handled by the same mechanisms
as quantifier scope and extraction in alternative theories, yet which cannot be
adequately handled by lambda grammars. The abstract categorial grammar
treatment suffers from problems of overgeneration and problems at the syntax-
semantics interface unlike any other categorial grammar. I will discuss some
possible solutions for lambda grammars, but it is clear that a major redesign
of the theory is necessary. The most painless solution seems to be a move ei-
ther to Hybrid type-logical grammars or directly to first-order linear logic: both
are simple, conservative extensions which solve the many problems of lambda
grammars while staying close to the spirit of lambda grammars.

This paper is structured as follows. Section 2 will introduce first-order linear
logic and Section 3 will provide some background about the simply typed lambda
calculus. These two introductory sections can be skimmed by people familiar
with first-order linear logic and the simply typed lambda calculus respectively.
Section 4 will introduce Hybrid type-logical grammars and in Section 5 we will
give a translation of Hybrid type-logical grammars into first-order linear logic
and prove its correctness. Section 6 will then compare the Lambek calculus
and several of its extensions through their translations in first-order linear logic.
This comparison points to a number of potential problems for lambda grammars.
We will discuss these problems, as well as some potential solutions in Section 7.
Finally, the last section will contain some concluding remarks.

2

2 First-order Linear Logic

Linear logic was introduced by Girard (1987) as a logic which restricts the struc-
tural rules which apply freely in classical logic. The multiplicative, intuitionis-
tic fragment of first-order linear logic (which in the following, I will call either
MILL1 or simply first-order linear logic), can be seen as a resource-conscious
version of first-order intuitionistic logic. Linear implication, written A (B,
is a variant of intuitionistic implication A ⇒ B with the additional constraint
that the A argument formula is used exactly once. So, looking at linear logic
from the context of grammatical analysis, we would assign an intransitive verb
the formula np(s, indicating it is a formula which combines with a single np
(noun phrase) to form an s (a sentence).

Linear logic is a commutative logic. In the context of language modelling,
this means our languages are closed under permutations of the input string,
which does not make for a good linguistic principle (at least not a good univer-
sal one and a principle which is at least debatable even in languages which allow
relatively free word order). We need some way to restrict or control commuta-
tivity. The Lambek calculus (Lambek 1958) has the simplest such restriction:
we drop the structural rule of commutativity altogether. This means linear im-
plication A(B splits into two implications: A\B, which looks for an A to its
left to form a B, and B/A, which looks for an A to its right to form a B. In the
Lambek calculus, we would therefore refine the assignment to intransitive verbs
from np(s to np\s, indicating the intransitive verb is looking for a subject to
its left.

In first-order linear logic, we can choose a more versatile solution, namely
keeping the logic commutative but using first-order variables to encode word
order. We assign atomic formulas a pair of string positions: np becomes np(0, 1),
meaning it is a noun phrase spanning position 0 (its leftmost position) to 1 (its
rightmost position). Using pairs of (integer) variables to represent strings is
standard in parsing algorithms. The addition of quantifiers makes things more
interesting. For example, we can assign the formula ∀x.n(3, x) (np(2, x) to
a determiner “the” which spans positions 2, 3. This means it is looking for a
noun which starts at its right (that is the leftmost position of this noun is the
rightmost position of the determiner, 3) but ends at any position x to produce a
noun phrase which starts at position 2 (the leftmost position of the determiner)
and ends at position x (the rightmost position of the noun). Combined with a
noun n(3, 4), this would allow us to instantiate x to 4 and produce np(2, 4). In
other words, the formula given to the determiner indicates it is looking for a noun
to its right in order to produce a noun phrase, using a form of “concatenation
by instantiation of variables” which should be familiar to anyone who has done
some logic programming or who has a basic familiarity with parsing in general
(Pereira & Shieber 1987, Shieber, Schabes & Pereira 1995). Similarly, we can
assign an intransitive verb at position 1,2 the formula ∀y.np(y, 1) (s(y, 2)
to indicate it is looking for a noun phrase to its left to form a sentence, as the
Lambek calculus formula np\s for intransitive verbs does — this correspondence
between first-order linear logic and the Lambek calculus is fully general and

3

discussed fully in (Moot & Piazza 2001) and briefly in the next section.

2.1 MILL1

After this informal introduction to first-order linear logic, it is time to be a
bit more precise. We will not need function symbols in the current paper,
so terms are either variables denoted x, y, z, . . . (a countably infinite number)
or constants, for which I will normally use integers 0, 1, . . ., giving an m-word
string m + 1 string positions, from 0 to m. The atomic formulas are of the
form a(t1, . . . , tm) with ti terms, a a predicate symbol (we only need a finite,
typically smal, number of predicate symbols, often only the following four: n
for noun, np for noun phrase, s for sentence, pp for predicate phrase) and m its
arity. Our language does not contain the identity relation symbol “=”. Given
this set of atomic formulas A and the set of variables V, the set of formulas is
defined as follows2.

F ::= A | F (V | ∀V.F

We treat formulas as syntactically equivalent up to renaming of bound vari-
ables, so substituting ∀y.A[x := y] (where A does not contain y before this
substitution is made) for ∀x.A inside a formula B will produce an equivalent
formula, for example ∀x.a(x) ≡ ∀y.a(y).

Table 1 shows the natural deduction rules for first-order linear logic. The
variable x in the ∀E and ∀I rules is called the eigenvariable of the rule. The ∀I
rule has the condition that the variable y which is replaced by the eigenvariable
does not occur in undischarged hypotheses of the proof and that x does not
occur in A before the substitution is made3. Throughout this paper, we will
use the standard convention in first-order (linear) logic (Girard 1991, Bellin &
van de Wiele 1995, Troelstra & Schwichtenberg 2000) that every occurrence of
a quantifier ∀, ∃ in a sequent uses a distinct variable and in addition that no
variable occurs both free and bound in a sequent.

As shown in (Moot & Piazza 2001), we can translate Lambek calculus se-
quents and formulas into first-order linear logic as follows.

A1, . . . , An ` B =

‖A1‖0,1, . . . ‖An‖n−1,n ` ‖B‖0,n

2We need neither the multiplicative conjunction ⊗ nor the existential quantifier ∃ in this
paper, though adding them to the logic poses no problems. The natural deduction rules for ∃
and ⊗ are slightly more complicated than those for ∀ and (but the basic proof net building
blocks don’t change, see for example (Girard 1991, Moot & Piazza 2001, Moot 2014).

3It is sometimes more convenient to use the following ∀I rule

A
∀x.A ∀I

∗

with the condition there are no free occurrence of x in open hypotheses. The rule of Table 1 is
more convient in the following section when we use meta-variables, where it becomes “replace
all occurrences of a (meta-)variable by x, then quantify over x”.

4

A A(B
B

(E

[A]i
....
B

A(B
(I

∀x.A
A[x := t]

∀E
A[y := x]

∀x.A ∀I∗

Table 1: Natural deduction rules for first-order linear logic

‖a‖x,y = a(x, y)

‖A/B‖x,y = ∀z.‖B‖y,z (‖A‖x,z

‖B\A‖y,z = ∀x‖B‖x,y (‖A‖x,z

The integers 0 to n represent the positions of the formulas in the sequent and
the translations for complex formulas introduce universally quantified variables.
The translation for A/B states that if we have a formula A/B at positions x, y
then for any z if we find a formula B at positions y, z (that is, to the immediate
right of our A/B formula) then we have an A at positions x, z, starting at
the left position of the A/B formula and ending at the right position of the B
argument. In other words, a formula A/B is something which combines with a
B to its right to form an A, just like its Lambek calculus counterpart.

Using this translation, we can see that the first-order linear logic formulas
used for the determiner and the intransitive verb in the previous section cor-
respond to the translations of np/n at position 2, 3 and np\s at position 1, 2
respectively.

To give a simple example of a first-order linear logic proof, we shown a deriva-
tion of “every student ran”, corresponding to the Lambek calculus sequent.

(s/(np\s))/n, n, np\s ` s

We first translate the sequent into first-order linear logic.

‖(s/(np\s))/n‖0,1, ‖n‖1,2, ‖np\s‖2,3 ` ‖s‖0,3

Then translate the formulas as follows.

∀y.[n(1, y)(∀z.[∀x.[np(x, y)(s(x, z)](s(0, z)]], n(1, 2),∀v.[np(v, 2)(s(v, 3)] ` s(0, 3)

We can then show that “every student ran” is a grammatical sentence under
these formula assignments as follows.

5

∀y.[n(1, y)(∀z.[∀x.[np(x, y)(s(x, z)](s(0, z)]]

n(1, 2)(∀z.[∀x.[np(x, 2)(s(x, z)](s(0, z)]
∀E

n(1, 2)

∀z.[∀x.[np(x, 2)(s(x, z)](s(0, z)]
(E

∀x.[np(x, 2)(s(x, 3)](s(0, 3)
∀E ∀v.[np(v, 2)(s(v, 3)]

s(0, 3)
(E

The application of the final(E rule is valid, since ∀x.[np(x, 2)(s(x, 3)] ≡
∀v.[np(v, 2)(s(v, 3)].

Definition 2.1 (Universal closure) If A is a formula we denote the set of
free variables of A by FV(A).

For an antecedent Γ = A1, . . . , An, FV(Γ) = FV(A1) ∪ · · · ∪ FV(An).
The universal closure of a formula A with FV(A) = {x1, . . . , xn}, denoted

Cl(A), is the formula ∀x1 . . . ∀xn.A.
The universal closure of a formula A modulo antecedent Γ, written ClΓ(A),

is defined by universally quantifying over the free variables in A which do not
occur in Γ. If FV(A) \ FV(Γ) = {x1, . . . , xn}, then ClΓ(A) = ∀x1 . . . ∀xn.A.

Proposition 2.2 Γ ` A iff Γ ` ClΓ(A).

Proof If the closure modulo Γ prefixes n universal quantifiers to A, we can go
from Γ ` A to Γ ` ClΓ(A) by using the ∀I rule n times (the quantified variables
added for the closure have been chosen to respect the condition on the rule) and
in the opposite direction by using the ∀E rule n times. 2

2.2 MILL1 with focusing and unification

The ∀E rule, as formulated in the previous section, has the disadvantage that it
requires us to choose a term t with which to replace x and that making the right
choice for t requires some insight into how the resulting formula will be used in
the rest of the proof. In the example of the preceding section we need to make
two such “educated guesses”: we instantiate y to 2 to allow the elimination rule
with minor premiss n(1, 2) and we instantiate z to 3 to produce the desired
conclusion s(0, 3).

The standard solution to automate this process in first-order logic theorem
proving is to change the ∀E rule: instead of directly replacing the quantified
variable by the “right” choice, we replace it by a meta-variable (I will use the
Prolog-like notation A, B, . . . for these variables, or, when confusion with the
notation A and B for arbitrary formulas is possible C, D, E, . . ., V , W , X, . . .).
These meta-variables will represent our current knowledge about the term with
which we will replace a given quantified variable. The MGU we compute for the
endsequent will correspond to the most general instantiations of these variables
in the given proof (that is, all other instantiations can be obtained from this
final MGU by means of additional substitutions).

6

The(E rule unifies the B formulas of the argument and minor premiss of
the rule (so the two occurrences of B need only be unifiable instead of identi-
cal). Remember that the unification of two atomic formulas a(x1, . . . , xm) and
b(y1, . . . , yn) is only defined when a = b and m = n and that unification tries
to find the most general instantiation of all free variables such that xi = yi (for
all 1 ≤ i ≤ n = m) and fails if no such instantiation exists. The presence of an
explicit quantifier presents a complication, but only a minor one: bound vari-
ables are treated much like constants but with the standard proviso preventing
“accidental capture” of variables by substitution detailed below.

More precisely, the unification of two formulas is defined as follows.

unify(a(x1, . . . , xn), a(y1, . . . , yn)) = unify(xi, yi) for all 1 ≤ i ≤ n
unify(A1 (B1, A2 (B2) = unify(A2, A1), unify(B1, B2)

unify(∀x.A,∀y.B) = unify(A,B[y := x])

The ∀ case assumes there are no free occurrences of x in B before substitu-
tion. It is defined in such a way that it is independent of the actual variable
names used for the quantifier (as mentioned, we use a different variable for each
occurrence of a quantifier) and bound occurrences of xi and yi are treated as
constants in the unify(xi, yi) clause, subject to the following condition: if we
compute a substitution D := x for a formula A and x is not free for D in A then
unification fails. In other words, the substitution cannot introduce new bound
variables, so for example ∀y.a(D, y) and ∀z.a(z, z) fail to unify, since D is not
free for y in ∀y.a(D, y), and therefore we cannot legally substitute y for D since
it would result in an “accidental capture”, creating a new bound occurrence of
y.4

As second problem with natural deduction proof search is that we can have
subproofs with “detours” like the following.

a(y)

∀x.a(x)
∀I

a(y)
∀E

[A]i
....
B

A(B
(Ii A
B

(E

In both cases, we introduce a connective and then immediately eliminate it. A
natural deduction proof is called normal if is does not contain any subproof
of the forms shown above. One of the classic results for natural deduction is
normalization which states that we can eliminate such detours (Girard, Lafont
& Taylor 1988, Troelstra & Schwichtenberg 2000). In the case of linear logic,
removing such detours is even guaranteed to decrease the size of the proof.

We use a form of focalized natural deduction (Andreoli 1992, Brock-Nannestad
& Schürmann 2010), which is a syntactic variant of natural deduction guaran-
teed to generate only normal natural deduction proofs. We use two turnstiles,

4In such cases, substitution succeeds but does nothing and subsequent unification fails,
since the formulas are not alphabetic variants after substitution.

7

Lexicon

A `n A

Axiom/Hypothesis

A `n A

Shift Focus

Γ `n A
Γ `p A

±

Logical Rules

Γ `n B(A ∆ `p B
s(Γ), s(∆) `n s(A)

(E

Γ, B `p A
Γ `p B(A

(I

Γ `n ∀x.A
Γ `n A[x := D]

∀E

Γ `p A[y := x]

Γ `p ∀x.A
∀I∗

Table 2: Focused first-order linear logic with unification

the negative `n and the positive `p (for the reader familiar with focused proofs,
Γ ` C ⇓ corresponds to Γ `n C and Γ ` C ⇑ to Γ `p C).

We will call a sequent Γ `p C a positive sequent (and C a positive formula)
and a sequent Γ `n C a negative sequent (and C a negative formula).

Table 2 shows the rules of first-order linear logic in this format. For the
Lexicon rule, we require that the formula A is closed. The formula A of the
Hypothesis rule can contain free variables.

For the ∀I rule, y is either a variable or a meta-variable which has no free
occurrences in any undischarged hypothesis.

For the(E rule, s is the most general unifier of 〈Γ, B〉 and 〈∆, B〉. That is,
we unify the two occurrences of B in their respective contexts, using unification
for complex formulas as defined above. The resulting most general unifier is
then applied to the two contexts and to A (replacing, if necessary, any variables

8

shared between A and B in the formula A).
We can see from the rules that axioms start negative and stay negative as

long as they are the major premiss of a (E rule or the premiss of a ∀E rule.
We must switch to positive sequents to use the introduction rules or to use the
sequent as the minor premiss of a (E rule.

The “detour” subproofs we have seen above cannot receive a consistent la-
beling: the formula A(B is the conclusion of a (I rule and must therefore
be on the right-hand side of a positive sequent, however, it is also the major
premiss of a (E rule and must therefore be on the right-hand side of a nega-
tive sequent (it is easily verified there is no way to transform a positive sequent
into a negative sequent, however the point is that the original detour receives
an inconsistent labeling).

`p a(y)

`p ∀x.a(x)
∀I

`n ∀x.a(x)
???

`n a(y)
∀E

[`n A]i
....
`p B

`p A(B
(Ii

`n A(B
??? `p A

`n B
(E

Definition 2.3 A principal branch is a sequence of negative sequents which
starts at a hypothesis, then follows all elimination rules from (major) premiss
to conclusion ending at a focus shift rule (this corresponds to the normal notion
of principal branch from e.g. (Girard et al. 1988); a sequence of negative sequents
can only pass through the major premiss of a (E rule and through the single
premiss of a ∀E rule).

A track is a path of negative sequents followed by a focus shift followed by a
path of positive sequents. A track ends either in the conclusion of the proof or
in the minor premiss of a (E rule.

The main track of a proof is the track which ends in its conclusion (these
definitions corresponds to the standard notion of track and main track in normal
proofs, see e.g. (Troelstra & Schwichtenberg 2000)).

This suggests a relation between focused proofs and normal natural deduc-
tion proofs, which is made explicit in the following two propositions.

Proposition 2.4 For every natural deduction proof of Γ ` B, there is a focused
natural deduction proof with unification of Γ `p B.

Proof We first transform the natural deduction proof of Γ ` B into a normal
natural deduction proof, then proceed by induction on the length of the proof
and show that we can create both a proof of Γ `p B and a substitution s. We
proceed by induction on the depth of the proof.

If d = 1, we have an Axiom or Hypothesis rule, which we translate as follows.

A `n A
A `p A

±

9

If d > 1 we proceed by case analysis on the last rule.
The only case which requires some attention is the (E case. Given that

the proof is normal, we have a normal (sub)proof which ends in a (E rule.
We are therefore on the principal branch of this subproof and we know that a
principal branch starts with an axiom/lexicon rule then passes only ∀E rules
and (E rules through their major premiss. Hence, the last rule producing
the major premiss in the original proof must either have been an axiom/lexicon
rule or an elimination rule for (or ∀.

Now induction hypothesis gives us a proof δ1 of Γ `p B(A and a proof δ2
of ∆ `p B. However, given that the last rule of the proof which produces δ1 was
either axiom/lexicon, the ∀E rule or the(E rule — all of which have negative
sequents as their conclusion — the last rule of δ1 must have been the focus shift
rule. Removing this focus shift rule produces a valid proof δ1′ of Γ `n B (A,
which we can combine with the proof δ2 of ∆ `p B as follows.

.... δ1′

Γ `n B(A

.... δ2
∆ `p B

Γ,∆ `n A
Γ,∆ `p A

±

Note that this is again a proof which ends with a focus shift rule.
Since the original proof uses the stricter notion of identity (instead of unifi-

ability) for the B formulas, we need not change the substitution we have com-
puted so far and therefore leave Γ, ∆ and A unchanged.

