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Introduction

@ type-logical grammars are most often used for analysing a
precise natural language phenomenon using a small
grammar fragment

@ we will look at automatically extracting a type-logical
grammar from a corpus, with the goal of parsing
unrestricted text

@ we will study the challenges to our parsing algorithms
posed by the size of these grammars
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Treebank Extraction The Spoken Dutch Corpus
Treebank Extraction
Preprocessing
Refinements

The Spoken Dutch Corpus

@ 9 million words of contemporary spoken Dutch with
different types of annotation

@ orthographic transcription and part-of-speechs tags have
been provided for all words

@ a core corpus of 1 million words has been provided with
syntactic annotation in the form of dependency graphs
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Treebank Extraction

@ a function to identify the functor (or head) of every
syntactic category

@ a function to identify the modifiers of every syntactic
category

@ a function from syntactic categories to formulas
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Treebank Extraction: Modifiers
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Preprocessing

@ ‘isolated’ words like interpunction symbols, but also
hesitation marks like ‘uh’ are almost always given the same

tags.

@ filtering out the isolated vertices gives us a corpus
containing 87.404 sentences (out of 114.801) and 794.872
words (out of 1.002.098).

@ we use the filtered corpus for the treebank extraction but
we will see that it is possible to do this filtration
automatically.
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Refinement

Some of the vertex labels of the Spoken Dutch Corpus, like

@ DU (discourse unit),

@ CONJ (conjunction),

@ LIST and

@ MWU (merged word unit, a category assigned to
multi-word names and fixed expressions)

are not really grammatical categories.
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Treebank Extraction The Spoken Dutch Corpus
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Refinements
Refinement
1)
wij hadden nog [ meetkunde en algebra ]cong
we had still [ geometry and algebra ]cons
‘we still had geometry and algebra’
(2)
koffie [ geen melk geen suiker | st
coffee [ no milk no sugar st
‘coffee, no milk, no sugar’
3)

[ boulimia nervosa Jwywy heet 't
[ boulimia nervosa |ymwy called it

‘it is called boulimia nervosa’
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Reducing the Lexicon Size

@ Simply keeping all syntactic categories of the Spoken
Dutch Corpus gives us a very large treebank, containing
6.817 different lexical types.

@ As a first reduction, we map all different sentence types to
s and AP to noun modifier; this reduces the size of the
treebank to 3.539 lexical types.
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Splitting Discourse Units

4)
deze onderaan hier
this at the bottom here
‘this one at the bottom here’
)
mama dronken
mother drunk
‘mother (is) drunk’
(6)

positief tenzij
positive unless
‘I am of positive opinion, unless ...
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Further Reductions

@ Splitting discourse units ~» 2.201 lexical formulas

@ Identifying even more atomic formulas ~» 1.962 lexical
formulas

@ AB lexicon ~ 1.761 lexical formulas
@ LP lexicon ~ 1.137 lexical formulas
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Keeping track of discontinuity

@ Note that for the moment, our lexical entries only indicate
whether their arguments and modifiers are generally to the
left or generally to the right.

@ For parsing, it would be useful to distinguish between
directly to the left (right) and at a distance to the left (right).

@ Adding this information increases the 2.201 lexical
formulas of the split lexicon to 4.744 lexical formulas
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Keeping Track of Discontinuity

Lexical Trees With Discontinuity Information
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Multiple Solutions

Supertagging

Lexical Lookup

@ We have seven treebanks, with between 6.817 and 1.137
different lexical trees and with many hundreds of trees
possible for several frequent words.

@ How are we going to find the correct sequence of trees?

Richard Moot Wide-Coverage Parsing With Type-Logical Grammars



Maximum Entropy Models
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Supertagging

Maximum Entropy Models

@ We look at the information provided by the surrounding
words.

@ During the training phase, the model determines which
information is most useful in predicting the correct
supertag.

@ During the evaluation phase, we predict the best sequence
according to our model.
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Maximum Entropy Models
Detecting Isolated Vertices
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Supertagging

Features

zullen we ze paginagewijs afhandelen
ww2 viwl vnw3 adj9 ww4

(s/(np\s))/np  np ?
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Maximum Entropy Models
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Supertagging

Experiment Formulas | Result
1 | Basic 6.817 70.61%
2 | Discontinuous 4.744 75.24%
3 | Compact 3.539 72.06%
4 | Split 2.201 77.13%
5 | Very compact 1.962 77.83%
6 | AB 1.761 77.52%
7| LP 1.137 80.50%
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Maximum Entropy Models
Detecting Isolated Vertices
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Supertagging

Detecting Isolated Vertices

@ a separate model was trained to detect isolated vertices
automatically, using simply POS tag of the current and
surrounding words

@ this received a 98.35% success rate

@ remaining errors are due to inconsistencies in the
annotation or difficult to detect self-corrections
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Maximum Entropy Models
Detecting Isolated Vertices
Multiple Solutions

Supertagging

Experiment Result
Non-filtered, with interpunction 81.26%
Non-filtered, without interpunction | 78.85%
Combined, with interpunction 81.50%
Combined, without interpunction | 79.11%
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Results: Multiple Solutions 1
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Architecture
Complexity

Parsing Demo

Parsing
Complexity

@ even if we have the correct supertag sequence, parsing it
will be NP complete

@ however, adding any kind of weights to the different
possibilities for the axiom links will let us find the minimum
(or maximum) weigth total linking in O(n®) time or the best
k total linkings in O(kn?) time.

@ as a baseline weight function we have implemented the
distance between the two atomic formulas
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Architecture
Complexity
Demo

Parsing

| think it's time for a demo!
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Conclusions

Conclusions
And Future Work

@ parsing with an automatically extracted grammar presents
new challenges to our parsing algorithms

@ supertagging helps us deal with massive lexical ambiguity

@ weighted axiom links give us a polynomial approximation
of parsing
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Conclusions

The Future...

@ improve the lexicon extraction, especially in the case of
ellipsis

@ give the supertagger more long-distance information, for
example, by using head trigrams

@ evaluate the k-best parsing strategy for different grammars
and for different weights

@ evaluate the combined supertagger/parser
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