Towards Wide-Coverage Semantics

for French
Richard Moot
LaBRI (CNRS), SIGNES (INRIA) & U. Bordeaux

p R

".-
]

'

Bridge between statistical NLP and syntax/
lsimavllﬁcs the way | (and many people here)
ike if!

¢ v ¢) ! . 2
: Pon't worry, this will not be a talk of the
,' g}/le | improved on task X from YZ to Y+,
/" , Th;.re will be some percentages, but just to
I* show we are up to the level of some of the

statistical NLP guys.

Many wide-coverage parsers for French exist (witness the

participation of the Easy and Passage campaigns)

My goal is not directly to compete with them, but to move
towards a wide-coverage parser which produces structures

which are more interesting (at least to me!) than shared

forests

Introduction

1 will talk about my current research on a wide-coverage

categorial grammar for French.

1 will start by giving a short introduction to categorial
grammars, showing how a categorial parse corresponds to a

lambda-term in the simply typed lambda calculus.

Since the work of Montague, we know that the simply typed
lambda calculus forms a solid base for the semantic analysis

of fragments of natural language.

Introduction

However, we are by no means limited to Montague
semantics: Muskens (1994) and de Groote (2006) show that
the semantics of categorial grammars are compatible with
modern theories of dynamic semantics (DRT in the case of
Muskens, and a continuation-based approach in the case of de

Groote)

Introduction

In this talk I will present the Grail parser and the
development of a wide-coverage grammar of French as well
as the development of a prototype semantic lexicon

producing DRSs, highlighting the treatment of

presupposition.

Wide-coverage semantics in this sense is a relatively new

field, which was pioneered for English by Bos e.a. (2004)

Overview

Categorial Grammars and Lambda Calculus Semantics

Grammar Extraction
- converting a corpus into categorial grammar

- how to use this grammar for parsing

Wide-Coverage Semantics

Categorial Grammars

Lexicalized grammars and lambda calculus semantics

- Categorial Grammars

Formulas and corresponding expressions

Jean, I’étudiant, ...

étudiant, économie, ...

Jean dort, Jean aime Marie
np\s # dort, aime Marie
np/n # un, chaque, I

(np\s)/np # aime, étudie

~ Categorial Grammars

Rules

Lambek categorial

grammars have only four

rules: an elimination and an

introduction rule for both

/1\// and 11///

- Categorial Grammars

Example

un étudiant dort

np/n n np\s

Categorial Grammars

Example

un étudiant dort
np/n n np\s
P [/E] 2
np

Categorial Grammars

Example

un étudiant

np/n n dort
[/E]
np np\s

[/E]
S

[Lamda calculusﬂ '

Beta reduction

(Ax.t) u = t[x:=u]

that is t, but with all occurrences of the variable x replaced by the term u
(renaming variables when necessary)

@ (AX. x+x) 2 =242
(Ay.(y x)) (Az. (f z)) = (Az. (f z)) x =f x

(Ay.(y x)) (Az. (f z)) = (Az. (f z)) x = f x

[.amda calculus
Types

Inductive Definition

Basic types e (for entity) and t (for truth value)

If o and P are types, then a—p is a type

[Lamda calculusﬂ'

Terms
For each type o, there is a (countably infinite) number of

variables X, y, z, ... which are terms of type o.

For each type a, there is a (countably infinite) number of

constants a, b, ¢, ... which are terms of type a.

If x is term of type a—f3 and y is a term of type a then (x y) is
a term of type f.

If y is a term of type § and x is a variable of type a, then Ax.y

is a term of type a—3

| [.amda calculus |

Terms

Some useful constants

[Lamda calculusﬂ'

Notational conventions

These notational conventions are useful for people familiar

with predicate logic and Montague grammar.

We will write (x A y) instead of ((A y) x) and adopt a similar

convention for the other boolean connectives

We will write wx.t instead of u(Ax.t) and adopt a similar

convention for VY and 3

We will write p(x,y) instead of ((p y) x) for constants p (in

general p(x,...,xn) for (...(p Xn)...x1)

[Lamda Calculus.

