
Annegret Habel
Mohamed Mosbah (Eds.)

Graph Computation Models

Second International Workshop, GCM 2008
Leicester, United Kingdom, September 2008
Proceedings

Preface

GCM 2008 is the second workshop of a series that serves as a forum for re-
searchers that are interested in graph computation models. The scope of the
workshop concerns graph computation models on graphical structures of various
kinds (like graphs, diagrams, visual sentences and others). A variety of computa-
tion models have been developed using graphs and graph transformations. These
models include features for programming languages and systems, paradigms for
software development, concurrent calculi, local computations and distributed al-
gorithms, biological or chemical computations. Graph transformations can be an
intermediate representation of a computation. In addition to being visual and
intuitive, this representation also allows the use of mathematical methods for
analysis and manipulation.

The aim of the workshop is to bring together researchers interested in all
aspects of computation models based on graphs and graph transformation tech-
niques, and their applications. A particular emphasis is made for models and
tools describing general solutions.

The workshop includes tutorials and invited papers, contributed papers, and
system demonstrations. The tutorials and invited papers introduce different
types of graph transformations and their use to study computation models. The
contributed papers consider specific topics of graph transformation models and
their applications. The topics of the papers range from sequential graph transfor-
mation, extended graph rewrite rules, efficient pattern matching of the left-hand
side of a rule to a host graph, and the termination of a controlled graph transfor-
mation system to parallel graph transformations in distributed adaptive design.
The system demonstrations based on graph computation models range from
alpha-versions to fully developed products that are used in education, research
or being prepared for commercialisation. Accordingly, the proceedings of GCM
2008 consists of three parts. The first part comprises the extended abstracts of
the tutorial and invited talks, the second part presents the contributed papers,
and the third part contains extended abstracts of existing systems.

We would like to thank the members of the program commitee and the
secondary reviewers for their enormous help in the selection process. Moreover,
we would like to express our gratitude to the local organizers Reiko Heckel
(Chair) and Dénes Bisztray (Workshop chair) who did a great job.

July 2008 Annegret Habel and Mohamed Mosbah
Program Chairs

GCM 2008

Organization

GCM 2008 is organized as a satellite workshop of the 4th International Con-
ference on Graph Transformation (ICGT 2008), Leicester (United Kingdom),
September 7 - 13, 2008 and takes place on September 8, 2008.

Program commitee

Frank Drewes Umea (Sweden)
Rachid Echahed IMAG, Grenoble (France)
Emmanuel Godard Marseille (France)
Stefan Gruner Pretoria (South Africa)
Annegret Habel (Co-chair) Oldenburg (Germany)
Dirk Janssens Antwerp (Belgium)
Hans-Jörg Kreowski Bremen (Germany)
Mohamed Mosbah (Co-chair) Bordeaux 1(France)
Detlef Plump York (United Kingdom)

Table of Contents

Tutorial and Invited Talks

Modelling computational and logistic processes by autonomous units 1

Hans-Jörg Kreowski

From Actors to Aspects: Programming with Graph Transformations 2

Dirk Jannsens

An Introduction to GP . 3

Detlef Plump

Local Computations in Graphs: Impact of Synchronization on
Distributed Computability . 4

Jeremie Chalopin

Full Papers

Graph Rewrite Rules with Structural Recursion . 5

Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

Assuring Strong Termination of Controlled Graph Transformation by
Means of Petri Nets . 17

Renate Klempien-Hinrichs and Melanie Luderer

Position Papers

Efficient Graph Rewriting System Using Local Event-driven Pattern
Matching . 28

Bilal Said and Olivier Gasquet

Editing Nested Constraints and Application Conditions 35

Karl Azab

Parallel Graph Transformations in Distributed Adaptive Design 43

Leszek Kotulski and Barbara Strug

V

Systems Demonstrations

Visidia: An Environment for Programming Distributed Algorithms 51

Mohamed Mosbah

AGG: A Tool Environment for Algebraic Graph Transformation 51

Gabriele Taentzer

Author Index . 52

VI

Modelling computational and logistic processes

by autonomous units

Hans-Jörg Kreowski

University of Bremen

Abstract. The notion of a community of autonomous units is a graph-
transformational device for the modelling of computational and - in par-
ticular - logisitic processes that co-exist, run and interact in the same en-
vironment. The units may communicate and cooperate with each other,
their process runs may be sequential, parallel, or concurrent. In the
talk, the framework will be introduced and some computational aspects
stressed.

From Actors to Aspects: Programming with

Graph Transformations

Dirk Jannsens

University of Antwerp

Abstract. The obvious advantage of computational models that di-
rectly manipulate discrete structures or graphs is that they allow one
to work on a convenient level of abstraction, close to intuition about
networks, object diagrams, or system states in general, and avoiding
cumbersome coding into strings or formulas. In Graph Transformation
systems, one takes the view that the desired manipulations can be ob-
tained though local changes, embodied by rules: not only is the applica-
tion of rules controlled by pattern matching, but it is also assumed that
the changes are restricted to the pattern; i.e. the part of the structure
that is not involved in a rule application remains unchanged.
The tutorial gives an overview of opportunities and challenges related
to the use of graph transformation as a model of computation. As a
starting point, work concerning Actor languages is used, which is based
on very simple mathematics and should hence be accessible to a public
not acquainted with the existing theory of graph transformation. Then
issues concerning concurrency and modularity are discussed, as well as
the challenges caused by the need to introduce more control and generic-
ity than present in the basic mechanism. Finally we discuss how proposed
solutions to these challenges are used in recent work about refactoring
and model transformation, and we outline some further potential appli-
cations to aspect-oriented or delegation-based languages, as well as to
topics outside of traditional computing science, such as self-assembly or
natural computing.

An Introduction to GP

Detlef Plump

The University of York

Abstract. GP is a rule-based, nondeterministic programming language
for solving graph problems at a high level of abstraction, freeing pro-
grammers from dealing with low-level data structures. GP’s design aims
at syntactic and semantic simplicity, to facilitate formal reasoning about
programs. The language core consists of just four constructs: single-step
application of a set of graph-transformation rules, sequential composi-
tion, branching and looping. This talk introduces GP by a number of
example programs, presents a formal semantics in the style of Plotkin’s
structural operational semantics, and briefly describes the current imple-
mentation. Particular attention will be given to GP’s powerful branching
and looping constructs which allow to hide destructive tests and to iter-
ate arbitrary subprograms.

Local Computations in Graphs:

Impact of Synchronization on Distributed

Computability

Jeremie Chalopin

University of Marseille

Abstract. In this talk, I will present different distributed models that
can be expressed by graph relabelling systems. In these models, a com-
putation step can be described by the application of a local relabelling
rule that enables the modification of the states of neighboring vertices.
These models represent different level of synchronization between adja-
cent processes.
We are interested in the computational power of these different models.
In order to highlight the differences between these models, we study two
classical problems in distributed computing: naming and election. The
study of these problems enables to give a hierarchy between the different
models and it enables to understand what kind of results are general
enough to be expressed in each model.

Graph Rewrite Rules with Structural Recursion

Berthold Hoffmann1, Edgar Jakumeit2, and Rubino Geiß2 3

1 Universität Bremen and DFKI-Lab Bremen, Germany
2 Universität Karlsruhe (TH), Germany
3 LPA GmbH Frankfurt/Main, Germany

Abstract. Graph rewrite rules, programmed by sequencing and itera-
tion, suffice to define the computable functions on graphs—in theory. In
practice however, the control program may become hard to formulate,
hard to understand, and even harder to verify. Therefore, we have ex-
tended graph rewrite rules by variables that are instantiated by a kind
of hyperedge replacement, before the so instantiated rules are applied to
a graph. This way, rules can be defined recursively over the structure of
the graphs where they apply, in a fully declarative way. Generic rules
with variables and recursive rule instantiation have been implemented in
the graph rewrite tool GrGen.

1 Introduction

Graph rewriting is a basis for rule-based (“declarative”) programming with
graphs, in the same way as term rewriting is a basis of functional programming—
another rule-based paradigm. The following example from biology illustrates es-
sential concepts of functional programming. We take this as a starting point
for discussing concepts that would be useful for rule-based programming with
graphs, and shall come back to it later.