For the ∀E rule, induction hypothesis gives us a proof δ of Γ `p ∀x.A, by
reasoning similar to the case for (E, we know the last rule of δ was a focus
shift rule, which we can remove, then extend the proof as follows.

.... δ

Γ `n ∀x.A
Γ `n A[x := D]

∀E

Γ `p A[x := D]
±

Adding the substitution D := t (where t is the term used for the in the
original ∀E rule) to the unifier.

The cases for ∀I and(I are trivial, since we can extend the proof with the
same rule. 2

Proposition 2.5 For every focused natural deduction proof, there is a natural
deduction proof.

Proof If we remove the focus shift rule and replace both `n and `p by `
then we only need to give specific instantiations for the ∀E rules. The most
general unifier s computed for the complete proof gives us such values for each
(negatively) quantified variable (if wanted, remaining meta-variables can be
replaced by free variables). 2

10

The following is a standard property of normal natural deduction proofs
(and therefore of focused natural deduction proofs).

Proposition 2.6 Focused proofs satisfy the subformula property. That is, any
formula occurring in a proof of Γ `p B (or Γ `n B) is a subformula either of Γ
or of B.

The following proposition is easily verified by induction on A and using the
correspondence between natural deduction proofs and λ-terms.

Proposition 2.7 We can restrict the focus shift rule to atomic formulas A.
When we do so, we only produce long normal form proofs (which correspond to
beta normal eta long lambda terms).

The proof from the previous section looks as follows in the unification-based
version of first-order linear logic, though we use a form with implicit antecedents
to economize on horizontal space and to make comparison with the proof of the
previous section easier. This proof produces the most general unifier Y = 2,
Z = 3, corresponding to the explicit instantiations for y and z at the ∀E rules
in the previous proof.

`n ∀y.[n(1, y)(∀z.[∀x.[np(x, y)(s(x, z)](s(0, z)]]

`n n(1, Y)(∀z.[∀x.[np(x, Y)(s(x, z)](s(0, z)]
∀E

`n n(1, 2)

`p n(1, 2)
±

`n ∀z.[∀x.[np(x, 2)(s(x, z)](s(0, z)]
(E

`n ∀x.[np(x, 2)(s(x, Z)](s(0, Z)
∀E

`p ∀v.[np(v, 2)(s(v, 3)]

`p ∀v.[np(v, 2)(s(v, 3)]
±

`n s(0, 3)
(E

`p s(0, 3)
±

Restricting focus shift (±) to atomic formulas, produces the following proof
in long normal form. Remark that our hypothesis in this proof is not np(V, 2)
but np(U,W) which unifies with np(V, 2) at the (E rule immediately below
it.

`n ∀y.[n(1, y)(∀z.[∀x.[np(x, y)(s(x, z)](s(0, z)]]

`n n(1, Y)(∀z.[∀x.[np(x, Y)(s(x, z)](s(0, z)]
∀E

`n n(1, 2)

`p n(1, 2)
±

`n ∀z.[∀x.[np(x, 2)(s(x, z)](s(0, z)]
(E

`n ∀x.[np(x, 2)(s(x, Z)](s(0, Z)
∀E

`n np(U,W)
Hyp1

`p np(U,W)
±

`n ∀v.np(v, 2)(s(v, 3)

`n np(V, 2)(s(V, 3)
∀E

`n s(V, 3)
(E

`p s(V, 3)
±

`p np(V, 2)(s(V, 3)
(I1

`p ∀w.[np(w, 2)(s(w, 3)]
∀I

`n s(0, 3)
(E

`p s(0, 3)
±

2.3 Proof Nets

Proof nets are an elegant alternative to natural deduction and an important
research topic in their own right; for reasons of space we provide only an informal
introduction — the reader interested in more detail is referred to (Girard 1995)
for an introduction and to (Danos & Regnier 1989, Bellin & van de Wiele 1995)
for detailed proofs in the context of linear logic and to (Lamarche & Retoré 1996,

11

Moot 2002, Moot & Retoré 2012) for introductions in the context of categorial
grammars and the Lambek calculus. Though proof nets shine especially for the
∃ and ⊗ rules (where the natural deduction formulation requires commutative
conversions to decide proof equivalence), they are a useful alternative in the ∀
and (case as well since they provide an easy combinatorial way to do proof
search and therefore make arguments about non-derivability of statements and
serve to count the number of readings.

Girard (1991) shows that the proof nets of multiplicative linear logic (Girard
1987, Danos & Regnier 1989) have a simple extension to the first-order case.
Essentially, a proof net is a graph labeled with (polarized occurrences of) the
(sub)formulas of a sequent Γ ` C, subject to some conditions we will discuss
below. Obviously, not all graphs labeled with formulas correspond to derivable
statements. However, we can characterize the proof nets among the larger class
of proof structures (graphs labeled with formulas which, contrary to proof nets,
do not necessarily correspond to proofs) by means of simple graph-theoretic
properties.

The basic building blocks of proof structures are links, as shown in Fig-
ure 1. We will call the formulas displayed below the link their conclusions and
the formulas displayed above it their premisses. The axiom link (top left) has
no premisses and two conclusions, the cut link has no conclusions and two pre-
misses, the binary logical links have two premisses (A and B) and one conclusion
A(B and the unary logical links have one premiss A and one conclusion ∀x.A.
We will call x the eigenvariable of the link and require that all links use distinct
variables.

Given a statement A1, . . . , An ` C we can unfold the formulas using the
logical links of the figure, using the negative links for the Ai and the positive
link for C. Since there is only one type of link for each combination of connec-
tive/polarity, we unfold our formulas deterministically5, until we end up at the
atomic formulas and have produced a “formula forest”: a sequence of formula
decomposition trees labeled with some additional information (polarity labels
and dashed lines), which is sometimes called a proof frame.

We turn this proof frame into a proof structure by connecting atomic for-
mulas of opposite polarity in such a way there is a perfect matching between
the positive and negative atoms. This step can already fail, for example if the
number of positive and negative occurrences of an atomic formula differ but
also because of incompatible atomic formulas like a(0, 1) and a(x, 1), with x the
eigenvariable of a ∀+ link. More generally, it can be the case that there is no
coherent substitution which allows us to perform a complete matching of the
atomic formulas using axiom links. These restrictions on the instantiations of
variables are a powerful tool for proof search (Moot 2007, Moot 2014).

Proof structures are essentially graphs where some of the links are drawn
with dashed lines; the binary dashed lines are paired, as indicated by the con-
necting arc. We will call the dashed logical links (∀+ and(+) the positive links

5For the negative ∀ this is not immediately obvious, since we need to choose a suitable term
t. We will discuss this case below but we will essentially use meta-variables and unification
just like we did for natural deduction in Section 2.2.

12

−
∀x.A

−
A[x := t]

+

∀x.A

+

A

−
A(B

+

A
−
B

+

A(B

−
A

+

B

−
A

+

A
−
A

+

A

Figure 1: Links for proof structures in the ∀, (fragment of first-order linear
logic.

and the solid logical links (∀− and (−) the negative links. The terms positive
and negative links only apply to the logical links; the axiom and cut link are
neither positive nor negative. A proof structure containing only negative logical
links is just a graph labeled with polarized formulas.

Figure 2 shows the proof net which corresponds to the natural deduction
proof of Section 2.1. To save space, we have noted only the main connective at
each link; the full formula can be obtained unambiguously from the context. We
have also been free in the way we ordered the premisses of the (links, which
allows us to give a planar presentation of the axiom links, much like Lambek
calculus proof nets. However, there is no planarity requirement in the proof net
calculus; the first-order variables offer more flexibility than simple planarity. For
the ∀− links, we have annotated the substitutions next to the link. If we use a
unification-based presentation, as we did for natural deduction in Section 2.2,
we can “read off” these substitutions from the most general unifier computed
for the axioms (as opposed to natural deduction, the axioms and not the (E
rule, which corresponds to the (− link, are responsible for the unification of
variables).

A proof structure is a proof net if the statement A1, . . . , An ` C is derivable,
that is, given the proof of Section 2.1, we know the proof structure of Figure 2 is a
proof net. However, this definition is not very useful, since it depends on finding
a proof in some other proof system; we would like to use the proof structure

13

−
∀y

−
(

+

n(1, 2)
−
∀z

−
(

−
s(0, 3)

+

∀x

+
(

+

s(x, 3)
−

np(x, 2)

−
n(1, 2)

−
∀v

−
(

+

np(x, 2)
−

s(x, 3)

+

s(0, 3)

y := 2

z := 3

v := x

Figure 2: Proof net corresponding to the natural deduction proof of Section 2.1

itself to directly decide whether or not the statement is derivable. However, it is
possible to distinguish the proof nets from the other proof structures by simple
graph-theoretic properties. To do so, we first introduce some auxiliary notions,
which turn the graph-like proof structures into standard graphs. Since axiom,
cut and the negative links already produce normal graphs ((− corresponds to
two edges, all other links to a single edge in the graph), we only need a way to
remove the positive links.

Definition 2.8 A switching is a choice for each positive link as follows.

• For each (+ link, we choose one its premisses (A or B).

• For each ∀+ link, we choose either its premiss A or any of the formulas
in the proof structure containing a free occurrence of the eigenvariable of
the link.

A given a switching s, a correction graph is a proof structure where we
replace all dashed links by a link from the conclusion of the link to the formula
chosen by the switching s.

14

Theorem 2.9 (Girard 1991) A proof structure is a proof net iff all its correc-
tion graphs are acyclic and connected.

Defined like this, it would seem that deciding whether or not a proof struc-
ture is a proof net is rather complicated: there are potentially many correction
graphs — we have two independent possibilities for each(+ link and generally
at least two subformulas containing the eigenvariable of each ∀+ link, giving 2n

correction graphs for n positive links — and we need verify all of them. For-
tunately, there are very efficient alternatives: linear time in the quantifier-free
case (Murawski & Ong 2000, Guerrini 1999) and at most squared time, though
possibly better, in the case with quantifiers (Moot 2014).

Going back to the example shown in Figure 2, we can see that there are two
positive links and twelve correction graphs: there are six free occurrences of x
— four in atomic formulas and two additional occurrences in the conclusions
((+ and(−) which combine these atomic formulas into np(x, 2)(s(x, 2) —
times the two independent possibilities for switching (+ left or right. We can
verify that all twelve possibilities produce acyclic, connected graphs. Removing
the positive links splits the graph into three connected components: the single
node labeled (+ (representing (np(x, 2) (s(x, 2))+), a component contain-
ing the intransitive verb going from the node ∀v− to the axioms s(x, 3)+ and
np(x, 2)− and a final component containing the rest of the graph, ending at
the conclusion of the ∀+ link (which has been disconnected from its premiss).
Now, any switching for the(+ link will connect its isolated conclusion node to
the component containing s(x, 3)+ and np(x, 2)− (via one or the other of these
nodes), leaving two connected components. Finally, all free occurrences of the
variable x occur in this newly created component, therefore any choice for a
switching of the ∀+ link will join these disconnected components into a single,
connected component. Since each choice connected two disjoint components,
we have not generated any cycles.

We can also show that this is the only possible proof structure for the given
logical statement: there is only one choice for the n formulas, one choice for the
np formulas though two choices for the s formulas. However, the alternative
proof structure would link s(0, z) to s(x, z) (for some value of z), which fails
because x, being the eigenvariable of a ∀+ link, cannot be instantiated to 0.

As a second example, let’s show how we can use correction graphs to show
underivability. Though it is clear that the switching for the universal quantifier
must refer to free occurrences of its eigenvariable somewhere (as do its coun-
terparts in natural deduction and sequent calculus), it is not so easy to find a
small example in the ∀,(fragment where this condition is necessary to show
underivability, since finding a global instantiation of the variables is already a
powerful constraint on proof structures. However, the existential quantifier and
the universal quantifier differ only in the labeling of formulas for the links and
we need the formula labeling only for determining the free variables.

A proof structure of the underivable sequent (∀x.a(x))(b 0 ∃y.[a(y)(b]
is shown in Figure 3. It is easy to verify this is the unique proof structure
corresponding to this sequent. This sequent is used for computing the prenex

15

−
∀x.a(x)(b

+

∀x.a(x)
−
b

+

∃y.[a(y)(b]

+

a(x)(b

−
a(x)

+

b
+

a(x)

Figure 3: Proof structure which is not a proof net

−
∀x.a(x)(b

+

∀x.a(x)
−
b

+

∃y.[a(y)(b]

+

a(x)(b

−
a(x)

+

b
+

a(x)

Figure 4: A cyclic and disconnected correction graph for the proof structure of
Figure 3

normal form of a formula in classical logic (replacing(by ⇒), but it is invalid
in intuitionistic logic and linear logic since it depends on the structural rule of
right contraction.

In order to show the sequent is invalid in linear logic, it suffices to find a
switching such that the corresponding correction graph either contains a cycle
or is disconnected. Figure 4 shows a correction graph for the proof structure of
Figure 3 which is both cyclic and disconnected: the axiom a(x) ` a(x) is not
connected to the rest of the structure and the connection between ∀x.a(x) and
a(x) (b produces a cycle, since there is a second path to these two formulas
through the axiom b ` b.

This concludes our brief introduction to proof nets for first-order linear logic.
We refer the reader to Appendix A of (Girard et al. 1988) for discussion about
the relation between proof nets and natural deduction.

16

xα ` x : α

Γ `M : α→ β ∆ ` N : α

Γ,∆ ` (M N) : β
→ E

Γ, xα `M : β

Γ ` λx.M : α→ β
→ I

Table 3: Curry-style typing rules for the linear lambda calculus

3 Basic Properties of the Simply Typed Lambda
Calculus

Before introducing Hybrid type-logical grammars, we will first review some ba-
sic properties of the simply typed lambda calculus which will prove useful in
what follows. This section is not intended as a general introduction to the sim-
ply typed lambda calculus: we will assume the reader has at least some basic
knowledge such as can be found in Chapter 3 of (Girard et al. 1988) or other
textbooks and some knowledge about substitution and most general unifiers.
For more detail, and for proofs of the lemmas and propositions of this section,
the reader is referred to (Hindley 2008).

A remark on notation: we will use → exclusively as a type constructor (also
when we know we are using it to type a linear lambda term) and(exclusively
as a logical connective.

Definition 3.1 A lambda term M is a linear lambda term iff

1. for every subterm λx.N of M , x has exactly one occurrence in N (in other
words, each abstraction binds exactly one variable occurrence),

2. all free variables of M occur exactly once.

Table 3 lists the Curry-style typing rules for the linear lambda calculus. For
the → E rule, Γ and ∆ cannot share term variables; for the → I rule, Γ cannot
contain x (ie. Γ, xα must be a valid context).

Proposition 3.2 For linear lambda terms, we have the following:

1. If M is a linear lambda term and Γ ` M : α a deduction of M , then the
variables occurring in Γ are exactly the free variables of M .

2. If M , N are linear lambda terms which do not share free variables then
(M N) is a linear lambda term.

3. If M is a linear lambda term with a free occurrence of x then λx.M is a
linear lambda term.

17

4. If M is a linear lambda term and M �βη N then N is a linear lambda
term.

Lemma 3.3 (Substitution) If Γ, x : α ` M : β, ∆ ` N : α and Γ and ∆ are
compatible (ie. there are no conflicting variable assignments and therefore Γ,∆
is a valid context), then Γ,∆ `M [x := N] : β.

The following two results are rather standard, we can find them in (Hindley
2008) as Lemmas 2C1 and 2C2.

Lemma 3.4 (Subject Reduction) Let M �βη N , then Γ ` M : α ⇒ Γ `
N : α

Lemma 3.5 (Subject Expansion) Let M �βη N with M a linear lambda
term, then Γ ` N : α⇒ Γ `M : α

3.1 Principal types

The main notions from Chapter 3 of (Hindley 2008) are the following.

Definition 3.6 (Principal type) A principal type of a term M is a type α
such that

1. for some context Γ we have Γ `M : α

2. if Γ′ `M : β, then there is a substitution s such that s(α) = β.

Definition 3.7 (Principal pair) A principal pair for a term M is a pair
〈Γ, α〉 such that Γ ` M : α and for all β such that Γ ` M : β there is a
substitution s with s(α) = β

Definition 3.8 (Principal deduction) A principal deduction for a term M
is a derivation δ of a statement Γ `M : α such that every other derivation with
term M is an instance of δ (ie. obtained by globally applying a substitution s to
all types in the proof).

From the definitions above, it is clear that if δ is a principal deduction for
Γ `M : α then Γ, α is a principal pair and α a principal type of M .

If M contains free variables x1, . . . , xn we can compute the principal type
α1 → . . . (αn → β) of the closed term ` λx1, . . . xn.M which is the same as the
principal type for xα1

1 , . . . , xαnn `Mβ .

3.2 The principal type algorithm

The principal type algorithm of Hindley (2008) is defined as follows. It is slightly
more general and computes principal deductions. It takes as input a lambda
term M and outputs either its principal type α or fails in case M is untypable.
We closely follow Hindley’s presentation, keeping his numbering but restricting
ourselves to linear lambda terms; we omit his correctness proof of the algorithm.

We proceed by induction on the construction of M .

18

I. If M is a variable, say x, then we take an unused type variable α and
return xα ` x : α as principal deduction.

II. If M is of the form λx.N and x occurs in N then we look at the principal
deduction δ of N by induction hypothesis : if we fail to compute a principal
deduction for N then there is no principal deduction for λx.N either. If
such a deduction δ does exist, then we can extend it as follows.

.... δ

xα,Γ ` N : β

Γ ` λx.N : α→ β
(I

III. M is of the form λx.N and x does not occur in N ; this case cannot
occur since it violates the condition on linear lambda terms (we must
bind exactly one occurrence of x in N), so we fail.

IV. M is of the form (N P). If the algorithm fails for either N or P , then M
is untypable and we fail. If not, induction hypothesis gives us a principal
proof δ1 for Γ ` N : γ′ and a principal proof δ2 for ∆ ` P : γ. If necessary,
we rename type variables if Γ and ∆ such that Γ and ∆ have no type
variables in common. Since M is linear, N and P cannot share term
variables.

(a) If γ′ is of the form α→ β then we compute the most general unifier
s of 〈Γ, α〉 and 〈∆, γ〉. If this fails the term is untypable; if not we
combine the proofs as follows.