Notational conventions

Az \y.Ax.(((f 2) y) x) = Az hy.hxf(x,y,2)
V(Ax.A(\y.((love y) x)) = Vx.3y.love(x,y)

Y(Ax.(—(man x)) sleep x)) = Vx.man(x) — sleep(x)

- Lamda calculus

Formulas as Types

In many of the examples, Formula TYP e
I will assign e to both np

@ This is the s andvp Iwill leave the

changes required to furn
these into terms of type (e et) —t

aSSi gning ty (e->t)->t as an exercise

in categoria / type(pp) (e—t)—t
Exception 1: np is lifted type(n) e—t
—t)—t R s poas e ey
from e to (e—t)) t

Exception 2: pp is assigned RIINE (pe(A) — type(B)
the same type as np R

type(A) — type(B)

- Lamda calculus

Formulas as Types

) 1 « - lnmany of the examples,
» Exceptlon I:: I will a:sign e to boﬂ?np Formula Type
and vp, | will leave the

— changes required to turn
from e to (e these into terms of type

(e->1)->t as an exercise

Exception 2:

ol type(pp)
the same type as np

type(n)

which follow, I will use e as type(s)

the type of np and pp in the

To simplify the examples

examples (exercise: give the

correct lambda terms)

[Lamda calculusﬂ '

Proofs as terms

Proofs in categorial

grammar correspond to

lambda terms

These lambda terms
abstract away from the

directions of the

implications.

[Lamda calculusﬂ '

Proofs as terms

t:A/B u:B
(tu):A

Type lifting is now a simple
consequence of the logical

rules.

[Lamda calculusﬂ '

Proofs as terms

t:A/B u:B
(tu):A

Type lifting is now a simple
consequence of the logical

rules.

xnp y:(np\s)
(y x):s

[Lamda calculusﬂ '

Proofs as terms

t:A/B u:B
(tu):A

Type lifting is now a simple
consequence of the logical

rules.

xnp [y:(np\s)]
(y x):s
Ay.(y x):s/ (np\s)

Traces

...cet equilibre délicate que I'Iran et I’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder

chercheront a (Ilp \Sinf) / np [Ilp]
1’Aralbliza£aildite (np \s)/ (np \Sin) s \Sin [/E]
np np\s
que S
(n\n)/(s/oonp) s/ oonp

n\n

[/E]

[/E]

[/1]
[/E]

Traces

... cet equilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder €

chercheront a (Ilp \Sinf) / np np
(np\s)/ (np\Sinf) np \ Sin

[/E]

I'Iran et
I’ Arabie saoudite

R
que

(n\n)/(s/<onp)

Traces

... cet equilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder €

chercheront a (Ilp \Sinf) / np np
I'Iran et
I’ Arabie saoudite (np \ S) / (Ilp \ Sinf) s \ S [/E]
np np\s

[/E]

que

(n\n)/(s/<onp)

Traces

... cet equilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder €

chercheront a (Ilp \Sinf) / np np
I'Iran et
I’ Arabie saoudite (np \ S) / (Ilp \ Sinf) s \ S [/E]
np np\s

[/E]

[/E]

que

(n\n)/(s/<onp)

Traces

... cet equilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder €

chercheront a (Ilp \Sinf) / np [np]l[/E]
I'Iran et (\)/(\ .) \ :

I’ Arabie saoudite SRR TR it St [/E]

np np\s

que S

(n\n)/(s/<enp) s/<onp

[/E]

[/1]!

Traces

... cet équilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

sauvegarder €

chercheront a (Ilp \Sinf) / np [np] .
I'Iran et [/E]
1" Arabie saoudite (np \ S) / (np \ Sinf) i \Sin [/E]
np np\s
que S
(n\n)/(s/<oonp) s/ oonp

n\n

[/E]

[/1]!
[/E]

Traces

... cet équilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

\x.équilibre(x)ndélicat(x)a
chercheront_a_sauvegarder(1&As,x)

sauvegarder €

chercheront a (Ilp \Sinf) / np [np] .
I'Iran et [/E]
1" Arabie saoudite (np \ S) / (np \ Sinf) i \Sin [/E]
np np\s
que S
(n\n)/(s/<oonp) s/ oonp

n\n

[/E]

[/1]!
[/E]

Traces

... cet équilibre délicate que I'Iran et 1’ Arabie saoudite
chercheront a sauvegarder € a Geneve.