Example 1 (Transcribing DNA to RNA). The genetic information of DNA is
coded in four nucleic bases guanine (G), cytosine (C), adenine (A), and thymine
(T), where uracil (U) replaces thymine in RNA. These bases form pairs G–C and
A–T/U. A transcription of DNA to RNA starts after a sequence “TATAAA” on
the DNA strand, and builds an RNA strand with complementary bases, until
the termination sequence “CCCACT. . .AGTGGGAAAAAA” is found (where
“. . . ” stands for six arbitrary bases).

The following Haskell function defines transcription on strings representing
the base sequences.

transcription ds
| length ds < 30 = []
| isTATAAA ds = d2rna ((drop 6) ds)
| otherwise = transcription (tail ds) where

d2rna ds | length ds < 24 = error ”unterminated gene”
| isCCCACTuvwxyzAGTGGGAAAAAA ds = []

6 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

| otherwise = d2r (head ds) : d2rna (tail ds)
d2r ’A’ = ’U’; d2r ’C’ = ’G’; d2r ’T’ = ’A’; d2r ’G’ = ’C’;

(The omitted functions “isTATAAA” and “isCCC. . . AAA” test whether their ar-
guments begin with the corresponding bases, and (drop i) removes i leading
elements from a list.)

A rule-based functional language offers the following concepts:

1. A function may be defined with several rules that use pattern matching and
application conditions for case distinction.

2. Patterns may contain variables like ds, which are placeholders for values with
a specific, possibly recursive structure—character lists in this case.

3. Functions are defined by recursion over the structure of values. In our ex-
ample, d2rna calls d2r on the head, and itself recursively on the tail of its
argument.

Graph rewrite rules do certainly provide pattern matching, and may also support
application conditions. However, in contrast to term rewriting, graph rewrite
rules do not support variables that are placeholders for graphs of a specific struc-
ture. In most cases, structural recursion is not supported either. Instead, several
graph rewrite tools feature constructs for choosing a rule from a set, sequential
composition, and iteration. This suffices to define all computable functions on
graphs [13]. However, are these concepts adequate from a programmer’s point
of view? They do suggest a style of programming that is imperative rather than
declarative. More importantly, they certainly allow to control which rule shall
be applied next, but provide only little help to control the places where it shall
be applied.

Considering these deficiencies, we have extended the graph-rewrite tool Gr-

Gen [2] by generic rules with variables, where structure rules define the graphs
that may be substituted for variables. Several structure rules may define alter-
native substitutions of a variable, and the substitutions may contain variables
again, also recursively. So, a generic rule is instantiated recursively over a graph
structure before it is applied. Variables may be placeholders for sub-patterns of
a generic rule, like ds is a placeholder for string values. However, they may as
well denote a sub-rule, like d2rna and d2r denote auxiliary functions in the ex-
ample above. This concept shall improve the support for a declarative style of
programming with graphs.

The paper is structured as follows. In the next section, the concepts of single-
pushout (SPO) rewriting with negative application conditions are recalled. In
Section 3, controlled graph rewriting is discussed. The limitations of these control
programs have motivated our extension of rules by variables that are substituted
according to recursive structure rules, which is described in Section 4. Finally,
some related and future work is outlined in Section 5.

Graph Rewrite Rules with Structural Recursion 7

2 Graph Rewriting

In this section, we review the major notions of graphs and rules implemented in
the graph rewrite generator GrGen which is fully documented in [2] and [8].

Graphs. The graphs used in GrGen are directed and allow loops and multiple
edges from one node to another one. Their nodes and edges are labeled (typed).
Undirected edges are supported too, but for conciseness we want to view them as
a shorthand notation for pairs of undirected counter-parallel edges in this paper.
A fixed pair T = (Ṫ , T̄) of disjoint finite sets provides types for nodes and edges.
A (typed) graph G = (Ġ, Ḡ, srcG, tgtG, τ̇G, τ̄G) consists of disjoint finite sets Ġ of
nodes and Ḡ of edges, with mappings srcG, tgtG : Ḡ → Ġ that associate a source
and a target node to its edges, and type mappings τ̇G : Ġ → Ṫ and τ̄G : Ḡ → T̄ .
We often write “x ∈ G” instead of “x ∈ Ġ or x ∈ Ḡ” and call x an item of G.

Let G and H be graphs. A pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ and
m̄ : Ḡ → H̄ is a graph morphism (or just morphism, for short) if it preserves
sources, targets, and types, i.e., if srcH ◦ m̄ = ṁ ◦ srcG, tgtH ◦ m̄ = ṁ ◦ tgtG,
τ̇G = τ̇H ◦ ṁ, and τ̄G = τ̄H ◦ m̄. Then m is denoted as m : G → H , and called
injective (surjective resp.) if its component mappings have this property. If m is
injective and surjective, G and H are isomorphic, denoted as G ∼= H .

We say that a graph G is a subgraph of a graph H , and write G ⊆ H , if
the nodes and edges of G are subsets of those of H , and the mappings of G are
restrictions of the respective mappings of H to Ḡ and Ġ.

Let G be a graph with a subgraph D ⊆ G. A morphism m : D → H is called a
partial morphism from G to H , written m : G 99K H , and D is called the domain
of m, denoted by Dom(m). The partial morphism m is total if Dom(m) = G.

�� ��

��

��

��

��

��

��

����

��

��

��

��

��

�	

�

1 node class C; // Program model

2 node class H;

3 node class N;

4 node class O;

1 test cytosine {

2 n1:N -- c1:C -- c2:C;

3 c2 -- c3:C -- n2:N -- c4:C -- n1;

4 c2 -- c1; n2 -- c3;

5 n1 -- :H; c1 -- :H; c2 -- :H;

6 c3 -- n3:N -- :H; n3 -- :H;

7 c4 -- o:O -- c4;

8 }

Fig. 1. The molecular structure of cytosine

8 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

Example 2 (Graphs). In Figure 1, the molecular structure of the nucleic base
cytosine is specified in GrGen (on the right-hand side), and as a diagram (on
the left-hand side). The GrGen program model on top declares four nodes
types representing atoms, which are extensions of the predefined node type Node.
Undirected edges of the predefined type UEdge represent chemical bonds. In
the graph specification4 below, items are introduced with x : t, where x is an
optional item identifier, and t its type; items may be reused with their name.
An undirected edge e with source x and target y is introduced by “x - e - y”,
and “--” introduces an anonymous edge of type UEdge.

In diagrams of graphs, nodes are depicted as circles, and edges are drawn as
arrows from their source to their target nodes, undirected edges without tips.
The type will be inscribed to the circle of a node, and ascribed to the arrow of
an edge. Sometimes, node identifiers are ascribed to their circles.

Rewriting. GrGen is based on rewrite rules according to the single-pushout
approach (SPO for short, see [17] for details) that may have negative application
conditions as defined in [11].

A graph rewrite rule (rule, for short) is an injective partial morphism r : P 99K

R. A conditional rule is a pair (C, r) with r as above, and a set C = {c1, . . . , ck}
of injective morphisms ci : P → P̃i (with 1 6 i 6 k). The graphs P̃i are negative
patterns, P is the pattern, and R is the replacement of (C, r).

An injective total morphism m : P → G is a match of a conditional rule
(C, r) as above if for all c : P → P̃ in C there is no total injective morphism
m̃ : P̃ → G so that m̃ ◦ c = m. A rewrite step of G using (C, r) via a match m

yields a graph G′ that is defined as a pushout, and can be constructed from the
disjoint union of G and R by (i) identifying, for all x ∈ Dom(r), the items r(x)
and m(x), and (ii) deleting, for every x ∈ P \Dom(r), the item m(x), including
all edges of G that are incident with m(x) if x is a node.

Such a step is denoted as G ⇒m,C,r G′. For a finite or infinite set R of
conditional rules, we write G ⇒R G′ if G ⇒m,C,r G′ for some match m and
some (C, r) ∈ R. As usual, ⇒∗

R shall denote the reflexive-transitive closure
of ⇒R.

The default way of rewriting in GrGen is via injective matches, but a spec-
ification hom(x,y) allows that the items x and y in P are identified by a match.
This can be modeled by extending the rule set R by a variant of the rule wherein
x and y are identical. However, a potential match m̃(P̃) of a negative pattern
may always overlap with the match m(P) of the pattern in an arbitrary way.