.... s(δ1)

s(Γ) ` N : s(α)→ s(β)

.... s(δ2)

s(∆) ` P : s(γ)

s(Γ), s(∆) ` (N P) : s(β)
→ E

(b) If γ′ is a type variable, then we compute the most general unifier
s of 〈Γ, γ′〉 and 〈∆, γ → β〉 (with β a fresh type variable). If this
succeeds and the term is typable, we can produce its principal proof
as follows.

.... s(δ1)

s(Γ) ` N : s(γ)→ s(β)

.... s(δ2)

s(∆) ` P : s(γ)

s(Γ), s(∆) ` (N P) : s(β)
→ E

The main utility of principal types in the current paper is given by the
coherence theorem.

Theorem 3.9 (Coherence) Suppose Γ ` N : α and let α be a principal type
of N then ∀P ∀Γ′ ⊆ Γ Γ′ ` P : α =⇒ P ≡βη N

19

The coherence theorem states that a principal type determines a lambda
term uniquely (up to βη equivalence). Since we work in a linear system, where
weakening is not allowed, we only need the special case Γ′ = Γ. This special
case of Theorem 3.9 is the following: if Γ ` N : α with α a principal type of N
then for any P such that Γ ` P : α we have that P ≡βη N .

In brief, the principal type algorithm allows us to compute the principal
type of a given typable lambda term, whereas the coherence theorem allows us
to reconstruct a lambda term (up to βη equivalence) from a principal type.

Definition 3.10 We say a sequent Γ ` C is balanced if all atomic types oc-
curring in the sequent occur exactly twice.

The following lemmas are easy consequences of 1) the Curry-Howard iso-
morphism between linear lambda terms and Intuitionistic Linear Logic (ILL),
which allows us to interpret the linear type constructor “→” as the logical con-
nective “(” 2) the correspondence between (normal) natural deduction proofs
and (cut-free) proof nets and 3) the fact that renaming the conclusions of the
axiom links in a proof net gives another proof net.

Lemma 3.11 If M is a linear lambda term with free variables x1, . . . , xn then
the principal type α1 → . . . (α1 → β) of λx1 . . . λxn.M is balanced. Hence the
principal type of xα1

1 , . . . xαnn `Mβ is balanced.

Proof Compute the natural deduction proof of M and convert it to a ILL
proof net. By subject reduction (Lemma 3.4), normalization/cut elimination
keeps the type α invariant. Let P be the cut-free proof net which corresponds
to the natural deduction proof of M and which has the same type as M . We
obtain a balanced proof net by using a different atomic formula for all axiom
links. From this proof net, we can obtain all other types of M by renaming the
axiom links (allowing for non-atomic axiom links), hence it is a principal type
and it is balanced by construction. 2

Lemma 3.12 If M is a beta-normal lambda term with free variables x1, . . . , xn
and if λx1, . . . , λxn.M has a balanced typing then M is linear.

Proof If λx1, . . . , λxn.M has a balanced typing, then from this typing we can
construct a unique cut-free ILL proof net of λx1, . . . , λxn.M . Since it is an ILL
proof net, this lambda term must be linear and therefore M as well. 2

3.3 Examples

To illustrate the principal type algorithm, we give two examples in this section.
As a first example, we compute the principal proof of C ≡ λf.λx.λy.((f y)x)

as follows.

20

fγ0 ` f : γ0 yβ ` y : β

fβ→γ1 , yβ ` (f y) : γ1
→ E

xα ` x : α

fβ→α→γ , yβ , xα ` ((f y)x) : γ
→ E

fβ→α→γ , xα ` λy.((f y)x) : β → γ
→ I

fβ→α→γ ` λx.λy.((f y)x) : α→ β → γ
→ I

` λf.λx.λy.((f y)x) : (β → α→ γ)→ α→ β → γ
→ I

The substitutions γ0 := β → γ1 (for the topmost→ E rule) and γ1 := α→ γ
(for the bottom → E rule) have been left implicit in the proof.

As a second example, the principal proof of l2→1 ` λO.λS.λz.(S (l (O z))) is
the following.

Sα2 ` S : α2

l2→1 ` l : 2→ 1

Oα0 ` O : α0 zβ ` z : β

Oβ→α1 , zβ ` (O z) : α1
→ E

l2→1, Oβ→2, zβ ` (l (O z)) : 1
→ E

S1→α, l2→1, Oβ→2, zβ ` (S (l (O z))) : α
→ E

S1→α, l2→1, Oβ→2 ` λz.(S (l (O z))) : β → α
→ I

l2→1, Oβ→2 ` λS.λz.(S (l (O z))) : (1→ α)→ β → α
→ I

l2→1 ` λO.λS.λz.(S (l (O z))) : (β → 2)→ (1→ α)→ β → α
→ I

The substitutions α0 := β → α1, α1 := 2, α2 := 1 → α (of the three → E
rules, from top to bottom) have again been left implicit.

4 Hybrid Type-Logical Grammars

Hybrid type-logical grammars have been introduced in (Kubota & Levine 2012)
as an extension of lambda grammars which combines insights from the Lam-
bek calculus into lambda grammars. Depending on authors, lambda grammars
(Muskens 2003) are also called abstract categorial grammars (de Groote 2001)
or linear grammars (Pollard 2011).

Formulas of Hybrid type-logical grammars are defined as follows, where F2

are the formulas of Hybrid type-logical grammars and F1 the formulas of Lam-
bek grammars. A denotes the atomic formulas of the Lambek calculus — we will
call these formulas simple atomic formulas, since their denotations are strings —
B signifies complex atomic formulas, whose denotations are not simple strings,
but string tuples.

F0 ::= A
F1 ::= F0 | F1/F1 | F1\F1

F2 ::= B | F1 | F2|F2

21

As is clear from the recursive definition of formulas above, Hybrid type-
logical grammars are a sort of layered or fibred logic. Such logics have been
studied before as extensions of the Lambek calculus by replacing the atomic
formulas in F0 by feature logic formulas (Bayer & Johnson 1995, Dörre &
Manandhar 1995).

Lambek grammars are obtained by not allowing connectives or complex
atoms in F2. From Hybrid type-logical grammars, we obtain lambda gram-
mars by not allowing connectives in F1. Inversely, we can see Hybrid type-
logical grammars as lambda grammars where simple atomic formulas have been
replaced by Lambek formulas.

Before presenting the rules of Hybrid type-logical grammars, we’ll introduce
some notational conventions: A and B range over arbitrary formulas; C, D and
E denote type variables or type constants; n and n − 1 denote type constants
corresponding to string positions; α and β denote arbitrary types. Types are
written as superscripts to the terms; x, y and z denote term variables; M and
N denote arbitrary terms.

Table 4 shows the rules of Hybrid type-logical grammars. The rules are pre-
sented in such a way that they compute principal types in addition to the terms.
We obtain the Church-typed version — equivalent to the calculus presented in
(Kubota & Levine 2012) — by replacing all type variables and constants by
the type constant σ. For the principal types, we use the Curry-typed version,
though for readability, we often write the types of subterms as superscripts as
well.

The subsystem containing only the rules for | is simply lambda grammar.
The subsystem containing only the rules for / and \ is a notational variant of
the Lambek calculus.

For the Lexicon rule, 〈xn→n−1, α〉 is a principal pair for M or, equivalently,
λx.M is a β-normal η-long linear lambda term and (n→ n−1)→ α its principal
type). For the Axiom/Hypothesis rule, M is the eta-expansion of x : A.

For the Lambek calculus elimination rule /E and \E, s is the most general
unifier of 〈Γ;F 〉 and 〈∆;D〉 (this generally just replaces F by D but takes care
of the cases where C = D or E = F as well). The concatenation operation
of the Lambek calculus corresponds to function composition on terms and to
unification of string positions on types (much like we have seen in Section 2).

For the Lambek calculus introduction rules /I and \I, s is the most general
unifier of 〈Γ;C → D〉 (resp. 〈Γ;D → C〉) and 〈∅;F → F 〉 (ie. we simply identify
C and D and replace x by the identity function on string positions — the empty
string).

In the |E rule, s is the most general unifier of 〈Γ;β〉 and 〈∆; γ〉.
For convenience, we will often tacitly apply the following rule.

Γ `Mα : A M =βη N

Γ ` Nα : A
=βη

Though the above rule is not strictly necessary, we use it to simplify the
lambda terms we compute, performing on-the-fly β-normalization (ie. we replace

22

Lexicon

xn→n−1 : A `Mα : A

Axiom/Hypothesis

xα : A `Mα : A

Logical rules – Lambek

Γ `MF→C : A/B ∆ ` NE→D : B

s(Γ), s(∆) ` (λzs(E).M (N z))s(E)→s(C) : A
/E

Γ `MF→C : B ∆ ` NE→D : B\A
s(Γ), s(∆) ` (λzs(E).M (N z))s(E)→s(C) : A

\E

Γ, xD→C : B `MD→E : A

s(Γ) ` ((λxs(D)→s(C).M) (λzs(F).z))s(C)→s(E) : A/B
/I

Γ, xC→D : B `ME→D : A

s(Γ) ` ((λxs(C)→s(D).M) (λzs(F).z))s(E)→s(C) : B\A
\I

Logical rules – lambda grammars

Γ `Mβ→α : A|B ∆ ` Nγ : B

s(Γ), s(∆) ` (M N)s(α) : A
|E

Γ, xβ : B `Mα : A

Γ ` (λxβ .Mα)β→α : A|B
|I

Table 4: Logical rules for Hybrid type-logical grammars

M by its beta-normal, or beta-normal-eta-long, form N). Since we have both
subject reduction and subject expansion, M and N are guaranteed to have the
same type α.

Apart from the types, the system presented in Table 4 is a notational
variant of Hybrid type-logical grammars as presented by Kubota and Levine
(2012, 2013c). We have replaced strings as basic types by string positions with
Church type σ → σ. This is a standard strategy in abstract categorial gram-
mars, akin to the difference lists in Prolog, which allows us to do without an
explicit concatenation operation: concatenation is simply treated as function

23

composition, as can be seen from the term assignments for the /E and \E
rules. The introduction rules /I and \I are presented somewhat differently
than the Kubota and Levine version, who present rules requiring (in our nota-
tion) premisses with term assignments M ≡βη λz.N [(x z)] and M ≡βη (xN)
respectively. The present formulation has the advantage that it is more robust
in the sense that it does not require us to test that M is βη equivalent to the
given terms. Though it may appear a bit strange that the /I and \I rules
require the identity of the type variable D between x and M , it is clear that
this follows from the intended interpretation, which requires the string variable
x to occur at the beginning (resp. end) of the string denoted by M , and this
solution seems preferable to interleaving normalization and pattern matching in
our rules.

The types, at least for the | rules, are exactly those computed using the
principal type algorithm of Hindley (2008) discussed in Section 3.1. We will see
how the types for the Lambek connectives and the Lexicon rule correspond to
principal type computations in the next section.

4.1 Justification of the principal types for the new rules

For /E and \E, their principal types are justified as follows; s1 is the most
general unifier of 〈zG;G〉 and 〈∆;E〉 — since G is a type variable not occurring
elsewhere, we can assume without loss of generality that s1 just replaces G with
E — and s2 is the most general unifier of 〈s1(∆), s1(zG); s1(D)〉 and 〈Γ;F 〉. The
important type unification is of D and F (the unification of E and G affects
only a discharged axiom).

At the level of the types, the two rules are the same: both correspond to
concatenation.

zG ` z : G ∆ ` N : E → D

s1(∆), s1(zG) ` N z : s1(D)
→ E

Γ `M : F → C

s2(Γ), s2(s1(∆)), s2(s1(zG)) `M (N z) : s2(s1(C))
→ E

s2(Γ), s2(s1(∆)) ` λz.M (N z) : s2(s1(E))→ s2(s1(C))
→ I

Taking s = s1 ∪ s2, which is possible since Γ, ∆ and z are disjoint, gives us
the following proof.

zG ` z : G ∆ ` N : E → D

s(∆), s(zG) ` N z : s(D)
→ E

Γ `M : F → C

s(Γ), s(∆), s(zG) `M (N z) : s(C)
→ E

s(Γ), s(∆) ` λz.M (N z) : s(E)→ s(C)
→ I

Since s1 only replaced G by E and G no longer appears in the conclusion of
the proof (the corresponding hypothesis z has been withdrawn) we can treat s
as the most general unifier of 〈∆;D〉 and 〈Γ;F 〉.

We compute the principal type for the /I rule as follows.

24

Γ, xD→C `M : D → E

Γ ` λx.M : (D → C)→ D → E
→ I `

zF ` z : F
λz.z : F → F

→ I

Γ ` (λx.M)λz.z : C → E
→ E

And symmetrically for \I.

Γ, xC→D `M : E → D

Γ ` λx.M : (C → D)→ E → D
→ I

zF ` z : F
` λz.z : F → F

→ I

Γ ` (λx.M)λz.z : E → C
→ E

From the point of view of the principal type computation, we identify the C
and D variables, essentially replacing x by the empty string.

Lemma 4.1 The proof rules for Hybrid type-logical grammars of Table 4 com-
pute principal types for the lambda terms corresponding to their proofs.

Proof We essentially use the same algorithm as Hindley (2008), which is some-
what simplified by the restriction to linear lambda terms which are eta-long.

The principal types for /E, \E, /I and \I rules are justified as shown above.
The Lexicon rule is justified by the Substitution Lemma (Lemma 3.3): given

a principal type α for a lexical entry, we replace a hypothesis of the form α ` α
by a hypothesis of the form n→ n− 1 ` α, where we know this second sequent
has a linear proof. 2

Corollary 4.2 Given a principal type derived by the rules of Hybrid type-logical
grammar shown above, we can compute the corresponding lambda term up to βη
equivalence.

Proof Since the principal types computed are balanced by Lemma 3.11, by the
Coherence theorem (Theorem 3.9), we can compute the corresponding lambda
term up to βη equivalence. An easy way to do so is to construct the proof net
corresponding to the principal type (which is unique because of balance) and to
compute its lambda term; this lambda term is the unique beta-normal eta-long
term corresponding to the principal type. 2

4.2 Example

As an example of how to compute the principal derivation corresponding to a
hybrid derivation, we look at the following hybrid derivation.

[x : np] [y : np\s]
λz.(x (y z)) : s

\E

λxλz.(x (y z)) : s|np
|I

λPλv.((P e) v) : s|(s|np)
λv.(e (y v)) : s

|E

λw.(ew) : s/(np\s)
/I

25

The corresponding principal derivation looks as follows (for reasons of verti-
cal space, the lexical entry for e1→0 has not been eta-expanded to λPλw.(P e)w
as it should to obtain the given principal type instead of ((1 → 0) → G) → G;
though either type will end up being instantiated to the same result type, the
eta-expanded principal type ((1 → 0) → H → G) → H → G has the impor-
tant advantage that it can be obtained without instantiating type variables to
complex types; similarly, xA→B and yC→D appear in eta-short form).

xA→B ` xA→B
yC→D ` yC→D zE ` zE

yC→D, zC ` (y z)D
→E

xD→B , yC→D, zC ` (x (y z))B
→E

xD→B , yC→D ` (λz.x (y z))C→B
→I

yC→D ` (λx.λz.x (y z))(D→B)→C→B →I
e1→0 ` (λP.P e)((1→0)→H→G)→H→G

e1→0, yC→1 ` (λz.e (y z))C→0 →E

e1→0 ` (λy.λz.e (y z))(C→1)→C→0
→I

vJ ` vJ
` (λv.v)J→J

→I

e1→0 ` (λz.e z)1→0

The \E and the /I rules correspond to three rules each in this principal
derivation (the derivation of λz.x (y z) for \E and the part of the derivation
from λz.e (y z) to λz.e z for /I, this last rule satisfies the constraint for the
application of the rule, with y appearing at the last position)

In principle, the computation of the principal type can fail because of the
constants (even though there might be a proof using variables). However, this
failure would mean the final term fails to respect the word order of the input
string. Principal types using distinct variables for string positions would seem
a useful tool for computing all possible word orders for a given set of lexical
entries, though.

4.3 Semantics

One of the attractive points of categorial grammars is that we have a very
simple and elegant syntax-semantics interface by means of the Curry-Howard
isomorphism between intuitionistic proofs and lambda terms (or, in our case
between linear intuitionistic proofs and linear lambda terms). By interpreting
the logical connectives for the implications “/”, “\”, “|” and “(” as the type
constructor “→” — the formulas as types interpretation — our derivations in the
Lambek calculus, in lambda grammars, in Hybrid type-logical grammars and in
first-order linear logic (where we treat the quantifier as being semantically inert,
that is, quantifier rules are “invisible” to the meaning) correspond to λ-terms
— the proofs as terms interpretation. Using the Curry-Howard isomorphism,
we can obtain semantics in the tradition of Montague simply by giving lexical
substitutions in the lexicon, using essentially the rules of Table 3 (though we
typically use the Church-style typing) to assign a derivational meaning to a
proof.

The semantic version of the proof from the previous section looks as follows.

26

[x : np] [Q : np\s]
(Qx) : s

\E

λx.(Qx) : s|np
|I

λP.∀z.(P z) : s|(s|np)
∀z.(Qz) : s

|E

λQ.∀z.(Qz) : s/(np\s)
/I

Though syntactically, the Lambek elimination rule corresponds to function
composition (concatenation), semantically it corresponds to simple application
and the introduction rule to abstraction. Given the standard Montegovian se-
mantics for “everyone” as λP.∀z.(P z) (the set of properties P such that all z
have this property), the previous proof actually produces an equivalent term
as the semantics for s/(np\s), so the generalized quantifier can function as a
Lambek calculus subject quantifier while keeping the same semantics.

More detail about the syntax-semantics interface in categorial grammars can
be found in (Moortgat 1997, Moot & Retoré 2012).

5 Equivalence

For the main result, we give a translation from hybrid formulas together with
their principal types to MILL1 formulas and show it is correct.

The basic idea which makes the correspondence work is that there is a 1-1
mapping between the atomic terms of a predicate in MILL1 and the principal
type which is assigned to the corresponding term in a hybrid derivation. So from
the term assigned to a hybrid derivation, we compute the principal type using
the principal type algorithm (PTA) and this gives us the first-order variables
and from the first-order variables of a MILL1 derivation we obtain the principal
type and a hybrid lambda term thanks to the coherence theorem, as shown
schematically below.