\x.équilibre(x)ndélicat(x)a
chercheront_a_sauvegarder(1&As,x)

sauvegarder

) chercheront a
I'Iran et

I” Arabie saoudite

que\ / S

n\n

Grammar Extraction

FErom the Paris VI corpus to a categorial lexicon, while developing several

taggers

Grammar Extraction

% Grammar extraction is the conversion of a linguistically
annotated corpus (in our case, the Paris VII treebank) into a
grammar into a grammar formalism the people doing the

conversion really like (in our case, categorial grammar)

 The Paris VII Corpus

NP
. . // \
To the right is a small I SXJNAP
N |

la monnaie PP N

sentence fragment of the N S N

Par IS VII Corpusl Wthh dont ellle elst resporllsable

suffices to illustrate the

extraction procedure

1. Binarize the annotation

/ i \
NC

la NC Srel

| dC-OM \

monnaie PP \Y

PROREL CLS-SUJ A% | /

| PROREL ~ CLS-SUJ V ADJ
dont elle est responsable | | | |

DET

N

NAP
AN I

dont elle est responsable

1. Binarize the annotation

PROREL CLS-SUJ VN
PROREL CLS-SUJ \Y%
I I / \Aal;s

I
dont elle elst responsable dont elle \ll |

est ADJ

responsable

1. Binarize the annotation
inserting traces for wh words

PROREL CLS-SUI VN
| | / \ats
AP

dont elle A\ |

est ADJ

responsable

PROREL

dont

responsable

€

The extraction algorithm

2. Assign formulas

The extraction algorithm

2. Assign formulas

np
N
D]|ET NC

la
monnaie PROREL

dont CLS-SUJ

responsable

The extraction algorithm

2. Assign formulas

np

/ S
np/n n
la NC Srel
/

| AN

monnaie PROREL Srel

AN

dont CLS-SUJ

responsable €

The extraction algorithm

2. Assign formulas

np/n/ \
| / \

la
/\

monnale PROREL Srel

| e \

dont CLS-SUJ

elle Vv

est ADJ PP-DE

responsable €

The extraction algorithm

2. Assign formulas

np

np/n n
la 7|1 - n\n

N

monnaie (n\n)/(s/<0ppye) s/<C0ppae

I e
dont CLS-SuJ

responsable €

The extraction algorithm

2. Assign formulas

la n n\n

| N

monnaie (n\n)/(s/<0Oppge) s/<C0ppae

d(!nt l
N

CLS-SUJ VN

np/n n
| T~
~

responsable €

The extraction algorithm

2. Assign formulas

la n\n

AN

monnaie (n\n)/(s/<0Oppae) s/<C0ppde

| |
N

/ N

np/n n

| n/ \
| e

dont

responsable €

The extraction algorithm

2. Assign formulas

np

W

np/n n

lla n/ \n\n
| 7N

monnaie (n\n)/(s/<0ppae) s/CUppae

| |
dont / S \
np np\s
| yd N\ ats

elle (np\s)/(n\n) n\n

| 7N\
est ~ADJ PP-DE

responsable €

The extraction algorithm

2. Assign formulas

np

/TL n

|
la 7|1

monnaie (n\n)/(s/<0Oppge) 5/ O0PPde

| |
dont s
/ \
np np\s
| S \ats
elle (np\s)/(n\n) n\n
| d

est (n\n)/ppae PPde
I

responsable

Grammar Extraction

A lot of useful information (such as the position of “traces” of
extracted elements) is not annotated but very useful for the

grammar and needs to be added by hand.

In addition, the extracted grammar has received a very

significant amount of manual cleanup

~ The extracted grammar

4 On the basis of the 382.145 words and 12.822 sentence of

the treebank, the extraction algorithm extracts 883

different formulas, of which 664 occur more than once.

