Type-Logical and Hyperedge Replacement
Grammars

Richard Moot

Méthodes Formelles, 20 May 2008

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

The Non-Associative Lambek Calculus

NL was introduced by Lambek (1961) as a restriction of the
Lambek calculus. Since linguists tend to think of trees as the
basic linguistic structures, a logic of trees seems (at least a
priori) a good choice.

Kandulski (1988) showed that NL generates only context-free
languages. On the postive side, though de Groote (1999)
showed we can parse NL grammars in polynomial time.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

The Multimodal Lambek Calculus

Given that there is convincing evidence that natural languages
are not context-free (Shieber 1985), various extensions to NL
have been proposed.

Moortgat & Oehrle (1994) have given an analysis of Dutch verb
clusters using the multimodal Lambek calculus NL<$ 5, thereby
showing this calculus generates more than just context-free
languages.

However, the large freedom in proposing structural rules in R
means the logic is Turing complete in general even though a
simply restriction on the structural rules gives a PSPACE
formalism generating exactly the context-sensitive languages
(Moot 2002).

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

The Multimodal Lambek Calculus

In terms of practical parsing, a PSPACE bound is still quite
high. We would like to find a restriction of the multimodal
calculus which extends NL, but does so while keeping a
polynomial parsing algorithm.

The so-called mildly context-sensitive languages and the
different corresponding seem a good compromise between
parsing complexity and descriptive accuracy.

So the question | want to answer today is what fragment of
NL<O R allows for polynomial parsing?

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

Overview of Lambek Calculi: Logic, Language, Complexity

Logic NL |L ?2?? NLOR
Complexity | P NP | P PSPACE
Languages | CFL | CFL | MCSL | CSL

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

Mildly Context-Sensitive Languages and Grammars

© Contains the context-free languages.
@ Polynomial parsing.
© Constant growth.

@ Excluded: {aP | p is prime}
o Excluded: {a' | n > 0}

© Limited cross-serial dependencies.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Introduction

Introduction

Mildly Context-Sensitive Languages and Grammars

Some typical mildly context-sensitive languages are:

{ww |w € {a,b}*} copy language
{a"b"c"d" | n > 0} counting dependencies
{a"bMc"d™ | n > 0,m > 0} crossed dependencies

Many independently proposed frameworks in computational
linguistics (Tree Adjoining Grammars, Linear Indexed
Grammars, Head Grammars and Combinatory Categorial
Grammars) generate exactly the same class of mildly
context-sensitive languages (Vijay-Shanker & Weir 1994).

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Example
AB Proof Nets

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars

Example
AB Proof Nets

Richard Moo

Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

most
np/n

books

d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Example
AB Proof Nets

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Example
AB Proof Nets

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Example
AB Proof Nets

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Logical Links

:
2 + :

A/B B A B B B\A DA A

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Example

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Example— Connecting The Axioms

Logical and Hyperedg: placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Example

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Example— Finding The Axioms

Logical and Hyperedg: placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

From Proof Structures to Abstract Proof Structures

To make the statement of our correctness condition easier, we
abstract away over some of the structure present in proof nets
to obtain abstract proof structures.

@ We no longer distinguish between the different tensor links.

@ As a consequence, we can no longer distinguish between
axiom, flow and cut formulas: only the external formulas,
which are linked to the h and ¢ hyperedges are still
available.

@ Abstract proof structures which are trees and contain
tensor links only will be called tensor trees.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Structures

Logical Links

:
2 + :

A/B B A B B B\A DA A

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars

Abstract Proof Structures
'S

Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

2 3 1 1 2
1 3 1 2 2 3 5 1

Richard Moot

-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Tensor Trees
Links

Logical and Hyperedg: placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Abstract Proof Structures

Example

Richard Moo placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Abstract Proof Structures

Example

Richard Moo d Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions

Richard Moot i placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

=

N

N

=

Logical and Hyperedg: placement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Structural Rules

Mixed Associativity and Commutativity— Extraction

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Structural Rules

Mixed Associativity and Commutativity — Infixation

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Structural Rules

Unary Control— Extraction

Richard Moot -Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Structural Rules

Unary Control — Infixation

Richard Moot -Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Proof Nets

Definition

An NL< proof structure P is a proof net iff its underlying
abstract proof structure A contracts to a tensor tree.

| A\

Definition

An NLOR proof structure P is a proof net iff its underlying
abstract proof structure A converts to a tensor tree using the
contractions and the structural conversions in R.