Hybrid lambda term Principal type First-order variables
PTA

Coherence

5.1 String positions, types and formulas

We need an auxiliary function f (for flatten) which reduces a complex type
to a list of atomic types. Following Kanazawa (2011), we compute this list
by first taking the yield of the type tree and then reversing this list, which is
convenient for induction since it has f(β → α) = f(α)_f(β) (“_” denotes list
concatenation, [A] the singleton list containing element A and [A1, . . . , An] the
n-element list with ith element Ai).

Definition 5.1 Let α be a type, the list f(α) is defined as follows.

f(A) = [A] when A atomic

f(β → α) = f(α)_f(β)

27

For example, we have the following.

f((B → 2)→ (1→ A)→ B → A)
= f((1→ A)→ B → A)_f(B → 2)
= f(B → A)_f(1→ A)_f(B → 2)
= [A,B,A, 1, 2, B]

Definition 5.2 Let A be a formula in Hybrid type-logical grammar, α its prin-
cipal type and L = f(α) the flattened list of atomic types obtained from α
according to Definition 5.1. The translation of A into first-order linear logic is
defined as follows.

‖p‖[C1,...,Cn] = p(C1, . . . , Cn)
‖(A|B)‖f(β→α) = ‖B‖f(β) (‖A‖f(α)

‖(A/B)‖[C,D] = ∀x.‖B‖[D,x] (‖A‖[C,x]

‖(B\A)‖[C,D] = ∀x.‖B‖[x,C] (‖A‖[x,D]

We can obtain a closed formula by universally quantifying over all variables
in the list of arguments replacing all of them with quantified variables using the
universal closure operation (Definition 2.1).

‖A‖Lc = Cl(‖A‖L)

Proposition 5.3 Let A be a formula in first-order linear logic and H a formula
in Hybrid type-logical grammar and A ≡ ‖H‖f(α). The free meta-variables of A
are exactly the type variables of α (and of f(α)).

Proof Immediate by induction on H using the translation. All new variables
introduced during the translation are bound. 2

Lemma 5.4 Let A1 and A2 be first-order linear logic formulas obtained by the
translation function from Hybrid type-logical grammar formulas H1 and H2 with
γ1 and γ2 as their respective principal types. In other words, A1 ≡ ‖H1‖f(γ1)

and A2 ≡ ‖H2‖f(γ2).
A1 unifies with A2 with MGU s if and only if H1 ≡ H2 and γ1 unifies with

γ2 with this same MGU s.

Proof Suppose A1 and A2 unify with MGU s. We must show that H1 ≡ H2

and that s is an MGU for γ1 and γ2. Showing H1 ≡ H2 is an easy induction
(exploiting the fact that the translation of A|B does not have a quantifier prefix
and therefore cannot unify with the translation of a Lambek connective and
that the translations of A/B resp. B\A cannot unify with each other because
of the condition preventing accidental capture of variables). Given that H1 and
H2 are identical, we know that A1 and A2 differ only in the free variables (the
bound variables are equivalent up to renaming) and that the free variables for
A1 and A2 are exactly the type variables of γ1 and γ2 (by Proposition 5.3).

28

Therefore any substitution that makes A1 and A2 equal (up to renaming of
bound variables) makes γ1 and γ2 equal.

For the other direction, suppose that H1 ≡ H2 and that s is the MGU of γ1

and γ2. Since s is a MGU, s(γ1) ≡ s(γ2) and therefore given that the translation
function uses identical hybrid formulas and identical principal types we have
that A1 ≡ A2. 2

It is insightful to compare the translation of (np\s)/np (with principal type
2→ 1) to that of (s|np)|np with principal type (B → 2)→ (1→ A)→ B → A.
Though the two end results are formulas which are equivalent to each other
(after universal closure of the meta-variables), there is a difference in the string
position list for the non-atomic subformulas: the Lambek formula only ever has
a pair of string positions, whereas the lambda grammar formula starts with a
full list of string positions which decreases at each step. In other words, for
the Lambek formula, we compute the string positions step-by-step whereas the
lambda grammar version of the same formula precomputes all string positions
then divides them among the subformulas.

‖(np\s)/np‖[1,2]

= ∀y.‖np‖[2,y] (‖np\s‖[1,y]

= ∀y.np(2, y)(‖np\s‖[1,y]

= ∀y.np(2, y)(∀x.‖np‖[x,1] (‖s‖[x,y]

= ∀y.np(2, y)(∀x.[np(x, 1)(s(x, y)]

‖(s|np)|np‖[A,B,A,1,2,B]

= ‖np‖[2,B] (‖s|np‖[A,B,A,1]

= np(2, B)(‖s|np‖[A,B,A,1]

= np(2, B)(‖np‖[A,1] (‖s‖[A,B]

= np(2, B)(np(A, 1)(s(A,B)

‖(s|np)|np‖[A,B,A,1,2,B]
c

= ∀x.∀y.{np(2, B)(np(A, 1)(s(A,B)}[A := x,B := y]
= ∀x.∀y.[np(2, y)(np(x, 1)(s(x, y)]

Remember that sequents in Hybrid type-logical grammar are of the form
xα1

1 : A1, . . . , x
αn
n : An ` Mβ : B with M a linear lambda term containing

exactly the free variables x1, . . . , xn and that the principal type of λx1, . . . xn.M
is balanced and of the form α1 → . . . → an → β. For the translation, we
separate lexical axioms from other axioms: lexical axioms correspond to closed
formulas, whereas the other axioms typically have free variables. With this in
mind, we translate sequents as ‖A1‖f(α1), . . . , ‖An‖f(αn) ` ‖B‖f(β), where the
translation ‖.‖c is used for hypotheses which start at a Lexicon rule and ‖.‖ for
hypothesis which start at the Axiom rule. For the right-hand side B, we use
the universal closure of all free variables in f(β) minus the free variables on
the left hand side of the sequent (the only free variables are those used in the
translation of Hypothesis rules), this is the universal closure of B modulo Γ of
Definition 2.1.

29

In order not to overburden our notation, when the types are understood
from the context, we will often abbreviate this translation as ‖Γ‖ ` ‖B‖ (or
even as Γ ` ‖B‖, leaving the translation of Γ implicit). As a special case of this
translation, the sequent w1→0

1 : A1, . . . w
n→n−1
n : An ` Mn→0 : B, which is the

endsequent corresponding to a sentence in a Hybrid type-logical grammars, is

translated as ‖A1‖[0,1]
c , . . . , ‖An‖[n−1,n]

c ` ‖B‖[0,n]
c .

Example: gapping To give an example, the gapping lexical entry for “and”
of (Kubota & Levine 2012) looks as follows in our notation.

((s|tv)|(s|tv))|(s|tv) : λSTV2λSTV1λTVλz.(STV1 TV)(and (STV2 λx.x))

where tv is short for (np\s)/np. The principal type for this lambda term would
be the following (the corresponding formulas have been annotated above for
ease of comparison).

((

tv︷ ︸︸ ︷
E → E)→

s︷ ︸︸ ︷
D → 4)→ ((

tv︷ ︸︸ ︷
B → A)→

s︷ ︸︸ ︷
3→ C)→ (

tv︷ ︸︸ ︷
B → A)→

s︷ ︸︸ ︷
D → C

If tv were an atomic formula, the first-order linear logic formula would look as
shown below on the first line, the complete formula (for the positive translation)
is shown just below it.

(tv(E,E)(s(4, D))((tv(A,B)(s(C, 3))(tv(A,B)(s(C,D) ≡
(∀v.[np(v,E)(∀w.[np(E,w)(s(v, w)]](s(4, D))(

(∀x′[np(x,A)(∀y′[np(B, y′)(s(x′, y′)]](s(C, 3))(

∀x.[np(x,A)(∀y.[np(B, y)(s(x, y)]](s(C,D)

Though the formula above looks intimidating (even before universal closure),
it is easy to verify that it is equivalent (up to variable names) to the first-
order linear logic formula which corresponds to the analysis of gapping for the
Displacement calculus from Section 3.2.6 of (Morrill et al. 2011), using the
translation given in (Moot 2014).

5.2 Proof-theoretic properties of the translation into MILL1

Before proving the main theorem, stating that for every hybrid proof there is
a first-order linear logic proof of its translation, we will spend some time on
the structure of normal/focused natural deduction proofs and the consequences
of the translation function. Given that in Hybrid type-logical grammars, the
lambda-grammar connective “|” always outscopes the Lambek connectives “/”
and “\”, proofs using the translated formulas into focused first-order linear logic
look schematically as shown in Figure 5.

The figure shows the main track of a proof, which starts either with a hy-
pothesis/axiom, then has an elimination part, followed by a focus shift followed
by an introduction part ending in the conclusion of the proof — this is just the

30

Subproofs ∆i `p ‖F1‖

Subproofs Γj `p ‖F2‖

7

6

5

± 4

3

2

1

[∀I]∗

[(I]∗

[(I/∀I]∗

[∀E/(E]∗

[(E]∗

[∀E]∗

λ grammar I

Lambek I

{
Lambek E

{
λ grammar E

focus shift {

lexicon/axiom {

Figure 5: Schematic form of the main track of a translated hybrid sequent.

definition of a main track (Definition 2.3). The definition of formulas guarantees
that the elimination part starts with any number of [|E] rules (possibly zero,
like all other parts, as indicated by the ∗ superscript in the figure) followed by
any combination of [/E] and [\E] rules. The order is inverse in the introduction
part of the track, with [/I] and [\I] preceding [|I]. For the translation of these
rules into first-order linear logic, the quantifiers corresponding to the rules for
the lambda grammar connective “|” are obtained by universal closure, so if they
are present, it must be as a prefix at the beginning of the proof or as a postfix
at the end of the proof — the subpaths labeled (1)-(2) and (6)-(7) in Figure 5
— and the Lambek connectives correspond to a combination of a ∀ and a (
rule upon translation.

Proposition 5.5 a. The main track of a focused proof of a translated hybrid
sequent looks as shown in Figure 5.

b. The subproofs Γj `p ‖F2‖ contain the sequence of proof steps in (1)-(6),
that is they do not end with any ∀I rules corresponding to a hybrid connective.

c. The subproofs in ∆i `p ‖F1‖ contain the sequence of proof steps in (1)-(5),
that is they do not end with any lambda grammar introduction rules.

Proof These are immediate consequences of the translation function and the
structure of normal proofs.

a. follows from the definition of the translation function and the standard
structure of a main track.

b. since normal proofs satisfy the subformula property and since hybrid con-
nectives are translated into prenex formulas, we do not produce subformulas of

31

the form (∀x1, . . . , xn.[A(B])(C (for n ≥ 1).
c. would contradict the definition of hybrid formulas, since it would have a

Lambek connective outscope a lambda grammar connective. 2

An immediate corollary of Proposition 5.5 is that ∀I rules corresponding to
lambda grammar connectives occur only at the end of the main track of a proof,
just like ∀E rules corresponding to lambda grammar connective occur only at
the start of any track in which they occur.

Definition 5.6 We say a first-order linear logic proof obtained by translating
a hybrid proof is in quantifier-reduced form, when all ∀E and ∀I rules obtained
by universal closure of lambda-grammar connectives have been removed from the
proof.

More precisely, the translation is kept as before with the following two ex-
ceptions:

• the Lexicon rule is translated as ‖A‖f(α)
c ` ‖A‖f(α) (with the closure op-

eration applied only to the translation of the antecedent)

• the endsequent is translated as Γ ` ‖C‖f(β) (without the usual closure
modulo Γ).

Proposition 5.7 A sequent Γ ` A produced by the translation function is deriv-
able if and only if its quantifier-reduced form is.

Proof Immediate by Proposition 2.2. 2

Quantifier-reduced form is a way of “compiling” away the predictable prefixes
of ∀E rules (for each of the lexical leaves of the proof) and the equally predictable
postfix of ∀I rules introduced by the universal closure operation. This simplifies
the structure of the proof, as is clear from Proposition 5.8 below and from
Figure 5 — we keep only the subpath (2)-(6). It also simplifies the correctness
proof of the translation in the following sections, since we avoid having to start
each inductive step by a number of ∀E rules and end it with a number of ∀I
rules.

The quantifier-reduced form of a proof is sensitive to the way we have ob-
tained the formula: the Lexicon rule for the Lambek formula np\s has quantifier-
reduced form ∀x.np(x, 1) (s(x, 2) `n ∀y.np(y, 1) (s(y, 2) whereas Lex-
icon rule for the formula s|np with principal type (1 → A) → (2 → A),
which would normally be assigned the same axiom, has quantifier-reduced form
∀x.np(x, 1) (s(x, 2) `n np(A, 1) (s(A, 2) (which we can obtain from the
previous sequent by a single application of ∀E).

Proposition 5.8 Let δ be first-order linear logic proof in long normal form
which has the translation of a hybrid sequent as its conclusion. All occurrences
of ∀E and ∀I of the quantifier-reduced from δ′ of δ occur respectively in the
following contexts.

32

Γ `n ∀x.[A(B]

Γ `n A(B
∀E

∆ `p A
Γ,∆ `n B

(E

Γ, A `p B
Γ `p A(B

(I

Γ `p ∀x.[A(B]
∀I

Proof Given Proposition 5.5 and the fact that δ′ is quantifier-reduced, all
quantifiers occur in (sub)formulas of the form ∀x.[A(B], which corresponds
to the translation of a Lambek formula. Given that δ is in long normal form,
meaning that the focus shift rule is applied only to atomic formulas, so is its
quantifier-reduced form δ′.

Look at an arbitrary application of the ∀E rule. We show it must be part
of a subproof of the form shown above on the left. After application of the ∀E
rule, we have the sequent Γ `n A(B. The focus shift rule cannot apply, since
A(B is not atomic and δ′ is in long normal form. Therefore, by inspection of
the available rules (E is the only rule available and we are in the case shown
above.

The case for the ∀I rule is similar. To obtain a formula Γ `p A (B as
the premiss of the ∀I rule, focus shift is excluded because we have a complex
formula. The only available alternative removes the main connective as shown
above on the right. 2

5.3 Hybrid proof to MILL1 proof

After this long setup, everything is in place to prove the main theorem. Thanks
to the way we have defined our basic notions and translations, the proof is rather
simple. We show that under the given translation, the proof rules of Hybrid
type-logical grammar are derived rules of MILL1. In the next section, we show
the converse: that MILL1 proofs using formulas obtained from the translation
correspond to proofs in Hybrid type-logical grammars.

The proof is actually stronger: we show that proofs in the two systems gener-
ate the same semantics. This is easily verified since, as discussed in Section 4.3,
the elimination (resp. introduction) rules for /, \ and | correspond to the elimi-
nation (resp. introduction) rule for(. The elimination rules (for /, \, | and()
correspond to application and the introduction rule correspond to abstraction.
The quantifier ∀ is treated as semantically inert.

Lemma 5.9 Let δ be a hybrid proof of Γ ` A, then there is an MILL1 proof δ∗

of its translation ‖Γ‖ ` ‖A‖.

Proof We produce a unfocused proof with unification (that is, we do not
distinguish between `p and `n). If desired, we can transform the proof obtained
by this lemma into a focused proof by Proposition 2.4). We also produce a proof
in quantifier-reduced form.

Since the Lexicon/Axiom rules are in beta-normal eta-long form by defini-
tion, we know from Lemma 3.22 of Kanazawa (2011) that substitution is only of

33

type variables/atoms for type variables and never of a complex type for a type
variable, so the arity of our predicate symbols in first-order linear logic is fixed.

Induction on the depth d of the proof.
If d = 1 we either have an Axiom rule or a lexical hypothesis. In both cases,

we have a sequent x : A ` Mα : A, with α the principal type of M and with
x of type α in the axiom case and of type i → i − 1 (for the ith word) in the
Lexicon case. We translate the axiom by ‖A‖f(α) ` ‖A‖f(α) (letting the free
variables of f(α) become free meta-variables) and the lexical hypothesis by the

axiom ‖A‖f(α)
c ` ‖A‖f(α), replacing the meta-variables in f(α) on the left with

variables and quantifying over them, making the formula on the left-hand side of
the turnstile closed. Since we produce a proof in quantifier-reduced form, we do
not perform the closure on the right-hand side of the turnstile (or, if you prefer,
we perform the closure but immediately follow it by ∀E rules for all quantifiers
introduced by the closure operation).

If d > 1, induction hypothesis gives us proofs of the premisses of the rule
and we proceed by case analysis on the last rule in the hybrid proof.

[\E] By induction hypothesis, we have a proof δ1 of Γ ` ‖B‖[C,D] and a proof
δ2 of ∆ ` ‖B\A‖[F,E]. In addition, we know by induction hypothesis that
a MGU s of 〈Γ;D〉 and 〈∆;F 〉 exists. Therefore, we can construct a proof
of the conclusion of the /E rule as follows. Since G is fresh, unifying it
with C is possible and produces a new substitution s′.

.... δ1

Γ ` ‖B‖[C,D]

.... δ2

∆ ` ‖B\A‖[F,E]

∆ ` ∀x.‖B‖[x,F] (‖A‖[x,E]
=def

∆ ` ‖B‖[G,F] (‖A‖[G,E]
∀E

s′(Γ), s′(∆) ` ‖A‖[s′(C),s′(E)]
(E

[/E] Symmetric.

[|E] By induction hypothesis, we have a proof δ1 of Γ ` ‖A|B‖f(β→α) and a
proof δ2 of ∆ ` ‖B‖f(γ). We also know there is an MGU s of 〈Γ;β〉 and
〈∆; γ〉. Therefore, we can combine these two proofs using (E and (by
Lemma 5.4) this same unification, as follows.

.... δ1

Γ ` ‖A|B‖f(β→α)

Γ ` ‖B‖f(β) (‖A‖f(α)
=def

.... δ2

∆ ` ‖B‖f(γ)

s(Γ), s(∆) ` ‖A‖f(s(α))
(E

[\I] By induction hypothesis, we have a proof δ1 of Γ, ‖B‖[D,C] ` ‖A‖[D,E]. In
addition, since all principal types are balanced and the two occurrences of
D occur in the translations of B and A respectively, we know there are no

34

occurrences of D in Γ. Hence, after the(I rule, we satisfy the condition
for the ∀I rule and can extend the proof as follows.

.... δ1

Γ, ‖B‖[D,C] ` ‖A‖[D,E]

Γ ` ‖B‖[D,C] (‖A‖[D,E]
(I

Γ ` ∀x.‖B‖[x,C] (‖A‖[x,E]
∀I

Γ ` ‖B\A‖[C,E]
=def

[/I] Symmetric.