Many frequent words are assigned many different

formulas

This is a significant bottleneck for parsing, however we
can circumvent this problem using well-known NLP

techniques (skip, skip to example)

Word POS

conj

POS

adv

ponct

conj

pTrp

pPTp

adv

ponct

conj

verb

verb

inf

pTrp

verb

Anillustration of some
of the most ambiguous
words and pari-of-speech
tags.

POS tagsets

MEIt (Denis & Sagot) and Treetagger (Schmid) are the two main POS-taggers for
French. They differ slightly in their tagsets: eg. Treetagger has a single tag “PRP:det”
for “du” and “des” (harder for the supertagger), whereas the MElt tagger
distinguishes between these words as determiner and as preposition (harder for the
POS-tagger)

B R

Numerals DET,AD]J,NC,NPP

du/des DET, P+D PRP:det

Verbs \Y% VER:{simp,impf,...}

= - - .
- - = > & — -
.- - A'b : ! R o
o \ 3
- L) L
\ v

The extracted grammar

Formula assignments to the

present tense form “fait”

124 occurrences in the
corpus, with 19 different

formulas assigned to it.

~ The extracted grammar

Formula assignments to the

{77

comma “,

21,398 occurrences, 62 different &%%%
3%

formulas.

no formula

(np\np)/np

(n\n)/n

(np\np)/n

(s\s)/s
(np\s)\(np\s))/(np\s))
(n\n)\(n\n))\(n\n))
other

~ The extracted grammar

The sum up, we have produced a categorial grammar for

French, which is essentially a very big lexicon.

The size of this lexicon, coupled with high lexical

ambiguity, makes direct exploitation for parsing difficult.

A fairly standard solution is to use a supertagger to
estimate the most likely sequence of formulas for the

given words.

Supertagging is essentially
part-of-speech tagging but
with richer structure hence

“super” tags.

Like part-of-speech tagging,
we use superficial
contextual information and
statistical estimation to

decide the most likely tag.

So what is the context for a

supertagger? Context for “de”

Typically, it consists of the

current word, the
surrounding words, the

current and surrounding voiture de Prince Charles

POS tags and the previous

supertags.

The basic procedure for
finding the sequence of

formulas then becomes

Find the correct POS tag

sequence

Find the correct supertag

sequence

Context for “de”

voiture de Prince | Charles

'E

Estimation is done using

maximum entropy models

Context for “de”

Very standard and easy to

modify (ie. we can add any n &

information we think is NC P NPP NPP

useful and let the
la |voiture| de | Prince Charles

estimation algorithm

decide Wthh ones really Any information which we can

easily obtain, of course. If we
think a word having an even
number of letters is useful, we
can add it.

Note, that, though Part-

of-Speech tagging

helps, an incorrect POS-

tag can actually hurt

the supertagger.

Errors in DET-N versus
CLO-V POS-tags are
difficult for the

supertagger to recover

(np \s)/((np \ s)/np)

CLO

from. la

Other difficult words
for the POS-tagger

include “que” (which

can be a conjunction,

an adverb or a relative

pronoun)

However, in general,
the POS-tag

information helps (as

(np \s)/((np \ s)/np)

CLO

we will see) la

B POS B Super # A plot of POS/

POS+S
& 2tper Supertagger results for

% correct tags the four different

tagsets.

- POS+Super gives the %

correct supertags given
the POS-tag assigned by
the tagger, Super is the

correct supertag given
Merged MEIt Tt Simple

H POS B Super # A plot of POS/

& POS+Super
4 Supertagger results for

Zoom on top 20% the four different

tagsets.

- POS+Super gives the %

correct supertags given
the POS-tag assigned by
the model, Super is the

correct supertag given
Merged MEIt Tt Simple

B POS B Super
& POS+Super

Zoom on top 20%

100 o;ome—— ki

£9
90
85

80
Merged MEIt Tt

A plot of POS/

Supertagger results for
the four different

tagsets.

- POS+Super gives the %

correct supertags given
the POS-tag assigned by
the model, Super is the

correct supertag given

Multiple Solutions

Though these results are comparable to the best
supertaggers for English, in practice, even at around
91% correct supertags, we do not cover enough

sentences of the corpus.

