Wide-Coverage Parsing With Type-Logical Grammars

Richard Moot

LaBRI CNRS and INRIA Futurs

Richard.Moot@labri.fr

Introduction

- type-logical grammars are most often used for analysing a precise natural language phenomenon using a small grammar fragment
- we will look at automatically extracting a type-logical grammar from a corpus, with the goal of parsing unrestricted text
- we will study the challenges to our parsing algorithms posed by the size of these grammars

- The Spoken Dutch Corpus
- Treebank Extraction
- Preprocessing
- Refinements

- Treebank Extraction
 - The Spoken Dutch Corpus
 - Treebank Extraction
 - Preprocessing
 - Refinements
- Supertagging
 - Maximum Entropy Models
 - Detecting Isolated Vertices
 - Multiple Solutions

- Treebank Extraction
 - The Spoken Dutch Corpus
 - Treebank Extraction
 - Preprocessing
 - Refinements
- Supertagging
 - Maximum Entropy Models
 - Detecting Isolated Vertices
 - Multiple Solutions
- Parsing
 - Architecture
 - Complexity
 - Demo

- Treebank Extraction
 - The Spoken Dutch Corpus
 - Treebank Extraction
 - Preprocessing
 - Refinements
- Supertagging
 - Maximum Entropy Models
 - Detecting Isolated Vertices
 - Multiple Solutions
- Parsing
 - Architecture
 - Complexity
 - Demo
- Conclusions

- 9 million words of contemporary spoken Dutch with different types of annotation
- orthographic transcription and part-of-speechs tags have been provided for all words
- a core corpus of 1 million words has been provided with syntactic annotation in the form of dependency graphs

Treebank Extraction Supertagging Parsing Conclusions The Spoken Dutch Corpus Treebank Extraction Preprocessing Refinements

The Spoken Dutch Corpus Syntactic Annotation

wat is er zielig aan ?

The Spoken Dutch Corpus Syntactic Annotation

VNW14 WW1 VNW20 ADJ9 VZ2 LET

wat is er zielig aan ?

The Spoken Dutch Corpus Syntactic Annotation

wat

is

er

zielig

aan

- a function to identify the functor (or head) of every syntactic category
- a function to identify the modifiers of every syntactic category
- a function from syntactic categories to formulas

Treebank Extraction: Functors

Treebank Extraction: Functors

Treebank Extraction: Functors

Treebank Extraction: Modifiers

Preprocessing

- 'isolated' words like interpunction symbols, but also hesitation marks like 'uh' are almost always given the same tags.
- filtering out the isolated vertices gives us a corpus containing 87.404 sentences (out of 114.801) and 794.872 words (out of 1.002.098).
- we use the filtered corpus for the treebank extraction but we will see that it is possible to do this filtration automatically.

Preprocessing

Interpunction With Grammatical Role

Refinement

Some of the vertex labels of the Spoken Dutch Corpus, like

- DU (discourse unit),
- CONJ (conjunction),
- LIST and
- MWU (merged word unit, a category assigned to multi-word names and fixed expressions)

are not really grammatical categories.

Refinement

Refinement

```
(1)

wij hadden nog [ meetkunde en algebra ]<sub>CONJ</sub>

we had still [ geometry and algebra ]<sub>CONJ</sub>

'we still had geometry and algebra'
```

koffie [geen melk geen suiker]_{LIST} coffee [no milk no sugar]_{LIST} 'coffee, no milk, no sugar'

[boulimia nervosa]_{MWU} heet 't [boulimia nervosa]_{MWU} called it 'it is called boulimia nervosa'

Reducing the Lexicon Size

- Simply keeping all syntactic categories of the Spoken Dutch Corpus gives us a very large treebank, containing 6.817 different lexical types.
- As a first reduction, we map all different sentence types to s and AP to noun modifier; this reduces the size of the treebank to 3.539 lexical types.

Reducing the Lexicon Size

Previous Result

Reducing the Lexicon Size New Result

Reducing the Lexicon Size Splitting Discourse Units

Reducing the Lexicon Size Splitting Discourse Units

Splitting Discourse Units

```
(4)

deze onderaan hier
this at the bottom here
'this one at the bottom here'
```

(5)

mama dronken
mother drunk

'mother (is) drunk'

(6)
 positief tenzij
 positive unless'I am of positive opinion, unless ...'

Further Reductions

- Splitting discourse units → 2.201 lexical formulas

- LP lexicon → 1.137 lexical formulas

Keeping track of discontinuity

- Note that for the moment, our lexical entries only indicate whether their arguments and modifiers are generally to the left or generally to the right.
- For parsing, it would be useful to distinguish between directly to the left (right) and at a distance to the left (right).
- Adding this information increases the 2.201 lexical formulas of the split lexicon to 4.744 lexical formulas

Keeping Track of Discontinuity

Previous Lexical Trees

Keeping Track of Discontinuity

Lexical Trees With Discontinuity Information

Lexical Lookup

- We have seven treebanks, with between 6.817 and 1.137 different lexical trees and with many hundreds of trees possible for several frequent words.
- How are we going to find the correct sequence of trees?

Maximum Entropy Models

- We look at the information provided by the surrounding words.
- During the training phase, the model determines which information is most useful in predicting the correct supertag.
- During the evaluation phase, we predict the best sequence according to our model.

Features

zullen	we	ze	paginagewijs	afhandelen
ww2	vnw1	vnw3	adj9	ww4
$(s/(np \setminus s))/np$	nn	?		

Results

	Experiment	Formulas	Result
1	Basic	6.817	70.61%
2	Discontinuous	4.744	75.24%
3	Compact	3.539	72.06%
4	Split	2.201	77.13%
5	Very compact	1.962	77.83%
6	AB	1.761	77.52%
7	LP	1.137	80.50%

Detecting Isolated Vertices

- a separate model was trained to detect isolated vertices automatically, using simply POS tag of the current and surrounding words
- this received a 98.35% success rate
- remaining errors are due to inconsistencies in the annotation or difficult to detect self-corrections

Results

Experiment	Result
Non-filtered, with interpunction	81.26%
Non-filtered, without interpunction	78.85%
Combined, with interpunction	81.50%
Combined, without interpunction	79.11%

Parsing Architecture

Parser

Supertagger

POS tagger

dividendbelasting op helling

Parsing Architecture

n1 vz1 n1 dividendbelasting op helling

Parser
Supertagger
POS tagger

Parsing Architecture

Parser
Supertagger
POS tagger

Parsing Architecture

Parser
Supertagger
POS tagger

Parsing Complexity

- even if we have the correct supertag sequence, parsing it will be NP complete
- however, adding any kind of weights to the different possibilities for the axiom links will let us find the minimum (or maximum) weight total linking in $O(n^3)$ time or the best k total linkings in $O(kn^3)$ time.
- as a baseline weight function we have implemented the distance between the two atomic formulas

Parsing Demo

Example

I think it's time for a demo!

Conclusions And Future Work

- parsing with an automatically extracted grammar presents new challenges to our parsing algorithms
- supertagging helps us deal with massive lexical ambiguity
- weighted axiom links give us a polynomial approximation of parsing

The Future...

- improve the lexicon extraction, especially in the case of ellipsis
- give the supertagger more long-distance information, for example, by using head trigrams
- evaluate the k-best parsing strategy for different grammars and for different weights
- evaluate the combined supertagger/parser