[|I] Induction hypothesis gives us a proof δ1 of Γ, ‖B‖f(β) ` ‖A‖f(α), which we
can extend as follows.

.... δ1

Γ, ‖B‖f(β) ` ‖A‖f(α)

Γ ` ‖B‖f(β) (‖A‖f (α)
(I

Γ ` ‖A|B‖f(β→α)
=def

2

5.4 MILL1 proof to hybrid proof

Lemma 5.10 Let δ be the MILL1 derivation of the translation of a hybrid
sequent, that is, of ‖A1‖[0,1], . . . , ‖An‖[n−1,n] ` ‖B‖[0,n]. Then there is a hy-
brid proof δ∗ of x1→0

1 : A1, . . . , x
n→n−1
n : An ` Mn→0 : B, where M ≡βη

λz.(x1 . . . (xn z)).

Proof The fact that M ≡βη λz.(x1 . . . (xn z)) follows immediately from the
balanced occurrences of the type constants 0, . . . , n.

Let δ be the focused MILL1 derivation of ‖Γ‖ `p ‖A‖, or, the case being, of
‖Γ‖ `n ‖A‖. We assume δ to be in quantifier-reduced form.

We proceed by induction on the depth d of the proof.
If d = 1, then there are two cases.

Lexicon If the rule was a lexical hypothesis, then it is a proof of ‖Ai‖[i−1,i]

for one of the Ai of the endsequent of the proof. By construction, we
can recover the principal type α and (by Coherence) a unique β-normal
η-long lambda term M of type α. Therefore, we have a hybrid proof
xi−1→i
i : Ai `Mα : Ai, with α the principal type by construction.

Axiom If the rule was an axiom then the formula A does not appear in the
endsequent. We again recover the principal type α and the (eta-expanded)
lambda term M from the translation function and we return the hybrid

35

proof xα : A `Mα : A, with M the eta-expansion of x to produce a valid
Axiom rule.

If d > 1, then we proceed by case analysis of the last rule of the proof.

[±] Induction hypothesis gives us the proof corresponding to the negative pre-
miss of the rule. We return the same proof.

[∀E/ (E] For the combination of a ∀E/ (E rule, there are two cases to
consider, depending on whether the translated formula had / or \ as main
connective. In case it was /, our translation unfolds as shown below. The
MGU s unifies D with F (it doesn’t matter here if the ∀E step has been
done separately: in that case x is replaced by a fresh metavariable G and
the MGU unifies G with E).

‖Γ‖ `n ‖A/B‖[C,D]

‖Γ‖ `n ∀x.‖B‖[D,x] (‖A‖[C,x]
=def

‖Γ‖ `n ‖B‖[D,E] (‖A‖[C,E]
∀E

‖∆‖ `p ‖B‖[F,E]

s(‖Γ‖), s(‖∆‖) `n ‖A‖[s(C),s(E)]
(E

Lemma 5.4 guarantees that the two hybrid formulas B are indeed identical
and induction hypothesis gives us a proof δ1 of Γ ` MD→C : A/B and
a proof δ2 of ∆ ` NE→F : B, which we can combine by the /E rule,
using the same substitution s, to produce a proof of Γ,∆ ` As(E)→s(C) as
required.

.... δ1

Γ `MD→C : A/B

.... δ2

∆ ` NE→F : B

s(Γ), s(∆) ` (λz.M(N z))s(E)→s(C) : A
/E

According to Lemma 4.1, we have also computed the corresponding prin-
cipal type s(E)→ s(C).

The case for \ is symmetric.

[(E] In a quantifier reduced proof, a solitary (E (without preceding ∀E
producing the major premiss of the rule, which was treated in the previous
case) originated from a formula A|B. We are in the following case.

Γ `n ‖A|B‖f(β→α)

Γ `n ‖B‖f(β) (‖A‖f(α)
≡def

∆ `p ‖B‖f(γ)

s(Γ), s(∆) `n ‖A‖f(s(α))
(E

By induction hypothesis there is a proof of δ1 of Γ ` A|B (where the term
M of A|B has principal type β → α) and a proof δ2 of ∆ ` B (where

36

the term N assigned to B has principal type γ). By Lemma 5.4, the two
hybrid formulas B are identical and we can use the MGU s as the most
general unifier of γ and β. We can therefore combine these proofs using
the |E rule and s as follows.

.... δ1

Γ `Mβ→α : A|B

.... δ2
∆ ` Nγ : B

s(Γ), s(∆) ` (M N)s(α) : A
|E

Producing principal type s(α) for this derivation.

[(I/∀I] If it results from a translation with a pair of string formulas, we treat
the combination of the (I and a ∀I rule as a single step. By Proposi-
tion 5.8, we can do so without loss of generality. Such a combination can
only result from the translation of a positive formula with main connective
/ or . We treat only /I; the case for \I is symmetric.

Γ, ‖B‖[D,E] `p ‖A‖[C,E]

Γ `p ‖B‖[D,E] (‖A‖[C,E]
(I

Γ `p ∀x.‖B‖[D,x] (‖A‖[C,x]
∀I

Γ `p ‖A/B‖[C,D]
=def

We can simply extend the proof δ1 from the induction hypothesis as fol-
lows.

.... δ1

Γ, xE→D : B `ME→C : A

Γ ` ((λx.M)(λz.z))D→C : A/B
/I

[(I] Finally, the case where the (I is not followed by a ∀I corresponds to
the |I rule. We are in the following situation.

Γ, ‖B‖f(β) `p ‖A‖f(α)

Γ `p ‖B‖f(β) (‖A‖f(α)
(I

Γ `p ‖B|A‖f(β→α)
=def

We can simply extend the proof δ1 of Γ, xβ : B ` Mα : A given by the
induction hypothesis as follows.

.... δ1

Γ, xβ : B `Mα : A

Γ ` (λx.M)β→α : A|B
|I

2

37

5.5 Main Theorem

Theorem 5.11 Derivability of Hybrid type-logical grammars and their transla-
tion into first-order linear logic coincides. Moreover, proofs in the two systems
produce the same semantic lambda terms.

Proof Immediate from Lemma 5.9 and Lemma 5.10 and the observation that
/E, \E and |E, like (E to which they correspond by translation, are all
translated as application on the meaning level and similarly for the different
introduction rules and abstraction. 2

Thanks to Theorem 5.11, we can use the well-understood proof theory of
first-order linear logic for parsing/theorem proving Hybrid type-logical gram-
mars. Besides (focused) natural deduction and proof nets, discussed in Section 2,
the work on sequent proof search of Lincoln & Shankar (1994), which includes
a treatment of the additives, can also directly be applied. These proof systems
all have their strengths and inconveniences, but, since they are all equivalent we
can choose the most appropriate tool for the job. For example, focused natural
deduction and proof nets simplify the work of enumerating readings for a given
statement, and, as shown in Figure 4, proof nets provide an easy way to show
underivability of a statement. In addition, the main theorem has the following
immediate consequence.

Corollary 5.12 Hybrid type-logical grammars are NP-complete

Proof Hardness follows from the fact that Hybrid type-logical grammars con-
tain the Lambek calculus (the implicational fragment of the Lambek calculus
was shown to be NP-complete by Savateev (2009)) — or alternatively from
the fact that they contain lexicalized abstract categorial grammars (de Groote
2001). Since first-order linear logic is NP-complete, by Lemma 5.9 and the fact
that the translation is linear in the size of the formulas, Hybrid type-logical
grammars are in NP. 2

To compare Hybrid type-logical grammars with lambda grammars, we first
define an interesting subclass of Hybrid type-logical grammars which we will
show to be equivalent to lambda grammars.

Definition 5.13 A hybrid proof is strictly separated iff for every /I and \I
rule, the subproof leading to the premiss of this introduction rule consists only
of Lambek elimination rules and premisses A ` A with A a Lambek formula (ie.
a member of F1, containing only /, \ and simple atomic formulas).

We can enforce strict separation directly in the proof theory by splitting the `
symbol into `L and `λ, subscripting by `L the premisses and conclusions of the
/E, \E, /I, \I and axiom/hypothesis for Lambek formulas as `L, subscripting
by `λ the |E, |I and axiom/hypothesis for formulas not in F1 and adding the
inclusion rule.

38

Γ `L ME→D : B

Γ `λ ME→D : B
L, λ

Not all proofs in Hybrid type-logical grammars are strictly separated, as
shown by the example in Section 4.2 on page 25, where the final /I rule is
preceded by both |E and |I.

Lemma 5.14 Strictly separated Hybrid type-logical grammars generate the same
string languages and the same string-meaning relations as lambda grammars.

Proof (sketch) The main idea from (Buszkowski 1996), who uses a variant
of the proof from (Pentus 1995, Pentus 1997), is that we can replace Lambek
calculus formulas by sets of atomic formulas (CFG nonterminals) which behave
combinatorially like AB formulas — the CFG nonterminals are essentially the
names for AB formulas — in such a way that these sets generate the same
lambda term semantics. Here, we do the same for all Lambek sub-formulas of
a given Hybrid type-logical grammar.

By the definition of strict separation, we know that all Lambek rules occur
in subproofs where these rules are not intermingled with the lambda grammar
rules. Hence, Buszkowski’s construction translates these proofs of Γ `L B into
proofs of Γ′ `L B where only the /E and \E rules are used. Then, by treating
all Lambek formulas as CFG nonterminals and all instantiations of the /E and
\E rules in the grammar as CFG rules. That is, the instantiation of the the \E
rule for specific formulas A and B

A A\B
B

\E

becomes a non-logical rule

D E
C

(or, if we prefer to write it as a CFG rule: D,E −→ C), where C is the
non-terminal corresponding to formula B, D corresponds to formula A and E
corresponds to the formula A\B.

2

Lemma 5.15 Parsing lambda grammars which are the translation of strictly
separated Hybrid type-logical grammars is NP-complete.

Proof The construction of Lemma 5.14 generates, by means of the Buszkowski
(1996) proof, many non-logical grammar rules. Given that such a system may
not be decidable, we need to be careful. However, by the construction of
(Buszkowski 1996), all non-lexicalized rules are of the form D,E −→ F with D,
E and F atomic formulas. Moreover, these atomic formulas correspond to AB
formulas, such that either D = A/B, E = B and F = A or D = B, F = B\A

39

and F = A (for some Lambek formulas A and B). Therefore, we can start our
proof by computing the closure of these AB subproofs in O(n3), then continue
the normal lambda grammar proof, which is NP-complete. 2

It should be obvious from the proof sketch of Lemmas 5.14 and 5.15 that
though strictly separated Hybrid type-logical grammars generate the same string
languages and string-meaning pairs as lambda grammars, Hybrid type-logical
grammars allow a much more compact specification of such grammars since we
avoid a brute-force explosion of the size of the lexicon and of the number of lexi-
cal entries per word. Though I don’t believe that the NP-complete problems we
encounter in computational linguistics are necessarily intractable — Matsuzaki,
Miyao & Tsujii (2007) show that some NP-complete problems in computational
linguistics can be solved much more efficiently than O(n6) problems — having
an exponential explosion of grammar size followed by an NP-complete problem
is profoundly worrying for those interested in actually parsing the formalism.

It is unclear whether we can generalize the proof of Lemma 5.14 to dispense
with the strict separation requirement on hybrid grammars. Allowing inter-
leaving of the Lambek grammar and lambda grammar rules seems to require
a generalization of the results of (Buszkowski 1996) to the Hybrid type-logical
grammar case and, unless we change the proof of the theorem considerably, this
would require a type of interpolation proof for Hybrid type-logical grammars,
which, as we will see in Section 6.1, seems problematic for the lambda grammar
part of the system. For example, looking back to the proof in Section 4.2, it is
unclear how to replace the final /I rule by the elimination rule for either / or \,
besides adding s/(np\s) directly as an additional lexical entry for the quantifier.

Also, though it is certainly a desirable property of the hybrid system to de-
rive s|(s|np) ` s/(np\s) (for the given lexical lambda term), since it relates the
generalized quantifier formulas to one of its standard Lambek calculus formulas,
it is unclear if we actually need this type of derivation to give a natural account
of the linguistic data. So the following question remains open: are there any
examples of Hybrid type-logical grammar analyses where there is no correspond-
ing lambda grammar analysis? Having to resort to lexical duplication is already
a problem, both from a conceptual point of view and from the point of view of
parsing, but are there cases where even this doesn’t suffice?

Though we will leave this question unresolved, we investigate the descriptive
inadequacy of lambda grammars in Section 7.

6 Comparison

The proof nets discussed in Section 2.3 provide an insightful way to compare
the different calculi discussed in this article in terms of their basic “building
blocks”, seen from the point of view of first-order linear logic.

We need to be careful, since this comparison only gives necessary conditions
to be in a certain fragment of first-order linear logic, and as such, we can use it
only as a diagnostic for showing that possibilities are absent from a logic. We
can directly use the different translation functions to give sufficient conditions.

40

.

.

.

.

. . . .

AB-grammar︷ ︸︸ ︷

Figure 6: Lambek grammar

.

.

.

.

.

. .

.

. .

positive︷ ︸︸ ︷ negative︷ ︸︸ ︷
functor/argument

string positions

{

Figure 7: MILL1

The conditions on the variables in the different fragments are also absent
from the visual representation. Nevertheless, we will see that this comparison
is insightful.

6.1 A visual comparison of the different calculi

Figure 6 shows the Lambek calculus connectives as links for first-order linear
logic proof nets. Curry’s (1961) criticism of the Lambek calculus connectives,
seen from the current perspective, is that they combine subcategorization in-
formation (functor-argument structure) and string operations. Though from a
modern proof-theoretical point of view (Andreoli 1992) it is perfectly valid to
combine multiple positive and multiple negative rules into a single rule, separat-
ing the two gives more freedom (that is, it allows us to express more relations
between the string positions and go beyond simple concatenation — the prefix
and postfix of the Lambek calculus).

As shown in Figure 7, the first-order linear logic solution decomposes the
Lambek connectives into separate subcategorization and string position compo-
nents. In a sense, this decomposition answers Curry’s critique in a very simple

41

.

.

.

. .

.

. .

2nd-order λ-grammar︷ ︸︸ ︷

Figure 8: Lambda grammars

way.
Curry’s own solution is different and causes a loss of symmetry: as Figure 8

makes clear, the positive universal link is missing! This loss of symmetry is easy
to miss in a unification-based presentation of the logic where, in addition, the
quantifiers occur only as an implicit prefix of the formula. For a logician/proof
theorist, this is worrying since many classical results and desirable properties
of the system (restriction to atomic axioms, cut elimination, interpolation6)
depend on this symmetry. However, it is also the cause of empirical inadequacy:
positive A/B and B\A can no longer be represented, hence no satisfactory
treatment of adverbs, coordination, gapping etc.; we will elaborate this point in
detail in Section 7.

Another way to look at this is that lambda grammars require all formulas to
be expressed in prenex normal form — something we exploit in the translation
function. However, since we are using linear logic, not all formulas have a prenex
normal form. The following are all underivable (assuming no occurrences of x
in B). Refer back to Figure 4 to see why the first statement is underivable.

(∀x.A)(B 0 ∃x(A(B)

∃x(A(B) 0 (∀x.A)(B

B(∃x.A 0 ∃x.(B(A)

∃x.(B(A) 0 B(∃x.A

The hybrid solution to this problem is shown in Figure 9: reintroduce the
positive Lambek connectives directly. There are now two ways of coding the
negative Lambek connectives. The resulting system is also greater than the
sum of its parts, since gapping, which has a satisfactory neither in Lambek
grammars nor in lambda grammars, can be elegantly treated in Hybrid type-
logical grammar (Kubota & Levine 2012, Kubota & Levine 2013c).

6Interpolation, proved first for the Lambek calculus in (Roorda 1991) is a key component
of the context-freeness proof for the Lambek calculus of Pentus (1997) and is likely to play a
similar role in proofs about the generative capacity of these alternative and extended systems.

42

.

.

.

. .

λ-grammar︷ ︸︸ ︷

.

. .

.

.

. .

.

.

. .

Lambek grammar︷ ︸︸ ︷

Figure 9: Hybrid grammar

Symmetry is still lost7, but empirically the system seems comparable to the
Displacement calculus (Morrill et al. 2011): the Displacement calculus has the
full symmetry absent from Hybrid type-logical grammars. In spite of this, as we
have seen at the end of Section 5.1, in many cases, the analyses proposed for the
two formalisms basically agree, as is made especially clear by their translation
into MILL1.

The differences between the two systems seems to be that Hybrid type-
logical grammars can, like lambda grammars, generate non-well-nested string
languages and that Displacement grammars (seen from the point of view of
Hybrid type-logical grammars) allow the Lambek connectives to outscope the
discontinuous connectives. Further analysis is necessary to decide which of these
two systems has the better empirical coverage.

D grammars (Morrill et al. 2011) have a different perspective, which is shown
in Figure 10. Functor argument structure and string positions are still joined,
but a greater number of combinations are possible (from 0 to n quantifiers, for
a small value of n determined by the grammar). Lambek grammars are now the
restriction to a single quantifier for each binary connective.

D grammars enriched with bridge, left projection and right projection, shown
in Figure 11, permit combinations of string position/subcategorization which
are not of the same polarity. These uses are rather restricted compared to the
visually similar quantifier link of first-order linear logic: essentially, they enable
us to require that a pair of positions spans the empty string.

Summing up, first-order linear logic decomposes the connectives of different
grammatical frameworks — the Lambek calculus, lambda grammars, Hybrid
type-logical grammars and the Displacement calculus — in a natural way into
its four types of links. This visual comparison both highlights the differences

7Neither full logical symmetry nor having the Lambek calculus as a subsystems is of
course necessary to have an empirically valid formal system, as shown, for example by CCG
(Steedman 2001). However it calls for further investigation as to what exactly is absent from
the system and if this absence is important from a descriptive point of view. For lambda
grammars, we will do this in detail in Section 7.

43

.Lambek grammar

.

. . .

.

.

. . .

. . . .

Figure 10: D grammars, binary

.

.

. . .

.

. . .

.

. . . .

.

.

.

.

Figure 11: D grammars

between this calculi and opens the way for a more detailed comparison of the
descriptive limitations of one calculus compared to another.