Rules as Graphs. Since rules shall be instantiated by applying other rules to
them (in the next section), it is important to note that a conditional rule can be
represented as a single graph. The rule graph 〈C, r〉 of a conditional rule (C, r) is

4Actually, this is a test for the existence of a cytosine molecule in a graph.

Graph Rewrite Rules with Structural Recursion 9

��

��

��

��
�����	�

����

�
�

�
�

���

���	

�����	�

���	
���

�����

�

�

��������	�����������	 1 rule NextChainElem(prev:D, rprev:R):(D,R)

2 {

3 prev -:PG-> d:D;

4

5 modify {

6 rprev -:PG-> r:R;

7 return(d,r);

8 }

9 }

Fig. 2. Rule NextChainElem extending a ribose chain

obtained from the disjoint union of its graph components P]R]
⊎

(c : P→P̃)∈C P̃

by identifying, for every x ∈ Dom(r), x with r(x), and for every c : P → P̃ ∈ C

and every y ∈ Dom(c), y with c(y).

Example 3 (A Rule Graph). The rule in Figure 2 extends a ribose chain in
correspondence to a deoxyribose chain. Here and in the following examples,
DNA and RNA are represented by chains, with nodes (of type D for deoxyribose
and R for ribose) representing the sugars, and edges of type PG representing
the phosphate groups linking them. Nodes labeled A, C, G, T, and U that are
connected to the sugars represent the nucleic bases.

The textual notation of the rule in the specification language of GrGen is
shown on the right-hand side. The rule has a name (NextChainElement), two
node parameters (prev, rprev) and two result nodes (d, r). Parameters may be
used in the body, and results are indicated by return. The outer block defines
the pattern of the rule (in line 3); it contains a modify -block that specifies
how items shall be added to the pattern (in line 6). A delete -list could indicate
nodes and items to be removed from the pattern; this is not used in our example.
One or more negative -blocks could define negative application conditions (as
in rule DNAchain of Example 5).

The rule graph of NextChainElement is shown on the left-hand side of the
figure. The rule name appears at the top of the graph, its parameters are anno-
tated with 〈in〉, and its results with 〈out〉. Items in R that are not in r(P) are
annotated with 〈create〉, whereas items in P that are not in Dom(r) would be
annotated with 〈delete〉, and items of the negative application condition would
be crossed out.

10 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

3 Controlled Graph Rewriting

Controlled rewriting is typically expressed by operations that combine single
rule applications. As an example, we summarize the (graph) rewrite sequences
offered by GrGen.

– A rule application (y1, . . . yk) = r(x1, . . . , xm) attempts to extend the
matches of its parameters x1, . . . , xm to an arbitrary match of its pattern
so that the rule can be applied. If this is possible, the application succeeds,
and defines the variables y1, . . . yk; otherwise it fails. A test is handled the
same way, but does not modify the graph.

– For rewrite sequences S1, S2, the logical operations conjunction S1 &&S2

and disjunction S1 ||S2 are evaluated lazily from left to right: S2 is not
evaluated if the success or failure of S1 does already determine the result
of the operation. Their strict counterparts &, |, and the negation ! exist as
well.

– Iteration is supported by the constructs S∗ and S+ which evaluate a rewrite
sequence S until it fails. S∗ never fails, and S+ is equivalent to S &&S∗.

– Transactional brackets 〈S〉 undo all effects of intermediate evaluation steps
in a rewrite sequence S if the evaluation of S as a whole fails. Backtracking
however – in the sense of exploring all possible rewrite sequence applications
automatically – is not supported; this yields high efficiency in many cases,
but complicates handling of recursive structures, as it is not possible to
simply restart a stuck sequence at the last decision point.

A. Habel and D. Plump have shown in [13] that rewrite programs supporting
(i) choice of one rule from a set of (DPO) graph rewrite rules, (ii) sequential
composition, and (iii) exhaustive application suffice to define every computable
function on graphs. However, this does not mean that this kind of control sup-
ports practical programming in an optimal way.

Example 4 (A Graph Rewrite Sequence for DNA Transcription). The following
graph rewrite sequence performs DNA-to-RNA transcription like the Haskell

function in Example 1.

1 < (prev,rprev) = findTATAAA

2 && (!isCCCACTuvwxyzAGTGGGAAAAA(prev)

3 && (prev,rprev)=NextChainElement(prev,rprev)

4 && (A(prev,rprev) || C(prev,rprev) || G(prev,rprev) || T(prev,rprev))

5)*

6 && isCCCACTuvwxyzAGTGGGAAAAA(prev) >

The rule findTATAAA searches for the transcription starting sequence, the rule
NextChainElement known from Example 3 extends the ribose chain to the rear,
and the rules A, C, G, and T construct the nucleic base pair for the RNA chain
that is complementary to the nucleic base in the DNA chain. (Their rules are
similar to the alternatives of the pattern DNANucleotide shown in Example 5
further below.)

Graph Rewrite Rules with Structural Recursion 11

It is remarkable that the rewrite rules themselves perform rather trivial tasks
(finding a subsequence, duplicating a chain element, attaching a node), whereas
the controlling rewrite sequence that combines them is rather complex, even
for such a small example. For efficient rewriting it is important to pass nodes
matched in one rule to another one. Then we cannot only control which rule
is to be applied next, but may also indicate where it shall be applied. Rewrite
sequences can achieve this only for linear structures like lists, but for non-linear
recursive structures like trees, parameter passing cannot be handled without
general recursion in rewrite programs. The concepts devised for overcoming the
limitations of rewrite programs are described in the next section.

4 Generic Rules

In his master thesis [15], E. Jakumeit has designed and implemented rules with
structural recursion. Extending the rules strengthens the rule-based kernel of
GrGen, rather than the rewrite sequences defined on top of it. The basic idea
is that a generic rule contains variables, nonterminal nodes which are attached
to a fixed number of terminal nodes. A set of structure rules describes how
variables can be substituted. A variable may have several substitutions, which
can be used alternatively. These substitutions may again contain variables, even
in a recursive way. If the variable occurs in a pattern (positive or negative) of
the generic rule, its instantiation yields a sub-pattern. However, since generic
rules are represented as rule graphs, a variable may be attached to its (positive)
pattern and replacement at the same time. Then its instantiation yields a sub-
rule. Both sub-patterns and sub-rules are defined by structural recursion.

Formally, the semantics of generic rules is defined by a two-level graph rewrite
process. First, all variables in a generic rule are instantiated according to the
structure rules, by a context-free way of graph rewriting similar to hyperedge
replacement [10]. This process yields a language of simple rules that may be
infinite. Then, the host graph is rewritten with the resulting simple rules.

Assumption (Nonterminal Types). We assume that the type alphabets T =
(Ṫ , T̄) contain a subset N ⊆ Ṫ of nonterminals, which are equipped with an arity
function A : N → ℘(T̄ × (Ṫ \ N)).

For all graphs G occurring in the following, we assume that nonterminals are
used according to their arity: Whenever G contains a node x with τ̇G(x) = n ∈
N , G shall contain, for every (t̄, ṫ) ∈ A(n), exactly one edge e and node y with
srcG(e) = x and tgtG(e) = y so that τ̄G(e) = t̄ and ṫ = τ̇G(y).

Nonterminals will occur only during instantiation, as types of variables in
generic rules or in structure rules, but neither in the host graphs, nor in the
simple rules applied to them. The remaining types, (Ṫ \ N) ∪ T̄ , are called
terminal, as well as rules and graphs over these types.

12 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

Variables. A node x with type n ∈ N is called a variable. A variable x is
called straight if it has as many incident edges as adjacent nodes. A subgraph
S induced by the incident edges of a variable is called a star, and its edges are
called rays, and drawn like that (see Figure 3).

Structure Rules. A rule s = S 99K 〈r〉 is a structure rule if its pattern S is a
straight star, 〈r〉 is the graph of an unconditional rule r : P 99K R, and Dom(s) is
the discrete subgraph that contains all terminal nodes of S. With Sp we denote
the maximal subgraph of Dom(s) so that its image s(Sp) is in the pattern P of
the rule graph 〈r〉. A structure rule s = S 99K 〈r〉 is a sub-pattern structure rule
if the morphism r : P 99K R is total and surjective, otherwise, it is a sub-rule
structure rule.

Instantiation of Generic Rules. A conditional rule (C, r) with r : P 99K R

is called generic if every variable y in R has a variable x in P with r(x) = y.