A standard solution is to look at supertags within a

range depending on the best supertag.

This is called the 3 value.

Multiple Solutions

Roughly speaking: if p is the probability of the best
supertag, we will assign all supertags of probability >

pp

So, the less we are sure of our first supertag, the more

alternatives we add.

On average, a p of 0.1 gives 2.7 supertags per word,
0.05 gives 3.1 and 0.01 gives 4.7

((np\s)/n

(np\s)/(n

(np\'s)/pp (s\s)/n

(np\s)/np pp_a/np n (s\s)/np
Wre/n [Iy np\s (s\1's)/np | np W s\s)/np [np/n | L (n\n)/np [rp

' opposition manifeste 3 Berlusconi

Here is an example with =0.1

We can see that many “easy” words get assigned a single
supertag whereas difficult words (here: verbs and

prepositions) get assigned many tags.

(np\s)/n
np\s)/(n

(
(
(np\'s)/pp (s\s)/n
(np\s)/np pp_a/np n (s\s)/np
[Iy np\s (s\1's)/np | np W s\s)/np [np/n | L (n\n)/np [rp

' opposition manifeste 3 Berlusconi
7 . 174
manlfe ste % Rewmark: this is very typical of prepositions,
’rheyl are eli’rher argumenfls (of vefrbs, or, ;nore
rarely, at least in our analysis, of nouns) or
np \ S 43'6% modifiers (of VPs/sentences, so-called
adverbial uses, or of nouns)
(np \s)/ np 15.7% Adverbial uses are assigned to take scope at
the sentence-level instead of at the VP level:
15.3% this is a simplification, but semantically, we
g/ 0 just need the event/state variable of the verb

and the subject variable (some adverbs, like
(np \ s)/(np \ Saing) 7.7% “ensemble” or “tous” do clearly need the subject

variable, of course!
((np \s)/np)/ppa) 5.1%

(np \s)/ppa

B Merged M MEIt B Tt

B Simple M Direct # Results with the use of

% correct supertags by model and 3 value different values of f5.

100

In a sense, the B value

80 allows us to trade coverage
60 for efficiency: at higher

s values of [, we parse more
sentences, but we do so

more slowly.

POS/Supertagger

B Merged M MElt W Tt # As before, there is a
B Simple M Direct

slight decrease in
% correct supertags by model and [value performance once we
100 switch from “gold” POS

80 tag to tags assigned by

60 the tagger.

= # Eg. for the Treetagger

au tagset, it is -1.0% at
s e o B=0.1 and -0.5% at

POS/Supertagger

B Merged M MEIt B Tt

s :
B Simple M Direct A comparison of the

Supertagger and the
Zoom of supertag results combined POS/
Supertagger.

e Same results as the
previous slides, but
with a zoom on the top
20 percentile.

e Direct is the result of the

- i) < T~ Y - - - B
- e
- - y ‘ - “ 3 i ‘o-‘ NS
i
- o’ L §

-
v
.

\

-

POS / Supertagger

B Merged M MEIt B Tt

s :
B Simple M Direct A comparison of the

Supertagger and the
Zoom of POS+Supertag results combined POS/
100 Supertagger.

e Same results as the
previous slides, but
with a zoom on the top

“Pirect” seems to slightly outperform the .
ditferent uses with POS inforl:maﬁon, but this is 20 per Centlle .

at the cost of a significant number of extra

tous 0776 T A toms 07337 betac 001

tags 9776%, Tt: 4.6 tags 97.73%, beta=0. . .

et 124 1ags, 98405 01 rngs 034071, | Direct is the result of the
8o, though incorrect POS tags can sometimes

hurt performance, even at high beta levels, the

important reduction in the number of tags per

word outweighs (IMHO) the slight reduction in
correct tags.

o by - v—— ' - » . L T "
’ ’ , -y - v _A'L’,.. ",‘.o‘,._‘«_ -

-

POS/Supertagger

B Tt # Finally, here is the

B Merged M MEIt
B Simple M Direct percentage of sentences

7 e e e which are assigned the

100 correct sequence of
%0 supertags for the
0 different settings of 5 and
the different POS models.
40
20 In practice, nobody publishes there per ote that we number Of

sentence error rate (a notable .
exception is the original supertagaing lenNtences for Wthh a

paper). This is because in general, they

tend to be quite unflattering (eq. ; .