Given that it is a decomposition of connectives, the MILL1 translation is
slightly bigger in terms of the total number of connectives in the lexical entries.
However, the basic operation are simple and well-understood and the first-order
variables actually function as powerful constraints during proof search. Thanks
to the embedding results of this paper and of (Moot 2014), we can import the
large range of linguistic phenomena treated by Displacement grammars and
Hybrid type-logical grammar directly into MILL1.

From the point of view of first-order linear logic, the connectives of the other
calculi are synthetic connectives, combined connectives of the same polarity. We
can mix and match these synthetic connectives as we see fit. We can also exploit
the symmetry of first-order linear logic and use lambda grammar lexical entries
as arguments, restoring the symmetry of lambda grammars (and of Hybrid
type-logical grammars). In addition, we can add the product ⊗ and quantifier
∃ to our calculus essentially for free. Moreover, as discussed in (Moot & Piazza
2001, Moot 2014) we can use the quantifiers of first-order linear logic to give an

44

account of agreement and island constraints as well. So we can improve upon
Displacement grammar analyses by adding agreement and island constraints
and improve upon Hybrid type-logical grammar analyses by adding symmetry,
agreement and island constraints, all with the same logical primitives.

7 Descriptive Inadequacy of Lambda Grammars

As already alluded to in Section 6.1, the asymmetry of lambda grammars is
the cause of descriptive inadequacy. Researcher in lambda grammars have been
aware of problems with coordination at least since Muskens (2001), who briefly
mentions an apparent incompatibility between lambda grammars and the cate-
gorial grammar treatment of coordination, but the problem can be traced back
to (Curry 1961) where the analysis of the coordination “both . . . and . . . ” in
§5-6 is problematic. Kubota & Levine (2013a, 2013c) show how catastrophic
the predictions of lambda grammars are; we will repeat their observations below
while adding several additional troublesome cases. This problem has been little
noted and little discussed8. Indeed, one can find several claims in the litera-
ture which deny there is a problem: Muskens claims elsewhere (Muskens 2003)
that “Since word order is now completely encoded in the phrase structure term,
there is no longer any need for a directionality of the calculus” and that “The
availability of syntactic λ-terms reins in the overgeneration of the traditional
undirected calculi.”. However, as we will show below, using lambda terms to
limit the overgeneration of undirected calculi is only partially successful and
it is exactly for this reason that a satisfactory treatment of coordination has
remained elusive. Worse, the problem of overgeneration is not limited to coor-
dination, but a problem with any higher-order type of the Lambek calculus. The
standard higher-order lambda grammar treatments for generalized quantifiers
and for non-peripheral are the only cases we know of where lambda grammars
make the right predictions. But even here, the lambda grammar analysis does
not generalize: generalized quantifiers can be see as instances of Moortgat’s
(1996a) q(A,B,C) operator, and the lambda grammar treatment only works
when B is atomic and therefore for quantifiers, of type q(np, s, s), but not for
reflexives, of type q(np, np\s, np\s). For non-peripheral extraction, the lambda
grammar analysis again presupposes the extracted element is an atomic formula
and therefore the treatment does not generalize to gapping (for more on gapping
see Section 7.2).

To give an idea of how widespread and serious the problems are, the following
is a non-exhaustive list of problems for lambda grammars.

(1) John deliberately hit Mary. (adverbs)

(2) John bought a sandwich and ran to the train. (VP coordination)

(3) John caught and ate a fish. (TV coordination)

8At least in the lambda grammar and abstract categorial grammar literature, the problem
is discussed in the context of linear grammar in (Worth 2014).

45

(4) John likes both black and gray t-shirts. (adjective coordination, after
Curry, 1961)

(5) John loves but Mary hates Noam. (right-node raising)

(6) John bought himself a present. (reflexives)

(7) John studies logic and Charles, phonetics. (gapping)

(8) John left before Mary did. (ellipsis)

(9) John ate more donuts than Mary bought bagels. (comparative sub-
deletion)

These problems range from the mundane to the more involved, but the impor-
tant point is that, taken together, these problems occur very frequently and
that all cases listed above have a simple and elegant treatment in the Displace-
ment calculus (Morrill et al. 2011), in Hybrid type-logical grammars (Kubota &
Levine 2012, Kubota & Levine 2013b) and in multimodal type-logical grammars
(Hendriks 1995, Kurtonina & Moortgat 1997). Sentence (1) to (5) are simply
and correctly handled by Lambek grammars and Sentence (1) to (4) even by
AB grammars.

Let me be precise about what I mean by descriptive inadequacy in this con-
text, since some authors use the term with a slightly different meaning. A theory
suffers from descriptive inadequacy if it fails to capture linguistic generalizations
and instead has to resort to enumerating the linguistic data. In a lexicalized
formalism like categorial grammars, this means we want to avoid multiplying
the number of lexical entries for the words in our grammar as much as possible9.
So in the context of the examples above, we would like Sentence (1) to use the
same lexical entries as the sentence “John hit Mary”, with the lexical assign-
ment to “deliberately” being to only addition and we would like Sentence (3) to
use the same lexical entries as the sentences “John caught a fish” and “John ate
a fish”, with the lexical assignment to “and” being the only difference. When
I say that lambda grammars suffer from descriptive inadequacy, this does not
mean that they are fundamentally unable to handle Sentences (1) to (9), since
Lemma 5.14 guarantees that they can (given that the phenomena listed above
all have strictly separated hybrid proofs). I mean that they cannot treat the
sentences above without introducing otherwise unmotivated additional lexical
entries — in fact, not without an exponential blowup of the size of the lexicon,
as is clear from Lemma 5.14.

In Section 7.3 we will discuss the consequences of these problems in detail, as
well as some possible modifications to lambda grammars which may solve these
problems, chiefly among those are extensions to Hybrid type-logical grammar
and to first-order linear logic.

9Maybe a more reasonable measure would prefer the sum of the size for all entries assigned
to a word to be as small as possible, since a single entry A1 ⊕ . . . ⊕ An is not really simpler
that n distinct entries A1, . . . , An.

It should also be noted as the size of our grammar increases (in terms of the number of
words and constructions it is able to handle), so does the size of our lexicon. So this is a
relative measure rather than an absolute one.

46

7.1 Inhabitation machines

To show the main results, we need some additional notions of the typed lambda
calculus. An inhabitation machine (see (Barendregt, Dekkers & Statman 2013))
is a type of grammar which, given a type, enumerates all possible terms of this
type. Their use for categorial grammars has been pioneered by van Benthem
(1995).

From page 33 of (Barendregt et al. 2013), the following two-level grammar
(defined on type-context pairs) enumerates all closed inhabitants in beta-normal
eta-long form of a given type.

Γ is a context, Γ, xα denotes Γ∪{xα} (where x is distinct from the terms in
Γ, so the result is again a valid context), A is an atomic type, α, β are arbitrary
types and ~α→ β is short for α1 → . . .→ αn → β.

L(A; Γ) =⇒ xL(α1; Γ) . . . L(αn; Γ) if x : ~α→ A ∈ Γ
L(α→ β; Γ) =⇒ λxα.L(β; Γ, xα)

The lambda grammar case is considerably more restricted: the lexical lambda
terms must be linear and contain, for a given word w with corresponding vari-
able ws, a single occurrence of ws. That is, we start with Γ = {wσ→σs } and for
the application rule, we partition Γ− {x~α→A} into jointly exhaustive, pairwise
disjoint subsets and divide these over the different subterms. In addition, we
want our lexical term to produce the correct word order and to be compatible
with the syntactic lambda grammar derivation.

7.2 Problems for lambda grammars

In this next section, we will show several problematic cases for lambda gram-
mars, using inhabitation machines to exhaust all possible solutions and find all
of them inadequate.

Adverbs

As a first problem for lambda grammars, the Lambek calculus formula of an
adverb such as “deliberately”, as it occurs in a sentence like “Eduardo delib-
erately fell”, is (np\s)/(np\s) — it modifies a verb having taken all arguments
except its subject and this verb phrase is on the immediate right of the adverb.
If we translate this formula to a first-order formula and move (where possi-
ble) the quantifiers to the prefix and eliminate them, we obtain the formula
(∀c.np(c, 2)(s(c,D))(np(E, 1)(s(E,D) but we cannot use the principal
type ((2 → c) → D → c) → (1 → E) → D → E (with c a fresh type constant)
since it is uninhabited.

The lambda grammar syntactic type (s|np)|(s|np) translates to the prosodic
type ((σ → σ) → σ → σ) → (σ → σ) → σ → σ and produces the inhabitation
machine shown in Figure 12. We use the variable d (of type σ → σ) to stand
for the occurrence of the string “deliberately”. We can see that the VP node

47

((σ → σ)→ σ → σ)→ (σ → σ)→ σ → σ

σ

λVP(σ→σ)→σ→σNPσ→σzσ

d NP

zV P y

σ → σ

λyσ

Figure 12: Inhabitation machine for an adverb type.

((σ → σ)→ σ → σ)→ (σ → σ)→ σ → σ

σ

λVP(σ→σ)→σ→σNPσ→σzσ

d NP

V P z

σ → σ

σ

λyσ

y

d NP

Figure 13: Simplified inhabitation machine for an adverb type.

in the figure requires first an argument of type σ → σ (the downward arrow)
then an argument of type σ (the upward arrow) to produce a term of type σ.
Valid linear paths through the machine must pass each term label exactly once,
and must pass the λy-label (on the curved arrow upwards to σ) before the y
variable.

Figure 13 spits the σ node in two, making the scope of the y variable clearer.

48

The word order of the sentence constrains the paths we can take. We must
take an NP arc before we take a d arc, since “deliberately” occurs after the
subjet noun phrase. So from the top σ node, we can only take three possible
paths, as shown below. For comparison, the uninhabited type corresponding
most closely to the first-order formula is shown as item 4. We can see that the
three other types are obtained by replacing the c constant by a C variable and
exchanging one of the occurrences of C with another atomic type in such a way
that the resulting type is inhabited.

λVPλNPλz.NP (d ((VP λy.y) z)) :(1)

((C → C)→ D → 2)→ (1→ E)→ D → E

λVPλNPλz.NP ((VP λy.d y) z) :(2)

((2→ 1)→ D → C)→ (C → E)→ D → E

λVPλNPλz.((VP λy.NP (d y)) z) :(3)

((2→ C)→ D → E)→ (1→ C)→ D → E

Uninhabited:(4)

((2→ c)→ D → c)→ (1→ E)→ D → E

We investigate the three possibilities in turn.
Lambda term 1 comes closest to the first-order linear logic formula, but it

is a lambda term modeled after those used for extraction and, as such, it takes
a sentence missing a noun phrase anywhere as its argument, instead of a verb
phrase. Therefore, it incorrectly predicts that the three following sentences are
all grammatical.

(10) John deliberately Mary hit.

(11) John deliberately Mary insinuates likes Susan.

(12) John deliberately Mary hit the sister of.

Predicting that sentence (10) means “It was deliberate on the part of John
that Mary hit him”, with sentence (11) meaning approximately “John made
Mary insinuate that he likes Susan” and sentence (12) meaning something like
“Mary hit the sister of John and this was deliberate on the part of John”. It
seems very difficult to block this example without also blocking the noun “boy
which Mary likes the sister of” (not super-natural, but we want to allow these
kinds of extractions which are essentially indistinguishable from the current
formula).

Lambda term 2 shifts from the extraction-like lambda term and its cor-
responding overgeneration to a lambda term similar to those used for in situ
binding/quantifying in10, where we require a sentence missing a noun phrase at
the position of “deliberately” as argument. Though this analysis again allows

10As we have seen, a generalized quantifier like “everyone” is assigned the lambda term
λP.P (e) with e being the string constant corresponding to the word “everyone”.

49

us to derive the correct word order, it also makes the dubious claim that there
is an np constituent at the position of the adverb. In addition, it overgenerates
as follows.

(13) Mary John hit deliberately.

(14) Mary the friend of deliberately left.

(15) Mary John gave the friend of deliberately a book.

Though it is possible to argue that sentence (13) is a sort of topicalization
(with stress on Mary), it is problematic that this topicalization is triggered by
the adverb, since topicalization is independent of the presence or absence of
adverbs. Moreover, we generate the semantics “It was deliberate on the part
of Mary that John hit her” for sentence (13). We generate the semantics “It
was deliberate on the part of Mary that her friend left” for sentence (14) and
similarly “Mary incited John to give her friend a book” for sentence (15).

Finally, lambda term 3 selects for a sentence missing a noun phrase with the
only condition that this noun phrase occurs directly before the adverb. Here,
we make the odd claim that the noun phrase and the adverb together span the
position of an np: that is, it claims that an adverb is a post-modifier of an np.
In addition, it is again an in situ binding/quantifying in analysis, but this time
with the complex string “np deliberately” (where lambda term 2 used an in situ
binding analysis of just the word “deliberately”).

(16) John hit Mary deliberately.

(17) The friend of Mary deliberately left.

(18) The friend of Mary deliberately who lives in Paris left.

Though sentences (16) and (17) are syntactically correct, the problem is that
we generate the semantics “It was deliberate on the part of Mary that John hit
her” for sentence (16) and a reading “It was deliberate on the part of Mary that
her friend left” for sentence (17) and (18).

In sum, we cannot capture the essence of the Lambek calculus formula
(np\s)/(np\s) in lambda grammars. Other adverb formulas — (np\s)\(np\s)
(an adverb occurring after the verb phrase) and (n/n)/(n/n) (for adverbs such
as “very”), etc. — suffer from the same problem. The best approximations
that we can obtain all suffer from overgeneration because non-commutativity is
insufficiently enforced.

There is, of course, a solution which replaces the complex np\s argument
by a new atomic formula, say vp and then, for all lexical items of the form
((np\s)/An) . . . /A1, adds an additional formula (vp/An) . . . /A1. This would
essentially double the number of lexical formulas for verbs, adverbs and prepo-
sitions — syntactic categories which already have a high number of lexical for-
mulas — for just a single type of problematic example... More such examples
will follow.

We will discuss this potential solution in a bit more detail in Section 7.3, but
it should already be clear that this is not a particularly attractive option, since it

50

σ

and NP2NP1

zTV1 TV2

σ → σσ → σ

σ σ

x y

NP1 and

λx λy

σ → σ σ → σ

σ σ

v w

λv λw

and NP2

Figure 14: Simplified inhabitation machine for transitive verb conjunction

is a prototypical example of descriptive inadequacy, the reasons for doubling the
lexicon are purely theory-internal: no other categorial grammar, not even AB
grammars, have this type of overgeneration for the simple cases we’ve shown.

Coordination

As noted by Kubota & Levine (2013a, 2013c), we can play a similar game for
“John caught and ate a fish”, which looks as shown in Figure 14; for the sake
of space, we do not show the prefix λTV2.λTV1.λNP2.λNP1.λz, where TV2 is
the transitive verb to the right of “and” (“ate” in the current example), TV1 is
the transitive verb to the left of it (“caught”), NP1 is the subject, NP2 is the
object and z is the end of the complete string.

Remark that “and” takes all constituents as argument: the two transitive
verbs, the subject noun phrase and the object noun phrase, so it would seem
that we should be able to generate the right string.

As before, we have split the σ and σ → σ nodes for readability; the actual
graph merges all σ and all σ → σ nodes. The implausible analyses with TV1
and subject of TV2 and with TV2 as object of TV1 are not shown in the figure,
but they fail for the same reasons discussed below.

The graph of Figure 14 shows that the TV1 node takes first its subjet (down
and to the left of it), then its object (directly below) and finally an argument
of type σ (the upward arrow back to σ) and similarly for TV2. The TV1 node
(optionally) takes NP1 as its subjet and TV2 (optionally) takes NP2 as its
object.

51

Two combinations are fairly limited: the second argument of TV1 is either
NP1 or the empty string and the first argument of TV2 is either NP2 or the
empty string. However, if the lexical entry contains the subterm ((TV1M) NP1)
(for someM at the place of the object), then we are essentially using a quantifying-
in analysis for the subject: (TV1M) is a sentence missing a noun phrase any-
where and applying this term to an argument puts this argument back at the
place of the missing noun phrase. Consequently, it would allow the derivation
of “caught John and ate a fish”. Similar overgeneration occurs for “ate” and “a
fish” if we use the quantifying-in combination (TV2 NP2) for the object.

If we want to avoid both types of overgeneration (subject quantifying-in and
object quantifying in), the only remaining analysis consists of choosing λx.x,
λy.y, λv.v and λw.w as arguments for the two transitive verbs.11 This solution
is shown in full below.

λTV2.λTV1.λNP2.λNP1.λz.

NP1 ((TV1λx.x λy.y)(and ((TV2λv.v λw.w)(NP2 z))))

As we can see from the proof in Figure 15, this lexical type allows us to derive
“John caught and ate a fish” with the correct semantics. The proof has been
slightly simplified by using distinct variables for the words instead of complex
lambda terms (ie. we have not done lexical substitution). This has the advantage
that we can use the resulting lambda term for computing the semantics as
well, for which we use the following (standard) semantic substitutions12. We
can obtain the prosodic lambda terms from the principal types and the string
positions (eg. (2 → 1) ` (B → 2) → (1 → A) → B → A for “caught”, which is
the standard transitive verb principal type we have seen before). The semantic
terms below are all standard.

and = λTV1λTV2λyλx.((TV1 y)x) ∧ ((TV2 y)x)

j = john’

f = a fish’

c = caught’

a = ate’

Unfortunately, this analysis of “and” also make the (rather catastrophic)
prediction that “John caught and ate a fish” has a second reading which can
be paraphrased as “John caught a fish and a fish ate John”. This reading is
easy to miss when we look only at eta-short proofs, since the key point of this

11This solution still overgenerates because it equates transitive verb with “sentence missing
two noun phrases” and therefore incorrectly predicts that “John likes []np ’s friend from []np”
can felicitously fill this role as follows.

(i) Mary went to and John likes ’s friend from Paris.

Meaning “Mary went to Paris and John likes Mary’s friend from there”.
12To keep this example simple, we have treated “a fish” as an individual constant instead

of a quantified noun phrase, since quantification is irrelevant for this example.