Let T = 〈C, r〉 be the graph of a generic rule and consider a structure rule
s = S 99K 〈r̂〉. A total morphism m : S → T is a rule match if m(Sp) is a
subgraph of the pattern of the rule graph 〈C, r〉, or, if s is actually a sub-pattern
structure rule (and Sp = S), if m(S) either lies completely in a negative pattern

P̃ (where c : P → P̃ ∈ C), or in the pattern of 〈C, r〉. Then T ⇒m,∅,s T ′ is an
instantiation step, where the transformed graph is a rule graph T ′ = 〈C′, r′〉
again, whose negative patterns, pattern and replacement can be distinguished
by considering the pushouts for Sp and S \ Sp separately.

Let S be a finite set of structure rules, and define ⇒S to be its instantiation
relation. Then S derives, for some set R of generic conditional rules, the set of
simple conditional rules

S(R) = {〈C′, r′〉 | 〈C, r〉 ∈ R, 〈C, r〉 ⇒∗
S 〈C′, r′〉, where 〈C′, r′〉 is terminal}

The rewrite relation of generic rules R over structure rules S is given as ⇒S(R).

Example 5 (Transcription of DNA to RNA). Coming back to Examples 1 and 4,
we show a generic rule transcribing DNA to RNA in Figure 3. Now the tran-
scription can be specified by a single rule, with three nonterminals DNAChain,
DNANucleotide, and isCCCACTuvwxyzAGTGGGAAAAAA. We first discuss the tex-
tual notation of GrGen on the right-hand side of the figure. Six structure rules
define the sub-rules End, Chain and A, C, G, T for the first two nonterminals;
Chain uses DNAChain recursively. The rays and adjacent nodes of these nonter-
minals are given by the names and types of the formal parameters that follow
their name, plus those that follow the modify blocks in their rules. The structure
rule for the nonterminal isCCC. . .AAA defines a sub-pattern; note that it is used
for two (anonymous) variables: as a negative application pattern in the structure
rule End, and as a positive pattern in Chain. Using two (or more) variables of
the same structure within one rule is also important for expressing structural
recursion over non-linear structures like trees.

Graph Rewrite Rules with Structural Recursion 13

����� ������
���

��	
�����

�� ����

��

�� ����������
�������
��

��

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

��

����� ������
���

���	

������

���

�	

��

�� ��

�� ��

�������

����

��� ���

������

�����

��

������

��

��������

���

�� ��

����� ��

�� ��

���	
�	�

�
��
���	
�	�

�� ��

���	
�	�

����
���	
�	�

�� ��

���	
�	�

����
���	
�	�

�� ��

���	
�	�

����
���	
�	�

�������	����	

1 rule transcription() {

2 d1:D -:PG-> d2:D -:PG-> d3:D -:PG-> d4;

3 d4:D -:PG-> d5:D -:PG-> d6:D -:PG-> d7;

4 d7:D; d1 --> :T; d2 --> :A; d3 --> :T;

5 d4 --> :A; d5 --> :A; d6 --> :A;

6 d2r:DNAChain(d7);

7 modify {

8 r:R; // new starting point for RNA

9 d2r(r);

10 }

11 }

12 pattern DNAChain(prev:D) {

13 alternative {

14 End {

15 :isCCCACTuvwxyzAGTGGGAAAAAA(prev);

16 modify(rprev:R) {

17 }

18 }

19 Chain {

20 negative {

21 :isCCCACTuvwxyzAGTGGGAAAAAA(prev);

22 }

23 prev -:PG-> next:D;

24 head:DNANucleotide(prev);

25 tail:DNAChain(next);

26 modify(rprev:R) {

27 rprev -:PG-> rnext:R;

28 head(rprev);

29 tail(rnext);

30 }

31 }

32 }

33 modify(rprev:R) { }

34 }

35 pattern DNANucleotide(d:D) {

36 alternative {

37 A { // analogously for C, G. T

38 d --> a:A;

39 modify(r:R) {

40 r --> u:U;

41 }

42 }

43 ...

44 }

45 pattern isCCCACTuvwxyzAGTGGGAAAAAA(d:D) {

46 ...

47 }

Fig. 3. DNA-to-RNA Transcription defined with a generic rule

14 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

Note that the abstract DNA model employed here, where nodes and edges
represent sub-molecules, can easily be defined on the underlying chemical struc-
ture that is composed of atoms. To do that, every nucleotide node (of type A, C,
G, T, or U), every phosphate group edge (of type PG), and every sugar node (of
type D or R) has to be turned into a nonterminal, whose structure rules spec-
ify the corresponding sub-molecules, and have one, two, and three attachment
points respectively, which have to be joined according to the chemical bonds
between these sub-molecules. See [15] for details.

Rule Application. Instantiating generic rules first, and matching them after-
wards is only possible in theory —in practice, we have to interleave instantiation
with matching, as sketched in the following operational semantics of the recursive
rules, which has been implemented in the extension of GrGen [15]:

1. The terminal items in the generic rule’s pattern are matched.
2. It is checked whether the terminal items of a negative pattern may be

matched.
3. If this is the case, a variable attached to this negative pattern is substituted

according to a structure rule, and matching continues in step 2. If no variable
is left in the negative pattern, a match is found, and application of the rule
fails.

4. Otherwise, a variable attached to the pattern is substituted with one of its
structure rules, and matching continues with step 4. If there is no variable
anymore in the pattern, application of the rule succeeds.

5. The replacement of the generic rule—wherein variables are now instantiated—
replaces the match of the rule.

The structure rules S correspond to hyperedge replacement graph grammars.
Thus non-productive nonterminals, unused nonterminals, and chain rules can be
detected and removed [10]. When we assume S to be free of such nonterminals
and rules, the operational semantics is effective, since the substitution process
is bound to terminate. If the rules are defined with care, it can also be efficient.

5 Conclusions

In this paper we have described a concept by which graph rewrite rules can
be refined recursively so that advanced transformation tasks can be specified
by a single rule, without using imperative control structures. The concept has
been implemented in GrGen.5 Due to lack of space, we have simplified the full
concepts of GrGen in several respects: Nodes and edges of graphs may carry
attribute values, their typing may use inheritance, and the structure rules used
for refining generic rules may themselves be conditional.

5A beta version of GrGen.NET 2.0 is available at www.grgen.net

Graph Rewrite Rules with Structural Recursion 15

The idea of using rules to refine rules has been first used in two-level (van-
Wijngaarden) grammars [3]. Early adaptations of this idea to graph gram-
mars [14, 9] were oriented towards defining graph languages, and not intended for
defining computations on graphs. The graph variables of shaped generic graph
rewrite rules [5] resemble the variables introduced here; they are refined by adap-
tive star replacement [4]. This is more general than the star replacement used
here, but more difficult (and less efficient) to implement. Graph variables as such
were first proposed in [18], but without the capability to constrain the shape of
the graph to be matched. The path expressions and multi-nodes of Progres [19]
and Fujaba [7] allow matching of a subset of the structures which can be han-
dled by recursive sub-patterns. (In contrast to the instantiations defined here,
the match of a path expression may overlap with the rest of a match.) Fu-

jaba [7] as well as earlier versions of GrGen furthermore support recursion on
the right hand side of a rule, i.e., it is possible to call a rule during a rewrite
step, after the match is done. This is purely imperative, because the calling rule
will make its changes to the graph anyway—regardless whether the called rule is
applicable or not. Viatra [1] was the first graph rewrite system to support re-
cursive sub-patterns, sub-rules however are not supported (they are only vaguely
sketched in the given reference). As of now it still is the only other system offer-
ing sub-patterns, but about two orders of magnitude slower than GrGen [15].
In any of the mentioned cases, variables are placeholders for sub-patterns only,
so that recursive patterns can get matched, but not rewritten (besides deleting
the entire sub-pattern).

An interesting question for the future is: Can rules and patterns be merged to
a single concept? Then, generic rules could refer to other rules like to variables,
and the application of a rule could “call” other rules, also recursively. With an
additional concept for the sequential composition of rules, this could set up a
fully declarative way of programming with graph rewrite rules that is computa-
tionally complete in the sense of [13]. For such a declarative framework, it is also
promising to analyze properties of generic rules, such as the existence of critical
pairs, and to try to transfer first results concerning overlapping rules with graph
variables [12] to this framework.