A\

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot e-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot ogical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot e-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot ogical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot e-Logical and Hyperedge Replacement Grammars



Type-Logical Grammars Proof Structures
Abstract Proof Structures
Contractions and Structural Rules

Contractions and Structural Rules

Example

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Hyperedge Replacement Grammars

Hyperedge replacement grammars were introduced by
Bauderon & Courcelle (1987) and Habel & Kreowski (1987) as
a type of context-free graph grammars.

Few people have studied the link between hyperedge
replacement grammars and proof nets, however.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Hyperedge Replacement Grammars
Hypergraphs With External Nodes

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Hyperedge Replacement Grammars

Hyperedge Replacement

H K Hle := K]

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Hyperedge Replacement Grammars

Example Grammar

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Hyperedge Replacement Grammars

Example Grammar

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Tree Adjoining Grammars (Joshi, Levi & Takahashi 1975) are a
mildly context-senstive grammar formalism. In context of HR
grammars, the can be see as a special case of hyperedge
replacement grammars where:

@ every non-terminal hyperedge label has at most two
tentacles.

@ every right-hand side a HR rule is either:

@ a tree with the root as its sole external node.
@ atree with a root and a leaf as its external nodes.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars
TAG and HRG

Hyperedge Replacement Grammars

Tree Adjoining Grammars as HR Grammars

Substitution

)

0
—

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Adjunction




Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars
TAG and HRG

Hyperedge Replacement Grammars

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

(0)
| o
(1)

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars
TAG and HRG

Hyperedge Replacement Grammars

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

(0)
| o
(1)

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars
TAG and HRG

Hyperedge Replacement Grammars

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

(0)
| o
(1)

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

Richard Moot e-Logical and Hyperedge Replacement Grammars



Hyperedge Replacement Grammars

Hyperedge Replacement Grammars TAG and HRG

Tree Adjoining Grammars as HR Grammars

Example: a"b"c"d"

Richard Moot e-Logical and Hyperedge Replacement Grammars



TLG as HRG

HRG and Proof Nets

Nonterminal Symbols

Tensor Trees
Contractions
Cut, Flow, Axiom
Structural Rules

Simulating Adjunction

@ S (start),

placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

HRG and Proof Nets

Nonterminal Symbols

Simulating Adjunction

@ S (start),

@ Ty (tree, cut),

@ Tp; (tree, flow down),
@ Ty (tree, flow up),

@ Ty (tree, axiom),

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

HRG and Proof Nets

Nonterminal Symbols

Simulating Adjunction

S (start),

Too (tree, cut),

To1 (tree, flow down),
Tio (tree, flow up),

Ti1 (tree, axiom),

Voo (vertex, cut),

Vo1 (vertex, flow down),
V19 (vertex, flow up),

V11 (vertex, axiom).

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

HRG and Proof Nets

Initial Axiom

Logical and Hyperedg: placement Grammars



TLG as HRG

HRG and Proof Nets

Tensor Trees

Richard Moo

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

placement Grammars



Le

TLG as HR

HRG and Proof Nets

Contractio

Richard Moo

G

@]

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

placement Grammars



TLG as HRG

HRG and Proof Nets

Contractions: R\

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

HRG and Proof Nets

Cut, Flow, Axiom

Simulating Adjunction

1 1
Mo — -
2 ut, 2
1 1
(2) (2
! @ ! W
- &) — (5)

Logical and Hyperedg: placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

HRG and Proof Nets

Structural Rules

Logical and Hyperedg: placement Grammars



TLG as HRG

Intermezzo
Relations so far

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

LTAG’

TAG

Richard Moot

NLOR

HR,

placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Intermezzo
Relations so far