52

J
o
h
n

n
p

1
→

0

ca
u

gh
t

c
(
B

→
2
)
→

(
1
→
A

)
→
B

→
A

(s
|n
p
)|n
p

a
n

d
a
n
d
(
(
G

→
G

)
→

(
H

→
H

)
→
J
→

3
)
→

(
(
E

→
E

)
→

(
F

→
F

)
→

2
→
I
)
→

(
L
→
J
)
→

(
I
→
K

)
→
L
→
K

((
(s
|n
p
)|n
p
)
|(

(s
|n
p
)|n
p
))
|(

(s
|n
p
)|n
p
)

a
te

a
(
D

→
4
)
→

(
3
→
C

)
→
D

→
C

(s
|n
p
)|n
p

(a
n
d
a
)(

(
E

→
E

)
→

(
F

→
F

)
→

2
→
I
)
→

(
L
→

4
)
→

(
I
→
K

)
→
L
→
K

((
s|
n
p
)|n
p
)
|(

(s
|n
p
)|n
p
)

((
a
n
d
a
)
c
)(
L
→

4
)
→

(
1
→
K

)
→
L
→
K

(s
|n
p
)|n
p

a
fi

sh

f
5
→

4

n
p

((
(a

n
d
a
)
c
)
f

)(
1
→
K

)
→

5
→
K

s|
n
p

((
((
a
n
d
a
)
c
)
f

)
j
)5

→
0

s

Figure 15: Proof of “John caught and ate a fish” (simplified)

second derivation involves switching the two arguments of the transitive verb,
as shown in Figure 16.13 The crux of this second proof is that swapping the
two arguments of “ate” is a purely local operation which has no visible effects
on the word order: the only difference between the proof in Figure 15 and the
proof in Figure 16 is in the subproof with undischarged hypothesis “ate” (with
term a resp. λx.λy.(a y)x).

As shown in the figure, the second proof computes the following “deep struc-
ture”.

(((and (Ca)) c) f) j = (((andλx.λy.((a y)x) c) f) j

In a similar way, we can obtain a third and a fourth reading, corresponding
the string “John caught and ate a fish” but to the meanings “A fish caught John
and John ate a fish” and “A fish caught and ate John” respectively, as follows.

(((and a) (Cc)) f) j = (((and a)λv.λw.(cw) v) f) j

(((and (Ca)) (Cc)) f) j = (((andλx.λy.((a y)x)λv.λw.(cw) v) f) j

The problem is that though we would want the two (s|np)|np arguments of
“and” to be transitive verbs, they mean “a sentence missing two np arguments
anywhere”, which is what causes the problems with commutativity.

We can again remedy this by adding new lexical entries, for example choosing
tv for the two transitive verbs and (tv\((np\s)/np))/tv for the conjunction,
but this would mean adding several other lexical entries to analyse sentences
like “John has understood and will probably implement Dijkstra’s algorithm”,
which are handled by the Lambek calculus analysis — since “has understood”
and “will probably implement” can both be analysed as (np\s)/np — but not
by the new atomic tv analysis. So adding lexical entries is not only inelegant
and an admittance of descriptive inadequacy, but such additions can cascade
throughout the grammar.

I would seem that another simple potential solution would be to add case
to lambda grammars. While adding case to first-order linear logic is something
we can do essentially for free using extra arguments, adding case to lambda
grammars at least complicates either the grammars or the types. In addition,
though case would exclude the subject-object swaps we have seen in this section,
is is easy to see this would not be a real solution, because the sentences in
(19) below are all sentences missing a subject/nominative np, those in (20)
sentences missing an object/accusative np and those in (21) sentences missing
both a subject and an object (for clarity, the missing subjects and objects have
been shown as []s and []o respectively). So while adding case excludes some
bad derivations, we would still predict sentences like “*Sue likes Mary and John
saw the man whom likes” is grammatical (with meaning “Sue likes Mary and
John saw the man whom Sue likes.”), that “ *John saw the friend of who lives
in Paris and Ted likes Sue” is grammatical and means “John saw the friend of

13The term λf.λx.λy.((f y)x) which switches subject and object is of course the C combi-
nator we have already seen in Section 3.3. It commutes the two arguments of a function f ,
and the proof shown in Figure 16 has a subproof which computes Ca ≡ λx.λy.(a y)x.

54

J
o
h
n

n
p

1
→

0

ca
u

gh
t

c
(
B

→
2
)
→

(
1
→
A

)
→
B

→
A

(s
|n
p
)|n
p

a
n

d
a
n
d
(
(
G

→
G

)
→

(
H

→
H

)
→
J
→

3
)
→

(
(
E

→
E

)
→

(
F

→
F

)
→

2
→
I
)
→

(
L
→
J
)
→

(
I
→
K

)
→
L
→
K

((
(s
|n
p
)|n
p
)
|(

(s
|n
p
)|n
p
))
|(

(s
|n
p
)|n
p
)

a
te

a
(
D

→
4
)
→

(
3
→
C

)
→
D

→
C

(s
|n
p
)|n
p

y
D

→
4

n
p

(a
y
)(

3
→
C

)
→
D

→
C

s|
n
p

x
3
→
C

n
p

((
a
y
)
x

)D
→
C

s
(λ
y
.(

(a
y
)
x

))
(
D

→
4
)
→
D

→
C

s|
n
p

(λ
x
.λ
y
.(

(a
y
)
x

))
(
3
→
C

)
→

(
D

→
4
)
→
D

→
C

(s
|n
p
)|n
p

(a
n
d
a
)(

(
E

→
E

)
→

(
F

→
F

)
→

2
→
I
)
→

(
L
→

4
)
→

(
I
→
K

)
→
L
→
K

((
s|
n
p
)|n
p
)
|(

(s
|n
p
)|n
p
)

((
a
n
d
a
)
c
)(
L
→

4
)
→

(
1
→
K

)
→
L
→
K

(s
|n
p
)|n
p

a
fi

sh

f
5
→

4

n
p

((
(a

n
d
a
)
c
)
f

)(
1
→
K

)
→

5
→
K

s|
n
p

((
((
a
n
d
a
)
c
)
f

)
j
)5

→
0

s

Figure 16: Proof of “John caught and ate a fish” with semantics “John caught
a fish and a fish ate John” (simplified).

Sue who lives in Paris and Ted likes Sue” and that “*Sue John believes avoids
but Ted saw whom kissed Peter” is grammatical and means “John believes Sue
avoids Peter but Ted saw Peter whom Sue kissed”.

(19) a. []s likes Mary.
b. John believes []s left.
c. John saw the man whom []s likes.

(20) a. John likes []o.
b. John saw the friend of []o who lives in Paris.
c. Ted gave []o flowers.

(21) a. []s gave []o flowers.
b. John believes []s avoids []o.
c. John saw []o whom []s kissed.

While it would certainly be possible to appeal to island constraints or other in-
dependently motivated mechanisms to exclude coordination of the phrases listed
above, it seems that use case for this purpose is inherently on the wrong track:
it uses lambda terms to encode word order for negative implications and a cas-
cade of stop-gap solutions to constrain word order for positive implications. As
the examples above make clear, for coordination, we don’t coordinate (partial)
constituents which have the same case marking, but rather those which have the
same structure and Lambek calculus formulas, such as (np\s)/np for transitive
verb conjunction, are a good proxy for this notion of the same structure.

Though we have given an in-depth analysis only of transitive verb conjunc-
tion, other conjunctions of complex types (adjectives, intransitive verbs, etc.)
suffer similar problems. In all cases, the lambda grammar analysis is between a
rock and a hard place, suffering either from overgeneration (as the adverb case)
or from bizarre readings (as in the transitive verb conjunction case).

Gapping

As a last problem case, the standard (multimodal) categorial grammar anal-
ysis of gapping (Hendriks 1995), of which we have seen the hybrid version in
Section 5.1, does not fare any better when we try to translate it into lambda
grammar. The analysis of a sentence like

(22) John studies logic and Charles phonetics.

would assign “and” the formula.

((s|((s|np)|np)) | (s|((s|np)|np))) | (s|((s|np)|np))

The idea behind the analysis of Hendriks (1995) is that “and” takes first
two sentences missing a transitive verb as its arguments, then a transitive verb
to produce a sentence by placing the transitive verb back to its normal place
in the first argument (which is the sentences to its left missing a transitive
verb) and using the empty string instead of the transitive verb in the second

56

σ

and

zSTV1

(σ → σ)→ (σ → σ)→ σ → σ

σ

x TV

STV2

λO1λS1λx

σ → σσ → σ

σ σ

v w

S1 O1

λv λw

(σ → σ)→ (σ → σ)→ σ → σ

σ

y

λO2λS2λy

S2 O2

Figure 17: Simplified inhabitation machine for gapping.

sentence. In short, it uses a quantifying-in analysis for the transitive verb in
the sentence to the left and an extraction analysis for the “missing” transitive
in the sentence to the right. What is nice about this analysis, is that we use
a normal coordination formula for “and”, an instance of the schema (X|X)|X
with (in this case) X = (s|np)|np. Since the analysis of Hendriks (1995) uses
a combination of quantifying in and extraction, it is tempting to think that
the lambda grammar analysis is unproblematic. However, they key point of
the analysis is that we need both extraction and in situ binding for a complex
formula, a transitive verb, though unlike for the coordination case it occurs
in a negative position in the gapping coordination type. Let’s investigate the
possibilities.

The formula for transitive verb gapping produces the (simplified and re-
duced) inhabitation machine shown in Figure 17.

57

As before, the prefix λSTV2.λSTV1.λTV.λz. has been remove from the fig-
ure; STV1 denotes the sentence missing a transitive verb to the left of “and”
(“John logic” in our case) and STV2 denotes the sentence missing a transitive
verb to the right of “and” (“Charles phonetics” in our case), TV the transitive
verb (here: “studies”) and z the end of the string.

We can obtain the full combinatorics by identifying all nodes with the same
type. The current reduced graph emphasizes the reasonable lambda terms:
for example, TV can only be an argument of STV1, corresponding to the the
quantifying-in analysis producing the desired word order “John studies logic”,
similarly, the first argument of the transitive verb has been restricted to the
subject and the second argument to the object. In fact, getting the word order
and semantics right leaves a unique lambda term — this is just the term from
(Bourreau 2013), where the subterm (STV1 TV) has been eta-expanded.14

λSTV2.λSTV1.λTV.λz.((STV1λO1λS1λx.(((TVλw.O1w)λv.S1 v))x)

(and (STV2λO2λS2λy.S2 (O2 y)) z))

The principal type of this term is.

(((L→ K)→ (K →M)→ L→M)→ J → 4)→
(((D → C)→ (F → E)→ H → G)→ 3→ I)→
((D → C)→ (F → E)→ H → G)→ J → I

Given this lambda term and principal type, the we can derive the correct word
order and semantics as shown in Figure 18. We have again abbreviated the
proof, using the following abbreviations for readability.

X = s|((s|np)|np)
α = ((L→ K)→ (K →M)→ L→M)→ J → 4

β = (D → C)→ (F → E)→ H → G

We have also performed the substitutions necessary for the → E rules directly
on the hypotheses of the proof. We obtain the semantics by substituting the

14The eta-short term looks as follows.

λSTV2.λSTV1.λTV.λz.((STV1TV)

(and (STV2λO2λS2λy.S2 (O2 y)) z))

58

following terms for the constants in the lambda term computed for this proof.

and = λSTV1λSTV2λTV.(STV1TV) ∧ (STV2TV)

j = john’

l = logic’

c = charles’

p = phonetics’

s = studies’

But again, there is an alternative proof, shown in Figure 19. This proof swaps
both the arguments of P and the two abstractions of s (“studies”). The net
result is that the left conjunct stays as before, syntactically and semantically,
since the two swaps cancel out against each other. Now the right conjunct has
its arguments swapped in the semantics only, giving the absurd reading “John
studies logic and phonetics studies Charles”.

Since this article is already rather long, we cannot treat the other problem
cases mentioned at the start of Section 7. However, the examples which have
been treated in detail serve as a blueprint to constructing similar problems for
the additional listed problem cases. In all cases, the fundamental asymmetry of
lambda grammars means we have insufficient tools at our disposal to constrain
the word order for positive implications and that the best possible approxima-
tions are inadequate both syntactically and semantically.

7.3 Solutions for lambda grammars

Given the descriptive challenges for lambda grammars, it seems natural to ask
how lambda grammars could evolve to rise to these challenges.

1. Stasis. Keeping the formalism and the analyses as they are is a possible, if
not a very attractive solution, since it would require us to significantly tone
down the ambitions of the syntax-semantics interface of the formalism,
thereby losing one of the attractive aspects of categorial grammars.

We can also choose to embrace descriptive inadequacy and use the re-
sult from (Buszkowski 1996), which, as discussed in Section 5.5, trans-
lates Lambek grammars into AB grammars while preserving the seman-
tics, though at the price of an explosion in lexicon size (as Pentus’, 1995
original proof) — to obtain at least the most of the coverage of Hybrid
type-logical grammars directly within lambda grammars (though this pre-
supposes strict separation, as required for the application of Lemma 5.14).
This would save lambda grammars empirically, incorporating the syntax-
semantics interface of the hybrid system, but we would then have a com-
binatorial explosion followed by an NP-complete problem (according to
Lemma 5.15). Given that the original Pentus proof, with O(|G|n3) com-
plexity for some colossal |G|, never resulted in fast, practical parsers for

59

J
o
h
n

j
1
→

0

n
p

P
(
3
→

2
)
→

(
1
→

0
)
→
B

′ →
A

′

(s
|n
p
)|n
p

lo
gi

c

l3
→

2

n
p

(P
l)

(
1
→

0
)
→
B

′ →
A

′

s|
n
p

((
P
l)
j
)B

′ →
A

′

s

(λ
P
.(
P
l)
j
)(

(
3
→

2
)
→

(
1
→

0
)
→
B

′ →
A

′)
→
B

′ →
A

′

s|
((
s|
n
p
)|n
p
)

a
n

d
a
n
d
α
→

(
β
→

3
→
I
)
→
β
→
J
→
I

(X
|X

)|X

C
h
a
rl

es
c
5
→

4

n
p

Q
(
6
→

5
)
→

(
5
→

4
)
→
D

′ →
C

′

(s
|n
p
)|n
p

p
h
o
n

et
ic

s

p
6
→

5

n
p

(Q
p
)(

5
→

4
)
→
D

′ →
C

′

s|
n
p

((
Q
p
)
c
)D

′ →
C

′

s

(λ
Q
.(
Q
p
)
c
)(

(
6
→

5
)
→

(
5
→

4
)
→
D

′ →
C

′)
→
D

′ →
C

′

s|
((
s|
n
p
)|n
p
)

(a
n
d

(λ
Q
.(
Q
p
)
c
))

(
β
→

3
→
I
)
→
β
→

6
→
I

X
|X

((
a
n
d

(λ
Q
.(
Q
p
)
c
))

(λ
P
.(
P
l)
j
))

(
(
3
→

2
)
→

(
1
→

0
)
→

3
→
I
)
→

6
→
I

s|
((
s|
n
p
)|n
p
)

x
1
→
A

n
p

st
u

d
ie

s
s
(
B

→
2
)
→

(
1
→
A

)
→
B

→
A

(s
|n
p
)|n
p

y
B

→
2

n
p

(s
y
)(

1
→
A

)
→
B

→
A

s|
n
p

((
s
y
)
x

)B
→
A

s

(λ
x
.(
s
y
)
x

)(
1
→
A

)
→
B

→
A

s|
n
p

(λ
y
x
.(
s
y
)
x

)(
B

→
2
)
→

(
1
→
A

)
→
B

→
A

(s
|n
p
)|n
p

((
(a

n
d

(λ
Q
.(
Q
p
)
c
))

(λ
P
.(
P
l)
j
))

(λ
y
x
.(
s
y
)
x

))
6
→

0

s

Figure 18: Proof of ”John studies logic and Charles phonetics”.

J
o
h
n

j
1
→

0

n
p

P
(
1
→

0
)
→

(
3
→

2
)
→
B

′ →
A

′

(s
|n
p
)|n
p

(P
j
)(

3
→

2
)
→
B

′ →
A

′

s|
n
p

lo
gi

c

l3
→

2

n
p

((
P
j
)
l)
B

′ →
A

′

s

(λ
P
.(
P
j
)
l)

(
(
1
→

0
)
→

(
3
→

2
)
→
B

′ →
A

′)
→
B

′ →
A

′

s|
((
s|
n
p
)|n
p
)

a
n

d
a
n
d
α
→

(
β
→

3
→
I
)
→
β
→
J
→
I

(X
|X

)|X

C
h
a
rl

es
c
5
→

4

n
p

Q
(
6
→

5
)
→

(
5
→

4
)
→
D

′ →
C

′

(s
|n
p
)|n
p

p
h
o
n

et
ic

s

p
6
→

5

n
p

(Q
p
)(

5
→

4
)
→
D

′ →
C

′

s|
n
p

((
Q
p
)
c
)D

′ →
C

′

s

(λ
Q
.(
Q
p
)
c
)(

(
6
→

5
)
→

(
5
→

4
)
→
D

′ →
C

′)
→
D

′ →
C

′

s|
((
s|
n
p
)|n
p
)

(a
n
d

(λ
Q
.(
Q
p
)
c
))

(
β
→

3
→
I
)
→
β
→

6
→
I

X
|X

((
a
n
d

(λ
Q
.(
Q
p
)
c
))

(λ
P
.(
P
j
)
l)

)(
(
1
→

0
)
→

(
3
→

2
)
→

3
→
I
)
→

6
→
I

s|
((
s|
n
p
)|n
p
)

x
1
→
A

n
p

st
u

d
ie

s
s
(
B

→
2
)
→

(
1
→
A

)
→
B

→
A

(s
|n
p
)|n
p

y
B

→
2

n
p

(s
y
)(

1
→
A

)
→
B

→
A

s|
n
p

((
s
y
)
x

)B
→
A

s
(λ
y
.(
s
y
)
x

)(
B

→
2
)
→
B

→
A

s|
n
p

(λ
x
y
.(
s
y
)
x

)(
1
→
A

)
→

(
B

→
2
)
→
B

→
A

(s
|n
p
)|n
p

((
(a

n
d

(λ
Q
.(
Q
p
)
c
))

(λ
P
.(
P
j
)
l)

)
(λ
x
y
.(
s
y
)
x

))
6
→

0

s

Figure 19: Proof of ”John studies logic and Charles phonetics” with semantics
“John studies logic and phonetics studies Charles”.

the Lambek calculus because of the grammar size constant, having a sim-
ilar constant for an NP-complete problem does not bode well for parsing
the resulting grammar.

So it seems we have two unappealing options here: give up — or signifi-
cantly reduce the ambition of — the syntax-semantics interface or give up
actually parsing lambda grammars.