References

1. András Balogh and Dániel Varró. Pattern composition in graph transformation
rules. In European Workshop on Composition of Model Transformations, Bilbao,
Spain, July 2006. See also http://viatra.inf.mit.bme.hu/update/R2.

2. Jakob Blomer and Rubino Geiß. GrGen.net: A generative system for graph-
rewriting, user manual. www.grgen.net, 2007.

3. C.J. Cleaveland and R.C. Uzgalis. Grammars for Programming Languages. Else-
vier, New York, 1977.

4. Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels Van
Eetvelde. Adaptive star grammars. In Andrea Corradini, Hartmut Ehrig, Ugo
Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, 3rd Int’l Conference

16 Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß

on Graph Transformation (ICGT’06), number 4178 in Lecture Notes in Computer
Science, pages 77–91. Springer, 2006.

5. Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels Van
Eetvelde. Shaped generic graph transformation. In Andy Schürr, Manfred Nagl,
and Albert Zündorf, editors, Applications of Graph Transformation with Industrial
Relevance (AGTIVE’07), Lecture Notes in Computer Science. Springer, 2008. to
appear.

6. Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, ed-
itors. Theory and Application of Graph Transformation (TAGT’98), Selected Pa-
pers, number 1764 in Lecture Notes in Computer Science. Springer, 2000.

7. Thorsten Fischer, Jörg Niere, Lars Turunski, and Albert Zündorf. Story diagrams:
A new graph grammar language based on the Unified Modelling Language and
Java. In Ehrig et al. [6], pages 296–309. http://www.fujaba.de/.

8. Rubino Geiß. Graphersetzung mit Anwendungen im Übersetzerbau (in German).
Dissertation, Universität Karlsruhe, 2007.

9. Herbert Göttler. Semantical descriptions by two-level gaph-grammars for quasi-
hierarchical graphs. In Manfred Nagl and Hans-Jürgen Schneider, editors, Graphs,
Data Structures, Algorithms (WG’79), number 13 in Applied Computer Science,
pages 207–225, München-Wien, 1979. Carl-Hanser Verlag.

10. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Number 643
in Lecture Notes in Computer Science. Springer, 1992.

11. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae, 26:287–313, 1996.

12. Annegret Habel and Berthold Hoffmann. Parallel independence in hierarchical
graph transformation. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce,
and Grzegorz Rozenberg, editors, 2nd Int’l Conference on Graph Transformation
(ICGT’04), number 3256 in Lecture Notes in Computer Science, pages 178–193.
Springer, 2004.

13. Annegret Habel and Detlef Plump. Computational completeness of programming
languages based on graph transformation. In Proc. Foundations of Software Science
and Computation Structures (FOSSACS 2001), volume 2030 of Lecture Notes in
Computer Science, pages 230–245. Springer, 2001.

14. Wolfgang Hesse. Two-level graph grammars. In Volker Claus, Hartmut Ehrig, and
Grzegorz Rozenberg, editors, Graph Grammars and Their Application to Computer
Science and Biology, number 73 in Lecture Notes in Computer Science, pages 255–
269. Springer, 1979.

15. Edgar Jakumeit. Mit GrGen zu den Sternen. Diplomarbeit (in German), Univer-
sität Karlsruhe, 2008.

16. Sabine Kuske. More about control conditions for transformation units. In Ehrig
et al. [6], pages 323–337.

17. Michael Löwe. Algebraic approach to single-pushout graph transformation. Theo-
retical Computer Science, 109:181–224, 1993.

18. Detlef Plump and Annegret Habel. Graph unification and matching. In Jan-
ice E. Cuny, Hartmut Ehrig, Gregor Engels, and Grzegorz Rozenberg, editors,
Proc. Graph Grammars and Their Application to Computer Science, number 1073
in Lecture Notes in Computer Science, pages 75–89. Springer, 1996.

19. Andy Schürr, Andreas Winter, and Albert Zündorf. The Progres approach: Lan-
guage and environment. In Gregor Engels, Hartmut Ehrig, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. II: Applications, Languages, and Tools, chapter 13,
pages 487–550. World Scientific, Singapore, 1999.

Assuring Strong Termination

of Controlled Graph Transformation

by Means of Petri Nets∗

Renate Klempien-Hinrichs and Melanie Luderer

Department of Computer Science, University of Bremen, Germany
{rena,melu}@informatik.uni-bremen.de

Abstract. Termination is an important problem for graph transforma-
tion systems, but in general it is undecidable. In this paper we propose
an algorithm that searches for sufficient conditions to ensure termination
of graph transformation controlled by regular expressions. The main idea
is to make use of the recursive structure of regular expressions and com-
pute for each considered expression a finite set of upper bounds with
respect to what is deleted and added by derivations permitted by the
expression. Elements of this set may interact when iterating the expres-
sion. This is analysed by means of a Petri net: Non-repetitiveness of the
net implies termination of the considered control expression. Finally, we
show that the findings can be transferred to regular expressions extended
by as-long-as-possible.

1 Termination for Graph Transformation Systems

In rule-based graph transformation (see [Roz97,EEKR99,EKMR99] for an over-
view), graphs are transformed step-by-step through applications of rules that
usually come from a finite set. When using graph transformation as a program-
ming paradigm, termination is an important issue, which is studied, e.g., in
[Plu98,Aßm00,BHPPT05,EEdL+05,VVGE+06,LPE07,HKK08]. In general, ter-
mination is undecidable for graph rewriting systems [Plu98]. But for many sys-
tems termination can be guaranteed. A sufficient criterion is to find a termination
function, i.e. an evaluation function eval : G → N that associates a natural num-
ber eval(G) with each graph G ∈ G such that the value decreases whenever a
derivation step is done: eval (G) > eval (G′) for G=⇒G′. More generally, one
may replace N by some ordered domain which does not have any infinite de-
creasing sequence (cf. [DM79]). However, requiring a single termination function
to work for every rule in a system is very restrictive, at least from a practical
point of view.

∗This research was partially supported by the International Graduate School for
Dynamics in Logistics at the University of Bremen and the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its
Limitations) funded by the German Research Foundation (DFG).

18 Renate Klempien-Hinrichs and Melanie Luderer

For many applications of graph transformation, arbitrary rule application
sequences are undesirable. Rather, one wishes to select sequences that satisfy
so-called control conditions. A control condition may, e.g., express a prop-
erty of a whole rule application sequence (hence ‘condition’), or reduce in
each derivation step the number of choices for the next rule. Typical condi-
tions are regular expressions over rules (and imported transformation units
[KK99,Kus00b]), regular expressions together with as-long-as-possible, and pri-
orities (see, e.g., [Kus00a,HKK08]). Layers of rules, for which termination is
studied in [EEdL+05], may be seen as a special kind of priorities. In [BHPPT05],
the concept of termination function is developed for expressions with as-long-
as-possible.

The research on which we report in this paper started with the observation
that a derivation controlled by applying an expression C0 as-long-as-possible
is infinite, i.e. does not terminate, only if C0 itself admits a non-terminating
derivation or C∗

0 admits infinitely many derivations (of finite length). Therefore,
we first study regular expressions over rules as control conditions and propose
a notion of strong termination for such expressions, meaning that only finitely
many derivations are admitted. Then we show that our approach transfers easily
to regular expressions with as-long-as-possible.

Moreover, the approach taken in this paper is constructive in the sense that
given a finite set of (simple) measures for graphs and a regular expression C,
we develop a method to search for a subset of the measures that allows us to
claim strong termination of C, even without explicitly stating a termination
function. For this, we make use of the recursive structure of regular expressions,
and assume worst-case situations for starred subexpressions for which we then
construct a Petri net whose behaviour may ensure strong termination of the
starred subexpression. (A similar idea to exploit Petri net properties, but for an
encoding of single rules, has been explored in [VVGE+06].)

In the tradition of transformation units [KK99,Kus00b], our considerations
are independent of any specific graph transformation approach such as, e.g.,
node rewriting, double-pushout, single-pushout, or high-level replacement. Con-
sequently, they hold for all approaches satisfying some basic requirements.

The paper is structured as follows. In Section 2 we recollect the notions of
graph transformation approach and regular expressions as control conditions and
summarize basics from Petri net theory. Our method is developed in Section 3.
A summary and some ideas for future work conclude the paper.

2 Preliminaries

N = {0, 1, 2, . . .} denotes the set of natural numbers. Let [n] = {1, 2, . . . n} for
n ∈ N. Z = {. . . ,−1, 0, 1, . . .} is the set of integers.