98.27% correct POS tags corresponds arse is found is actu ally
10 69.1% correct sentences, the figures

tor beta=0.01 indicate a similar

picture) aTte ATOUNC

QLK O7 A

Semantics

On the development a wide-coverage semantic lexicon for the extracted

categorial grammar

Semantics

As we have seen, formulas in categorial grammars

correspond to types in the simply typed lambda calculus
Proofs (parses) correspond to lambda terms.

Thanks to the extracted grammar, we can obtain reasonable

accurate parses for French sentences.

So what is missing to obtain a Montague-style meaning of

analysed sentences is a large enough lexicon.

Semantics

In order to move beyond a simple lexicon listing a limited
number of words, it suffices to remark that many of the “open
class” words (eg. names, nouns, verbs) follow a general

schema to obtain their lexical semantics.

For example, a noun “n” generally has Ax.n(x) as its

semantics.

A

-
.

Semantics

So the basic idea behind wide-coverage semantics is

very simple:

- the lexicon lists words which require special
treatment (eg. conjunctions “et” and auxiliary verbs

like “étre” and “avoir”

- other words are assigned a lambda term based on

8o the general motto is: if you want to add more information to the semantic lexicon, there are two basic (non-exclusive) solutions: 1) you
list the different cases 2) you train a (reliable) tagger

Solution 1 would be an option for distinguishing subjet/object control verbs and Solution 2 would be an option for Named Entities (and
their types: persons, places, enterprises), for more complicated semantic distinctions, like events versus states the solution is less clear.

Beyond Montague

Montague grammar has some well-know limitations.

I will talk briefly about two of them: anaphora and

presuppositions

I will sketch solutions to both of them, which stay within the

framework of the simply typed lambda calculus.

Anaphora

A man walks in. He orders a beer.

The meaning of this (tiny) discourse is clear: there exists a
man, who enters and (presumably) this same man orders a

beer.

In first order logic, this is represented by the following

formula:

Jx. [enter(x) A Jy [beer(y) A order(x,y)]]

Anaphora

A man walks in. He orders a beer.

Jx. [enter(x) A y [beer(y) A order(x,y)]]

Now what are the formulas we can assign to the two

sentences?
Jx. [enter(x)]

3y [beer(y) A order(x,y)]

Kamp (1981) and Kamp & Reyle (1993) propose the following

solution:

Y,z

beer(y)
order(z,y)

ZA=N"

dx. [enter(x)] Ty [beer(y) A order(z,y) |

Kamp (1981) and Kamp & Reyle (1993) propose the following

solution:

enter(x)
beer(y)
order(z,y)

Z =\

Kamp (1981) and Kamp & Reyle (1993) propose the following

solution:

enter(x)
beer(y)
order(z,y)

Z =X

Kamp (1981) and Kamp & Reyle (1993) propose the following

solution:

enter(x)
beer(y)
order(x,y)

3x. [enter(x) A Ay [beer(y) A order(x,y)] |

Kamp (1981) and Kamp & Reyle (1993) propose the following

solution.

This solution is compatible with the lambda calculus

approach with have been adopting (Muskens 1994)

Example entries

‘dorwmir” is a state rather
than an event, however,
the current system does
not distinguish between
different types of
eventualities.

(%)

DRT

Example entries

‘dorwmir” is a state rather
than an event, however,
the current system does
not distinguish between
different types of
eventualities.

(%)

Presupposition

What is presupposition?

Presupposition (like anaphora and their resolution) are a
linguistic phenomenon on the semantics/pragmatics

interface.

Its particularity is the it presupposes something which may not

be directly said.

So we could say it is a sort of “window” through which we
can observe aspects of the abstract notion of “common

ground”.

Presupposition

What is presupposition?
Some examples
1. Have you stopped beating your wife?
a. presupposes the listener has been beating his wife

2. George W. Bush would torture again.

b. presupposes Bush has tortured

3. Obama regrets intervening to save Terry Schiavo.

c. presupposes Obama intervened to save T. Schiavo

Presupposition

What is presupposition?