2. Change the terms and/or their interpretation. The lambda grammars
discussed above produce strings. Several authors have looked at lambda
grammars which generate different types of structures, such as trees (Muskens
2001, de Groote 2002). When we generate trees, we can add a separate
yield algebra which tells us how to interpret the possible word orders gen-
erated by a given tree. This “multiple transduction” approach has several
other instances and though it is conceivable that such multiple transduc-
tions may help alleviate some of the symptoms, it does not address their
root cause, which is the asymmetry of the system.

What we need is a system which can reject “candidate derivations” which
have been computed at the previous level. Such a solution can be found
in (Muskens 2007), who produces first-order logic formulas and adds a
separate theorem-prover component (which is essentially a model-builder
for multimodal categorial grammars). Muskens’ solution would solve the
problems with lambda grammars by essentially generating potential deriva-
tions and asking a multimodal grammar if these derivations are valid.
However, this setup does not seem to have any benefits over a direct mul-
timodal implementation and suffers from the same complexity problems
as multimodal categorial grammars. Pogodalla & Pompigne (2012), dis-
cussed below since they change the types in addition to the terms, also
fall into this category.

Another potential solution in this family would be to add term equations
(and corresponding reductions) to the lambda calculus. However, it is
unclear what sort of form such a solution would take.

As we have seen in the treatment of transitive verb conjunctions, adding
case offers (at best) a partial solution by attacking the symptoms rather
than the underlying cause of the problem. It should also be noted that
the only solution of this kind which has been worked out in any detail
uses dependent types and this complicates the types as well as the terms
(Pogodalla & Pompigne 2012, Pompigne 2013), which moves us to the
next point.

3. Change the types. Various authors (de Groote & Maarek 2007, Pogodalla
& Pompigne 2012) have looked at extending the type theory of lambda
grammars beyond the simply typed lambda calculus. Of these extensions,
dependent types seem well-suited to the challenges posed in this paper,
though they would need to be added on a much larger scale than previ-
ously assumed and they would complicate the type/term calculus and its
mathematical properties considerably.

62

An alternative solution, proposed in the context of linear grammars (Worth
2014) uses subtyping combined with restrictions on the form of subterm
cooccurrences. It is unclear to me at the moment whether this type of
treatment is equivalent to other proposals (eg. those of Hybrid type-logical
grammars) and whether it corresponds to a natural fragment of first-order
linear logic.

Is seems that the easiest way to fix the inadequacies of lambda grammars
would by to extend the system to Hybrid type-logical grammar: existing lin-
guistic analyses in lambda grammars can be preserved and/or corrected while
the system keeps much of the flavor of lambda grammars.

An alternative, especially for those convinced of the need to extend lambda
grammars to handle linguistic features and island constraints (Pogodalla &
Pompigne 2012, Pompigne 2013), is to move to first-order linear logic, which also
allows us to preserves the things that work in lambda grammars but incorpo-
rate a simple treatment of both features and island constraints without having
to change the underlying logical theory. Those particularly attached to depen-
dent types can obtain them from MILL1 proofs by means of the Curry-Howard
isomorphism; first-order logic is a fairly weak fragment of the lambda calculus
with dependent types (Sørensen & Urzyczyn 2006) so we need to verify whether
it is expressive enough. Since smart parsing algorithms for lambda grammars
(de Groote 2007) already use first-order (linear) logic to drive proof search, this
solution stays close to the computational core of lambda grammars: it remedies
the severe problems but also allows us to include treatments for which much
more complicated analyses have been proposed. However, it is not clear in such
a setup what the typed lambda terms actually contribute and we would have
a much simpler system if we simply removed the typed lambda terms from the
surface structure component and handle all of the surface structure in first-order
linear logic.

8 Conclusions

In this paper, we have shown that Hybrid type-logical grammars (Kubota &
Levine 2013a) (and by extension lambda grammars/abstract categorial gram-
mars) can be embedded in first-order linear logic by means of a simple trans-
lation, formula to formula and proof to proof. This provides cleaner proof-
theoretic foundations for Hybrid type-logical grammars but also suggests new
ways of parsing these grammars. As an immediate corollary, we have also shown
that Hybrid type-logical grammars are NP-complete (like lambda grammars and
the Lambek calculus).

We have also seen how this translation provides a new perspective of the
known (but often ignored) problems of lambda grammars with coordination
and shown that the lack of left-right symmetry (or, at the very least, the ab-
sence of a way to emulate the Lambek calculus introduction rules) results in
overgeneration and descriptive inadequacy problems for a much larger class of
cases than previously assumed.

63

Combined with the results from (Moot & Piazza 2001) and (Moot 2014), this
means that the Lambek calculus, the Displacement calculus, lambda grammars
and Hybrid type-logical grammars can all be seen as fragments of first-order
linear logic and that, moreover, many of the analyses of linguistic phenomena
in these different systems converge upon translation into first-order linear logic.

First-order linear logic can thus be seen as a way to decompose the con-
nectives of all these logics, separating the functor/argument structure from the
word order operations. An additional benefit from this decomposition in first-
order linear logic is that way can treat case and island constraints with the exact
same logical tools as the rest of the grammar, thereby improving upon both the
Displacement calculus and Hybrid type-logical grammars.

Acknowledgments

This paper is deeply indebted to Yusuke Kubota and Robert Levine, whose
ESSLLI 2013 course awoke my curiosity both about the proof theoretic aspects of
Hybrid type-logical grammar and about the descriptive inadequacies of lambda
grammars/abstract categorial grammars — the two principal themes of the
current paper.

Early versions of these ideas were presented at the LIX Colloquium on the
Theory and Application of Formal Proofs (Palaiseau, November 2013), Compu-
tational Linguistics in the Netherlands (Leiden, January 2014) and the Polymnie
workshop (Toulouse, March 2014). I would like all the people present there for
their questions and constructive comments, notably Crit Cremers, Philippe de
Groote, Dominic Hughes and Dale Miller.

Last, but certainly not least, I would like to thank Michael Moortgat, Carl
Pollard and Christian Retoré for their discussion about the themes of this paper.

All remaining errors are of course my own.
This work has benefitted from the generous support of the French agency

Agence Nationale de la Recherche as part of the project Polymnie (ANR-12-
CORD-0004).

References

Andreoli, J.-M. (1992), ‘Logic programming with focussing proofs in linear
logic’, Journal of Logic and Computation 2(3).

Barendregt, H., Dekkers, W. & Statman, R. (2013), Lambda Calculus with
Types, Perspectives in Logic, Cambridge University Press.

Bayer, S. & Johnson, M. (1995), Features and agreement, in ‘Proceedings of the
33rd Annual Meeting of the Association for Computational Linguistics’,
San Francisco, pp. 70–76.

64

Bellin, G. & van de Wiele, J. (1995), Empires and kingdoms in MLL, in J.-Y.
Girard, Y. Lafont & L. Regnier, eds, ‘Advances in Linear Logic’, Cambridge
University Press, pp. 249–270.

van Benthem, J. (1995), Language in Action: Categories, Lambdas and Dynamic
Logic, MIT Press, Cambridge, Massachusetts.

Bourreau, P. (2013), Traitements d’ellipses : deux approches par les grammaires
catégorielles abstraites, in ‘Proceedings of Traitement Automatique des
Langues Naturelles (TALN)’, Les Sables d’Olonne.

Brock-Nannestad, T. & Schürmann, C. (2010), Focused natural deduction, in
C. G. Fermüller & A. Voronkov, eds, ‘Logic for Programming, Artificial In-
telligence, and Reasoning’, Vol. 6397 of Lecture Notes in Computer Science,
Springer, pp. 157–171.

Buszkowski, W. (1996), ‘Extending Lambek grammars to basic categorial gram-
mars’, Journal of Logic, Language and Information 5(3–4), 279–295.

Curry, H. B. (1961), Some logical aspects of grammatical structure, in R. Jakob-
son, ed., ‘Structure of Language and its Mathematical Aspects, Proceedings
of the Symposia in Applied Mathematics’, Vol. XII, American Mathemat-
ical Society, pp. 56–68.

Danos, V. & Regnier, L. (1989), ‘The structure of multiplicatives’, Archive for
Mathematical Logic 28, 181–203.

Dörre, J. & Manandhar, S. (1995), Constraint-based Lambek calculi, in
P. Blackburn & M. de Rijke, eds, ‘Specifying Syntactic Structures. Studies
in Logic, Language and Information’, CSLI, Stanford.

Girard, J.-Y. (1987), ‘Linear logic’, Theoretical Computer Science 50, 1–102.

Girard, J.-Y. (1991), Quantifiers in linear logic II, in G. Corsi & G. Sambin,
eds, ‘Nuovi problemi della logica e della filosofia della scienza’, Vol. II,
CLUEB, Bologna, Italy. Proceedings of the conference with the same name,
Viareggio, Italy, January 1990.

Girard, J.-Y. (1995), Linear logic: Its syntax and semantics, in J.-Y. Girard,
Y. Lafont & L. Regnier, eds, ‘Advances in Linear Logic’, Cambridge Uni-
versity Press, pp. 1–42.

Girard, J.-Y., Lafont, Y. & Taylor, P. (1988), Proofs and Types, Cambridge
Tracts in Theoretical Computer Science 7, Cambridge University Press.

de Groote, P. (2001), Towards abstract categorial grammars, in ‘Proceedings of
the 39th Annual Meeting on Association for Computational Linguistics’,
Association for Computational Linguistics, pp. 252–259.

65

de Groote, P. (2002), Tree adjoining grammars as abstract categorial gram-
mars, in ‘TAG+6, Proceedings of the sixth International Workshop on
Tree Adjoining Grammars and Related Frameworks’, Università di Venezia,
pp. 145–150.

de Groote, P. (2007), ‘Abstract categorial grammar parsing: the general case’,
Talk given at the Colloquium in Honor of Gérard Huet, June 22-23, Paris.

de Groote, P. & Maarek, S. (2007), Type-theoretic extensions of abstract cat-
egorial grammars, in R. Muskens, ed., ‘Proceedings of Workshop on New
Directions in Type-theoretic Grammars’, pp. 19–30.

Guerrini, S. (1999), Correctness of multiplicative proof nets is linear, in ‘Four-
teenth Annual IEEE Symposium on Logic in Computer Science’, IEEE
Computer Science Society, pp. 454–263.

Hendriks, P. (1995), Ellipsis and multimodal categorial type logic, in G. Morrill
& R. T. Oehrle, eds, ‘Proceedings of Formal Grammar 1995’, Barcelona,
Spain, pp. 107–122.

Hindley, J. R. (2008), Basic Simple Type Theory, Vol. 42 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press.

Kanazawa, M. (2011), Parsing and generation as datalog query evaluation, Tech-
nical report, National Institute of Informatics, Tokyo.

Kubota, Y. & Levine, R. (2012), Gapping as like-category coordination, in
D. Béchet & A. Dikovsky, eds, ‘Logical Aspects of Computational Linguis-
tics’, Vol. 7351 of Lecture Notes in Computer Science, Springer, Nantes,
pp. 135–150.

Kubota, Y. & Levine, R. (2013a), Coordination in hybrid type-logical gram-
mar, in ‘Ohio State University Working Papers in Linguistics’, Vol. 60,
Columbus, Ohio.

Kubota, Y. & Levine, R. (2013b), Determiner gapping as higher-order discontin-
uous constituency, in G. Morrill & M.-J. Nederhof, eds, ‘Formal Grammar’,
Vol. 8036 of Lecture Notes in Computer Science, Springer, pp. 225–241.

Kubota, Y. & Levine, R. (2013c), Empirical foundations for hybrid type-logical
categorial grammar, in ‘ESSLLI 2013 Course Notes’, Düsseldorf.

Kurtonina, N. & Moortgat, M. (1997), Structural control, in P. Blackburn &
M. de Rijke, eds, ‘Specifying Syntactic Structures’, CSLI, Stanford, pp. 75–
113.

Lamarche, F. & Retoré, C. (1996), Proof nets for the lambek calculus — an
overview, in V. M. Abrusci & C. Casadio, eds, ‘Proofs and Linguistic Cat-
egories’, CLUEB, Bologna, pp. 241–262.

66

Lambek, J. (1958), ‘The mathematics of sentence structure’, American Mathe-
matical Monthly 65, 154–170.

Lincoln, P. & Shankar, N. (1994), Proof search in first-order linear logic and
other cut-free sequent calculi, in ‘Proceedings of Logic in Computer Science
(LICS’94)’, IEEE Computer Society Press, pp. 282–291.

Matsuzaki, T., Miyao, Y. & Tsujii, J. (2007), Efficient HPSG parsing with
supertagging and CFG-filtering, in ‘Proceedings of the 20th international
joint conference on Artifical intelligence’, pp. 1671–1676.

Moortgat, M. (1996a), Generalized quantifiers and discontinuous type construc-
tors, in H. Bunt & A. van Horck, eds, ‘Discontinuous Constituency’, Mou-
ton de Gruyter, Berlin, pp. 181–207.

Moortgat, M. (1996b), ‘Multimodal linguistic inference’, Journal of Logic, Lan-
guage and Information 5(3–4), 349–385.

Moortgat, M. (1997), Categorial type logics, in J. van Benthem & A. ter Meulen,
eds, ‘Handbook of Logic and Language’, Elsevier/MIT Press, chapter 2,
pp. 93–177.

Moot, R. (2002), Proof Nets for Linguistic Analysis, PhD thesis, Utrecht Insti-
tute of Linguistics OTS, Utrecht University.

Moot, R. (2007), Filtering axiom links for proof nets, in L. Kallmeyer,
P. Monachesi, G. Penn & G. Satta, eds, ‘Proccedings of Formal Gram-
mar 2007’. to appear with CSLI.

Moot, R. (2014), Extended lambek calculi and first-order linear logic, in C. Casa-
dio, B. Coecke, M. Moortgat & P. Scott, eds, ‘Categories and Types in
Logic, Language, and Physics: Essays dedicated to Jim Lambek on the
Occasion of this 90th Birthday’, number 8222 in ‘Lecture Notes in Artifi-
cial Intelligence’, Springer, pp. 297–330.

Moot, R. & Piazza, M. (2001), ‘Linguistic applications of first order multiplica-
tive linear logic’, Journal of Logic, Language and Information 10(2), 211–
232.

Moot, R. & Retoré, C. (2012), The Logic of Categorial Grammars: A Deduc-
tive Account of Natural Language Syntax and Semantics, Lecture Notes in
Artificial Intelligence, Springer.

Morrill, G., Valent́ın, O. & Fadda, M. (2011), ‘The displacement calculus’, Jour-
nal of Logic, Language and Information 20(1), 1–48.

Murawski, A. S. & Ong, C.-H. L. (2000), Dominator trees and fast verification
of proof nets, in ‘Logic in Computer Science’, pp. 181–191.

67

Muskens, R. (2001), Categorial grammar and lexical-functional grammar, in
‘Proceedings of the LFG01 Conference’, University of Hong Kong, pp. 259–
279.

Muskens, R. (2003), Languages, lambdas and logic, in G.-J. Kruijff & R. T.
Oehrle, eds, ‘Resource Sensitivity in Binding and Anaphora’, Studies in
Linguistics and Philosophy, Kluwer, pp. 23–54.

Muskens, R. (2007), ‘Separating syntax and combinatorics in categorial gram-
mar’, Research on Language and Computation 5(3), 267–285.

Oehrle, R. T. (1994), ‘Term-labeled categorial type systems’, Linguistics & Phi-
losophy 17(6), 633–678.

Pentus, M. (1995), Lambek grammars are context free, in ‘Proceedings of the
Eighth Annual IEEE Symposium on Logic in Computer Science’, Montreal,
Canada, pp. 429–433.

Pentus, M. (1997), ‘Product-free Lambek calculus and context-free grammars’,
Journal of Symbolic Logic 62, 648–660.

Pereira, F. & Shieber, S. (1987), Prolog and Natural Language Analysis, CSLI,
Stanford.

Pogodalla, S. & Pompigne, F. (2012), Controlling extraction in abstract cate-
gorial grammars, in P. de Groote & M.-J. Nederhof, eds, ‘Proceedings of
Formal Grammar 2010–2011’, Vol. 7395 of LNCS, Springer, pp. 162–177.

Pollard, C. (2011), Proof theoretic background for linear grammar, Technical
report, Ohio State University.

Pompigne, F. (2013), Modélisation Logique de la Langue et Grammaire
Catégorielles Abstraites, PhD thesis, Université de Lorraine.

Roorda, D. (1991), Resource Logics: A Proof-theoretical Study, PhD thesis,
University of Amsterdam.

Savateev, Y. (2009), Product-free lambek calculus is NP-complete, in ‘Sympo-
sium on Logical Foundations of Computer Science (LFCS) 2009’, pp. 380–
394.

Shieber, S., Schabes, Y. & Pereira, F. (1995), ‘Principles and implementation
of deductive parsing’, Journal of Logic Programming 24(1–2), 3–36.

Sørensen, M. H. & Urzyczyn, P. (2006), Lectures on the Curry-Howard Isomor-
phishm, Vol. 143 of Studies in Logic and the Foundations of Mathematics,
Elsevier.

Steedman, M. (2001), The Syntactic Process, MIT Press, Cambridge, Mas-
sachusetts.

68

Troelstra, A. S. & Schwichtenberg, H. (2000), Basic Proof Theory, Vol. 43 of
Cambridge Tracts in Theoretical Computer Science, 2 edn, Cambridge Uni-
versity Press.

Worth, C. (2014), The phenogrammar of coordination, in ‘EACL 2014 Work-
shop on Type Theory and Natural Language Semantics (TTNLS)’, pp. 28–
36.

69

	Introduction
	First-order Linear Logic
	MILL1
	MILL1 with focusing and unification
	Proof Nets

	Basic Properties of the Simply Typed Lambda Calculus
	Principal types
	The principal type algorithm
	Examples

	Hybrid Type-Logical Grammars
	Justification of the principal types for the new rules
	Example
	Semantics

	Equivalence
	String positions, types and formulas
	Proof-theoretic properties of the translation into MILL1
	Hybrid proof to MILL1 proof
	MILL1 proof to hybrid proof
	Main Theorem

	Comparison
	A visual comparison of the different calculi

	Descriptive Inadequacy of Lambda Grammars
	Inhabitation machines
	Problems for lambda grammars
	Solutions for lambda grammars

	Conclusions