Graph transformation approach. There are various kinds of graphs (node-
and/or edge-labelled, simple or with parallel edges, edges or hyperedges, etc.) and

Assuring Termination of Controlled Graph Transformation 19

ways how to transform them, see [Roz97] for an overview. The considerations in
this paper are independent of a specific graph transformation approach; therefore
we have to define some basic requirements for such an approach. Compared
with the usual definition, we leave out graph class expressions (used to define
classes of initial and terminal graphs) and identifiers (that refer to rules or graph
transformation units). Moreover, we consider only control conditions that are
explicitly based on rules.

A graph transformation approach is a system A = (G,R, =⇒, C) where G is
a class of graphs, R is a class of rules, =⇒

r
is the derivation relation associated

with r ∈ R, and C is a class of control conditions over R.

If the application of a rule r ∈ R to a graph G yields the graph G′ we
write G=⇒

r
G′ and call this a derivation step. A sequence of rule applications

G0 =⇒
r1

G1 =⇒
r2

. . . =⇒
rn

Gn is called a derivation and may also be denoted by

G0 =⇒
r1···rn

Gn. In this case, we call the rule sequence r1 · · · rn a rule application

sequence (for G0). Moreover, if r1, . . . , rn ∈ P for some set P ⊆ R, we may write

the derivation as G0
n

=⇒
P

Gn or G0
∗

=⇒
P

Gn. For a derivation d = (G0
∗

=⇒
P

Gn) we

write start(d) = G0 and end(d) = Gn.

For the rest of this paper, we will assume the following:

Assumption 1. 1. For each rule r ∈ R, there is at least one graph G ∈ G to
which it can be applied, i.e. its derivation relation =⇒

r
is not empty.

2. Each rule r ∈ R can be applied to a graph G ∈ G only in finitely many ways,
i.e. the set der(G)r = {G=⇒

r
G′ | G′ ∈ G} is finite.

Control Conditions. A major purpose of control conditions is to regulate the
derivation process by enforcing some kind of order on rule applications, thus
reducing – but in general not eliminating – the non-determinism inherent in
graph transformation. Various kinds of control conditions and the interrelations
between them are studied in [Kus00a,Kus00b]. A very natural kind is a regu-
lar expression over R, which denotes a regular language of strings over R. A
derivation satisfies this condition if its rule application sequence is a string in
the regular language. Moreover, regular expressions are often extended with an
operation as-long-as-possible.

The set REX (R) of regular expressions over R is defined as usual: ∅ and λ are
regular expressions, each r ∈ R is a regular expression, and (e1; e2), (e1|e2), (e∗)
are regular expressions for all regular expressions e1, e2, e. A regular expression
is star-free if it does not contain a subexpression of the form (e∗).

Every regular expression e defines a set L(e) ⊆ R∗ as usual: L(∅) = ∅, L(λ) =
{λ}, L(r) = {r} for r ∈ R, L(e1; e2) = L(e1)L(e2) and L(e1|e2) = L(e1) ∪L(e2)
for regular expressions e1, e2, and L(e∗) = L(e)∗ for a regular expression e.

Let G ∈ G be a graph. For a rule sequence w over R, the set of deriva-
tions permitted by w (w-runs for short) starting in G is defined as der(w)G =

20 Renate Klempien-Hinrichs and Melanie Luderer

{G=⇒
w

G′ | G′ ∈ G}. For a regular expression e over R, the set of permitted

derivations (e-runs for short) starting in G is der (e)G =
⋃

w∈L(e)

der(w)G.

When programming with graph transformation, one usually has no need
to specify the empty set of derivations or the set containing only the empty
derivation. Therefore, we will from now on ignore regular expressions ∅ and λ.

The set of regular expressions is extended by the operation as-long-as-
possible, denoted by !, to a set of expressions as follows: (e!) is an expression if
e is an expression. The meaning of (e!) is to iterate derivations permitted by e

as often as a complete derivation permitted by e can be executed.

Clearly, the number of iterations depends on the chosen start graph and may
even be infinite. Therefore, we cannot associate a language L(e!) ⊆ R∗ with (e!)
that is valid for all start graphs.

The set of permitted derivations der (e!)G contains all finite concatenations
d1d2 · · ·dn of derivations d1 ∈ der(e)G and di+1 ∈ der(e)end(di) for i ∈ [n− 1] so
that der(e)end(dn) = ∅, and all infinite concatenations d1d2 . . . built analogously
if der (e)end(di) 6= ∅ for all i > 0.

Petri Nets. Petri nets are a well-known modelling tool for nondeterministic
concurrent systems. A concise introduction can be found in, e.g., [Mur89].

A Petri net is a system N = (P, T, F, B) where P is a finite set of places, T is
a finite set of transitions with P ∩ T = ∅ and P ∪ T 6= ∅, and F, B are |P | × |T |-
matrices over Z called forward matrix and backward matrix, respectively. These
matrices give rise to the incidence matrix A = B − F , which contains already
all information about N if N is pure, i.e. there is no place p ∈ P and transition
t ∈ T with both F (p, t) > 0 and B(p, t) > 0.

Any mapping M : P → N is called a marking of N . The Petri net N with
initial marking M0 is denoted by N(M0) = (P, T, F, B, M0). Transition t ∈ T

is enabled at marking M : P → N if F (t) ≤ M , i.e. F (p, t) ≤ M(p) for all
places p ∈ P . Then t may fire to marking M ′ = M + A(t), which is denoted by
M [t> M ′. A transition sequence t1 · · · tn ∈ T ∗ is a firing sequence starting from
marking M , denoted by M [t1 · · · tn> M ′, if there are markings M0, M1, . . . , Mn

such that M = M0, Mi−1 [ti>Mi for all i ∈ [n], and Mn = M ′.

A Petri net is partially repetitive if there exists a marking M0 and an infi-
nite firing sequence w = (ti)i∈N starting from M0. Partial repetitivity can be
characterised with the help of the incidence matrix (see [Mur89, Theorem 31]).

Theorem 2. Let N = (P, T, F, B) be a Petri net and A its incidence matrix.
N is partially repetitive if and only if there exists a |T |-vector x : T → Z of
non-negative integers such that A · x > 0 and x 6= 0.

Assuring Termination of Controlled Graph Transformation 21

3 Computing a Sufficient Condition for Termination

The section starts with the basis for a small running example, before a notion
of strong termination is defined for regular expressions. Subsequently, measures
for graphs and upper bounds for the changes in measures through derivations
controlled by regular expressions are defined. On this basis, Petri nets are con-
structed whose analysis may yield a sufficient condition for the strong termina-
tion of a starred expression. Finally, the reflections of this section are condensed
into a checking algorithm, and expanded to deal with control conditions that are
regular expressions over rules together with as-long-as-possible.

Running Example. In this example, let symbol a denote a graph a , and
several symbols the disjoint union of such graphs. Consider the rules r1 : a → bb,
r2 : bb → c, r3 : a → d, r4 : a → aa, r5 : ccc → d, which are applied to a
graph by locating the left-hand side in the graph, removing it, and adding the
right-hand side, so that they may be seen as double-pushout rules with empty
interface graph. Moreover, consider control conditions C1 = r1, C2 = (r2; (r

∗
3)),

C3 = (r4; r5) and C0 = ((C1 | C2) | C3). Then there are, for instance, three
derivations starting in the graph aabb and permitted by C2, yielding the graphs
aac, acd, and cdd, respectively.

Termination of Regular Expressions. In any computation model, a com-
putation does not terminate if some loop construct – such as do X as-long-as-
possible – requires infinitely many computation steps. A necessary condition for
this is that X may be repeated infinitely often from some start configuration. If
X is controlled by some regular expression C and starts in a graph G, this means
that the regular expression C∗ admits infinitely many derivations starting in G.
This is exactly the situation that we forbid in our notion of strong termination
for regular expressions. As a nice consequence, any exhaustive search of deriva-
tions admitted by some regular expression will terminate (in the usual sense) if
the expression terminates strongly.

Observe that C1, C2, C3 and C0 from the running example terminate strongly.

Definition 3. Let C be a regular expression over R and G ∈ G a graph.

1. C terminates strongly for G if der (C)G is finite.
2. C terminates strongly if it terminates strongly for all graphs in G.