How can we decide if something is a presupposition (as opposed
to an implicature or an entailment?

1. Presuppositions stay when embedded inside of a

negation, a question, or a modal.

2. “Hey, wait a minute, I didn’t know that...”

- Obama regrets intervening to save Terry Schiavo.
- Obama doesn’t regret intervening to save Terry Schiavo.

- Obama may regret intervening to save Terry Schiavo.

Presupposition

What is presupposition?

How can we decide if something is a presupposition (as opposed
to an implicature or an entailment?

1. Presuppositions stay when embedded inside of a

negation, a question, or a modal.
2. “Hey, wait a minute, I didn’t know that...”

- Hey, wait a minute, I didn’t know he intervened to save

Terry Schiavo.

- # Hey, wait a minute, I didn’t know he regretted doing
that.

PR
5. '

Presupposition

From Karttunen (1973)
Question: what do the sentences presuppose about the guilt
of someone other than Nixon?

Just to show that things can get complicated
and that inference is sometimes necessary:
in (%), if destroying the tapes implies being
guilty, then (3) as a whole doesn’t imply

1 1 someone besides Nixon is guilty, since this is
1. If Dean told the truth, Nixon is gu someonepesides Ncon
Note that with a lot of effort, we could do
the same for (1): imagine a strange

. . . . dictatorship, where it is against the law to
R If Haldeman 1S gUIIty, Nixon is gU speak the tl:‘ufh when it hgarms the president

7

3. If Miss Woods destroyed the missing tapes, Nixon is

gUIIty too. Note that there is

another possible lecture
for “too” which would
occur in cases like “Nixon
was not just
incompetent, he was
auilty too”,

Presupposition

Presupposition is not an obscure phenomenon, which rarely
occurs in a corpus: proper names and definite articles both
presuppose existence of (at least an intension of) the name or

definite description.

So, with a quick and approximate calculation, we have an

average of around three presuppositions per sentence!

This means that in order to do wide-coverage semantics, we

need to have at least some way of treating presupposition.

Presupposition in DRT

DRT has been extended to handle presuppositions (Kamp
2001a, Kamp 2001b, Kamp & Reyle, to appear)

The highly simplified version of it allows a DRS to be a pair of
two DRSs, where the first contains the presuppositions of the

second.

‘.

' PreSupposition in DRT

o &
-

The man walks in. He orders a beer.

Y/Z

enter(x)
beer(y)
order(z,y)

Z="7?

‘.

' PreSupposition in DRT

o &
-

John walks in. He orders a beer.

X y,Z

name(x,John) enter(x)
beer(y)

order(z,y)

Z="7?

m\
Tagged text Clark &

Curran
——

Supertagged text

DRT Semantics

Tagged text

Supertagged text

Parser

Semantic lexicon

DRT Semantics

®

French lexicon of
inflected word
forms,
Clément & Sagot

All talk and no demo make
Jack a dull boy.

4 All talk and no demo make

] ac. Give a demo of the
system with today’s
i headlines from “Google
Oy Actualités”

Conclusion

I have described the development of a wide-coverage
categorial grammar for French and first steps towards

using it for wide-coverage semantics

All software and resources are available under LGPL (with
the unfortunate exception of the annotated corpus, which

is bound by the same conditions as the Paris VII treebank).

Future Work

A very long list, but I will mention some of the more

important tasks.

 Future Work - Parser

Improve the accuracy of the extracted grammar and the

parser

Improve the efficiency of parser (eg. by using tree

(as in Noémie-Fleur’s
automata) talk, of course!)

Add a component for multi-word expressions.

 Future Work - Semantics

Incorporate a Named-Entity component.

Incorporate a rudimentary analysis of tense/aspect and

discourse structure using the French Timebank (Bittar
2010).

Word sense disambiguation

General problem: lack of annotated data

- Future Work - Semantics

Open questions:
- how “deep” can we g0 with wide-coverage semantics?
P g g

- what are appropriate evaluation measures?