LTAG’ NLOR

proof nets as HRG

TAG HR,

Richard Moot

placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Intermezzo
Relations so far

LTAG’

NLOR

proof nets as HRG

TAG

HR>
trivial

Richard Moot e-Logical and Hyperedge Replacement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Intermezzo
Relations so far

LTAG’

NLOR

normal form proof nets as HRG

TAG

HR>
trivial

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Intermezzo
Relations so far

adjunction as contraction
and structural rules

LTAG’

NLOR

normal form proof nets as HRG

TAG

HR>
trivial

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Simulating Adjunction

Initial Configuration of Adjunction Point

Richard Moot gical and Hyperedg placement Grammars



TLG as HRG

Simulating Adjunction

Axioms

Richard Moot

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

placement Grammars



TLG as HRG

Simulating Adjunction

Structural Rules

Richard Moot

Tensor Trees
Contractions

Cut, Flow, Axiom
Structural Rules
Simulating Adjunction

placement Grammars



Tensor Trees

Contractions

Cut, Flow, Axiom
TLG as HRG Structural Rules

Simulating Adjunction

Simulating Adjunction

Contraction and Final Result

Richard Moot

placement Grammars



Conclusions

Conclusions...

@ Hyperedge replacement grammars, tree adjoining
grammars and proof nets for NL< (with mixed associativity
and mixed commutativity) all generate the same string
languages.

@ These string languages are in the class of mildly
context-sensitive languages.

@ As a consequence this restricted class of categorial
grammars is polynomially parseable.

@ Thanks to the simplicity of their basic operations,
hyperedge replacement grammars and tree adjoining
grammars have played a mayor role in establishing this
correspondance.

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Conclusions

Conclusions...
And Future Work!

@ Implement the polynomial algorithms!

@ More classes of structural rules seem to permit a treatment
by hyperedge replacement grammars. Identify as many as
possible.

@ It is well-knowns that augmenting the rank of the
hyperedge replacement grammar augments the string (and
tree) generating power. For example, an tree-generating
HRG of rank n can generate 2n counting dependencies.
What are the corresponding categorial grammars?

Richard Moot Type-Logical and Hyperedge Replacement Grammars



Conclusions

References

deron, M. & Courcelle, B. (1987), ‘Graph expressions and graph rewritings’, Mathematical Systems Theory
20(1), 83-127.

@el, A. & Kreowski, H.-J. (1987), May we introduce to you: Hyperedge replacement, in ‘Graph Grammars and
Their Application to Computer Science’, Vol. 291 of Lecture Notes in Computer Science, Springer, pp. 15-26.

J@]i, A., Levi, L. S. & Takahashi, M. (1975), ‘Tree adjunct grammars’, Journal of Computer and System Science
10, 136-163.

L@mek, J. (1961), On the calculus of syntactic types, in R. Jacobson, ed., ‘Structure of Language and its
Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics’, Vol. XII, American
Mathematical Society, pp. 166-178.

l\@rtgat, M. & Oehrle, R. T. (1994), Adjacency, dependency and order, in ‘Proceedings 9th Amsterdam
Colloquium’, pp. 447-466.

l\@t, R. (2002), Proof Nets for Linguistic Analysis, PhD thesis, Utrecht Institute of Linguistics OTS, Utrecht
University.

@ber, S. (1985), ‘Evidence against the context-freeness of natural language’, Linguistics & Philosophy
8, 333-343.

\@-Shanker, K. & Weir, D. (1994), ‘The equivalence of four extensions of context free grammars’, Mathematical
Systems Theory 27(6), 511-546.

Logical and Hyperedg: placement Grammars



	Introduction
	Type-Logical Grammars
	Proof Structures
	Abstract Proof Structures
	Contractions and Structural Rules

	Hyperedge Replacement Grammars
	Hyperedge Replacement Grammars
	TAG and HRG

	Type-Logical Grammars as Hyperedge Replacement Grammars
	Tensor Trees
	Contractions
	Cut, Flow, Axiom
	Structural Rules
	Simulating Adjunction

	Conclusions