Due to Assumption 1, we have the following observation, where point 2 is
just point 1 rephrased since for a regular expression C that contains neither ∅
nor λ, the language L(C) is finite if and only if C is star-free.

Observation 4. Let C be a regular expression over R.

1. If L(C) is finite then C terminates strongly.

22 Renate Klempien-Hinrichs and Melanie Luderer

2. If C is star-free then C terminates strongly.
3. C1; C2 terminates strongly if and only if C1 terminates strongly and for all

G ∈ G and d ∈ der(C1)G, C2 terminates strongly for end(d).
4. C1|C2 terminates strongly if and only if C1 and C2 terminate strongly.
5. If C∗ terminates strongly then C terminates strongly.

Lemma 5. Let C be a regular expression over R.

1. If C = r ∈ R then C terminates strongly.
2. If C = C1; C2 or C = C1|C2 and both C1 and C2 terminate strongly then C

terminates strongly.

It would be nice to have the implication ‘if C = C∗
0 and C0 terminates

strongly then C terminates strongly,’ too. Unfortunately, it is in general false: if
C0 is a rule that just adds a node to any graph then C0 terminates strongly, but
C does not terminate strongly. Still, C∗

0 will terminate strongly if for every start
graph an intermediate graph is reached after some C0-runs so that C0 cannot
be applied anymore. This case is investigated in the following sections.

Measure Sets for Graphs. A measure maps graphs to natural numbers such
that for each rule, its application yields the same change in the measured value,
independently of the graph to which the rule is applied.

For the running example, we consider µa, µb, µc, µd as as measures, counting
the occurrences of the respective symbol a, b, c, d in a graph.

Definition 6. A measure on graphs is a mapping µ : G → N such that for all
graphs G, G′, Ḡ, Ḡ′ ∈ G and every rule r ∈ R, G=⇒

r
G′ and Ḡ =⇒

r
Ḡ′ implies

µ(G′) − µ(G) = µ(Ḡ′) − µ(Ḡ). We will write a set of k measures µ1, . . . , µk

(k ∈ N) as a vector
→
µ = (µi)i∈[k].

Possible examples for measures are (cf. [Aßm00]): number of nodes, num-
ber of edges, number of a-labelled edges or number of b-labelled loops (for a, b

symbols of the graph-labelling alphabet). Of course, which mappings qualify as
measures depends on the graph transformation approach and the rules occurring
in the considered control condition. For instance, node-rewriting rules (see, e.g.,
[ER97]) usually admit implicit multiplication of embedding edges, so that an
edge-based mapping is no measure. If, however, every rule in the concrete set
will just transfer every incident a-labelled edge to exactly one replacing node,
counting a-labelled edges is valid as a measure.

Upper Bounds for C. Define a set Change(C) ⊆ Z
k
∞ of vectors for each

regular expression C so that each vector has k entries in Z∞ = Z ∪ {∞} that
serve as upper bounds for the change in measured values whenever a derivation
admitted by C is executed.

Assuring Termination of Controlled Graph Transformation 23

Definition 7. Let C be a regular expression over R and
→
µ a measure set.

1. For C = r ∈ R, let Change(C) = {x}, where x is the unique vector x =
→
µ(G′) −

→
µ(G) for all G, G′ ∈ G with G=⇒

r
G′, and vector difference is

computed component-wise.
2. For C = C1; C2, let Change(C) = {x + y | x ∈ Change(C1), y ∈

Change(C2)}, where vector addition is computed component-wise.
3. For C = C1|C2, let Change(C) = Change(C1) ∪ Change(C2).
4. For C = C∗

0 , let Change(C) = {(x1, . . . , xk) | xi = ∞ if ∃(y1, . . . , yk) ∈
Change(C0) : yi > 0 and xi = 0 otherwise, for i ∈ [k]}.

For an expression C0 that terminates strongly, C∗
0 admits rule application se-

quences where C0 is iterated arbitrarily often. Any decrease in a measure through
a C0-run does not occur if C0 is iterated zero times. In contrast, an increase in
a measure may lead to arbitrarily large values of that measure, indicated by ∞.

For the three control conditions C1, C2, C3 from the running example,
we have sets containing, respectively, the vectors (−1, 2, 0, 0)>, (0,−2, 1,∞)>,
(1, 0,−3, 1)>, and all three vectors form the set Change(C0).

Lemma 8. Let C be a regular expression over R.

1. For all G, G′ ∈ G and w ∈ L(C) with G=⇒
w

G′ there exists x ∈ Change(C)

with
→
µ(G′) −

→
µ(G) ≤ x.

2. Change(C) is finite.

Constructing a Petri Net from Change(C0). Now we are aiming to provide
a sufficient condition for strong termination of a regular expression C = C∗

0 , i.e.
for the case that is missing from Lemma 5. Since a necessary condition is the
strong termination of C0 (Observation 4 item 5), we will assume this to be true
(or, more precisely, inductively proved) in the following considerations.

Definition 9. Let C0 be a regular expression over R that terminates strongly,
and let

→
µ = (µi)i∈[k] be a measure set. Construct the pure Petri net NC0

as
follows.

– The set of places is PC0
= {l ∈ [k] | xl 6=∞ for all (x1, . . . , xk)∈Change(C0)},

– the set of transitions is TC0
= Change(C0),

– the incidence matrix AC0
has as columns the vectors in Change(C0) re-

stricted to the entries selected for PC0
.

For the running example, the Petri net and matrix for C0 are given in Fig. 1.

NC0
is well defined since PC0

and TC0
are finite and NC0

is required to be

pure. A marking of NC0
may be interpreted as

→
µ(G) restricted to PC0

, for some

24 Renate Klempien-Hinrichs and Melanie Luderer

AC0
=





−1 0 1
2 −2 0
0 1 −3



 NC0
=

a

b
c

2

23

Fig. 1. The incidence matrix AC0
and Petri net NC0

for the running example

graph G. Then the marking reached by firing some transition x records the
change from

→
µ(G) to

→
µ(G′) on the measures retained by PC0

if G′ is obtained
from G by a derivation whose corresponding vector is x.

Since C0 is assumed to terminate strongly, we now know the following: If
C = C∗

0 does not terminate strongly then there is a marking M of NC0
and

an infinite firing sequence starting in M , i.e. NC0
is partially repetitive. By

contraposition and using Theorem 2 we get the desired sufficient condition for
strong termination of C.

Lemma 10. Let C = C∗
0 be a regular expression over R. If C0 terminates

strongly and there is no vector x : TC0
→ Z of non-negative integers such that

AC0
· x ≥ 0 and x 6= 0, then C terminates strongly.

For the running example, we may infer that the only solution for AC0
·x ≥ 0

is x = 0, which implies that C = (C∗
0) terminates strongly.

If NC0
is not partially repetitive then it must be structurally bounded, which

implies that there exists a vector y : PC0
→ Z of positive integers such that

y · AC0
≤ 0 (cf. [Mur89, Theorem 29]). If there is even such a vector with

y · AC0
< 0, then we can show that y ·

→
µ |PC0

is a termination function in the

usual sense, where
→
µ |PC0

denotes the restriction of
→
µ to PC0

.

A Termination Check. Putting Lemmas 5 and 10 together, we obtain the
following test, where the function NoNnSolution returns true for an input
matrix A over integers if and only if the only non-negative solution x for A·x ≥ 0
is x = 0:

Check(C : regular expression over R) : {true, false};
case C ∈ R :

return true;
C = C1; C2 or C = C1|C2 :

return Check(C1) and Check(C2);
C = C∗

0 :
return Check(C0) and NoNnSolution(AC0

)
endcase

Theorem 11. Let C be a regular expression over R. If Check(C) = true then
C terminates strongly.

Assuring Termination of Controlled Graph Transformation 25

Regular Expressions with as-long-as-possible. Let us consider the exten-
sion of regular expressions over R to include the operation as-long-as-possible.
Then an expression C terminates strongly if for all graphs G ∈ G, der(C)G is fi-
nite and contains only derivations of finite length. By induction on the structure
of nested as-long-as-possible’s we can show the following, where the mapping
rex turns an expression C into a regular expression rex (C) by replacing every
occurrence of ‘!’ with ‘*’:

Lemma 12. Let C be an expression. Then C and all its subexpressions termi-
nate strongly if and only if rex (C) and all its subexpressions terminate strongly.

Consequently, the algorithm above can be used to search for a sufficient
condition for expressions with as-long-as-possible, too.

Theorem 13. Let C be an expression over R. If Check(rex(C)) = true then
C terminates strongly.

In [BHPPT05] an iterated (by as-long-as-possible) control condition is sup-
posed to be applicable at least once. Translated into regular expressions, this cor-
responds to requiring that in a starred subexpression C∗

0 , the expression C0 must
be executed at least once. Thus, only subexpressions of the form C+

0 = C0; C
∗
0

would be admitted. For our algorithm, this restriction implies that in comput-
ing Change(C+

0) (cf. Definition 7 item 4) one should take the component-wise
maximum of all vectors in Change(C0). Thus one can possibly maintain some
negative entries and gain more positive Check results.

4 Conclusion

In this paper we have proposed an algorithm to search for sufficient conditions
that ensure (strong) termination of graph transformation processes restricted by
a control condition in the form of a regular expression. Strong termination for a
regular expression C follows from strong termination for all subexpressions C∗

0 of
C. The basic idea is that, given strong termination of C0, C∗

0 terminates strongly
if every derivation permitted by C0 deletes something, and during iteration of
C0 at least one type of deleted elements cannot be balanced by other derivations
permitted by C0 that add elements of the same type.

The algorithm needs a finite set of measures for graphs. Then, for each consid-
ered regular expression C0, it constructs a finite set Change(C0) of upper bounds
for the differences of measured elements resulting from a derivation permitted
by that expression. This set is interpreted as the incidence matrix of a pure Petri
net. If linear-algebraic analysis shows the Petri net to be non-repetitive, strong
termination of C∗

0 is implied. Moreover, we have shown that regular expressions
extended by as-long-as-possible can be treated analogously.

It should be noted that the algorithm yields only a sufficient condition for
(strong) termination of an input expression. If it returns false, it is open whether

26 Renate Klempien-Hinrichs and Melanie Luderer

the input expression terminates (strongly). While in principle we cannot expect
more since termination is undecidable for graph transformation systems [Plu98],
there may be room for improvement. For instance, the vectors in Change(C∗

0)
have as entries only 0 or ∞. Is there a better treatment for this case?

Ideally, for a transformation unit in the sense of [KK99,Kus00b], one would
like to have that the control condition terminates (strongly) for all initial graphs.
Our approach may help in three aspects (subject to further study): (1) For a
given initial graph, test prior to executing a derivation whether all derivations
starting in that graph and admitted by the control condition will terminate
strongly. (2) Test whether for all initial graphs the control condition will termi-
nate strongly. (3) Compute from a control condition a set of initial graphs for
which that condition terminates strongly.

Acknowledgment. We are grateful to the referees for their thoughtful remarks,
which helped to improve the paper.

References

[Aßm00] Uwe Aßmann. Graph rewrite systems for program optimization. ACM
Trans. Program. Lang. Syst., 22(4):583–637, 2000.

[BHPPT05] Paolo Bottoni, Kathrin Hoffmann, Francesco Parisi-Presicce, and Gabriele
Taentzer. High-level replacement units and their termination properties.
J. Vis. Lang. Comput., 16(6):485–507, 2005.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Commun. ACM, 22(8):465–476, 1979.

[EEdL+05] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel
Varró, and Szilvia Varró-Gyapay. Termination criteria for model trans-
formation. In Maura Cerioli, editor, Proc. FASE 2005, volume 3442 of
Lecture Notes in Computer Science, pages 49–63. Springer, 2005.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools. World Scien-
tific, 1999.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribu-
tion. World Scientific, 1999.

[ER97] Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph gram-
mars. In Rozenberg [Roz97], pages 1–94.

[HKK08] Karsten Hölscher, Renate Klempien-Hinrichs, and Peter Knirsch. Unde-
cidable control conditions in graph transformation units. Electron. Notes
Theor. Comput. Sci., 195:95–111, 2008.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units and
modules. In Ehrig et al. [EEKR99], pages 607–638.

[Kus00a] Sabine Kuske. More about control conditions for transformation units. In
Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors, Proc. Theory and Application of Graph Transformations,
volume 1764 of Lecture Notes in Computer Science, pages 323–337, 2000.

Assuring Termination of Controlled Graph Transformation 27

[Kus00b] Sabine Kuske. Transformation Units—A structuring Principle for Graph
Transformation Systems. PhD thesis, University of Bremen, 2000.

[LPE07] Tihamér Levendovszky, Ulrike Prange, and Hartmut Ehrig. Termination
criteria for DPO transformations with injective matches. Electr. Notes
Theor. Comput. Sci., 175(4):87–100, 2007.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proc.
IEEE, 77(4), 1989.

[Plu98] Detlef Plump. Termination of graph rewriting is undecidable. Fundamenta
Informaticae, 33(2):201–209, 1998.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Comput-
ing by Graph Transformations, Volume 1: Foundations. World Scientific,
1997.

[VVGE+06] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike Prange, and
Gabriele Taentzer. Termination analysis of model transformations by Petri
nets. In Proc. ICGT 2006, volume 4178 of Lecture Notes in Computer
Science, pages 260–274. Springer, 2006.

Efficient Graph Rewriting System Using Local

Event-driven Pattern Matching ∗

Bilal Said and Olivier Gasquet

Université Paul Sabatier, IRIT - LILaC,
118 route de Narbonne, F-31062 Toulouse cedex 9, France

Abstract. Pattern matching is the most time-cost expensive part of
the graph rewriting process. When applying a given rewriting rule, most
graph rewriting systems check the entire host graph for possible matches.
In our modal logic theorem prover based on graph rewriting, LoTREC,
we use the events that are emitted when the applied rules change locally
the host graph, in order to reduce the effect of this problem by performing
the match process on the relevant set of subgraphs.

Introduction

The large variety of graph transformation tools have mainly the same one-step
rule application mechanism and usually differ by the techniques used for the
graph pattern matching step, which is considered to be the most crucial in the
overall performance of a graph transformation process. In fact, a naive imple-
mentation computes every possible mapping of the L nodes of the left-hand
side of a rewriting rule to N nodes of the host graph, leading to O(|NL|) time
complexity in general.

The classical approach, used in [4] for AGG [6], is to solve the pattern match-
ing problem as a constraint satisfaction problem. Other systems, such as PRO-
GRES [8]) and FUJABA [3], use local search techniques consisting of matching
a single node by some heuristics and extending the matching step-by-step by
neighboring nodes and edges. G. Varró and D. Varró introduce in [7] the in-
cremental update technique that aims to keep track of all possible matchings
identified by graph transformation rules in database tables, and update these
tables incrementally to exploit the fact that rules typically perform only local
modifications to graphs.

In the graph rewriting system of our theorem prover LoTREC, we implement
an original technique that lies between these three approaches. Before running
the rewriting process, we analyse the left-hand side conditions of every rule in
order to precise the possible ways (i.e. search plans) a matching process could
be established and achieved. During the rewriting process, we keep track of the

∗This work has been partially supported by the project ARROWS of the French
Agence Nationale de la Recherche

Efficient Event-driven Pattern Matching 29

local changes made by the rules at each step, using a special data structure called
events. When it is called by the strategy, a rule uses these events to establish a
local pattern matching process, with respect to its different search plans. Finally,
the established match is completed using a CSP like procedure that instantiates
the rest of the pattern graph variables.

It is clear that this technique does not reduce the complexity of the matching
process itself. Nevertheless, the pattern matching time-cost becomes O(|kL|) in
the applications, where the rewriting rules are applied on at most k subgraphs
at each step.

In section 1 we define our graph rewriting system. Then we present our
event-driven pattern matching process in section 2. Finally we sum up with a
discussion of our results.

1 The Graph Rewriting System of LoTREC

LoTREC is a theorem prover by tableau for modal logics [1], [2]. It allows the
implementation of new user-defined logics, and it is capable of analysing a given
input formula and building the models that verify it, and/or the counter-models
that refute it. The key similarity with graph rewriting systems is that a (Kripke)
model is very similar to attributed directed graphs, with formulas being the
attributes for nodes and edges, and that tableau rules and their application are
to models what rewriting rules and their application are to graphs.

In this paper, we simplify the definition of these graphs to the following:

Definition 1 (Graph). A graph G is a tuple (V, E, F, s, t, f) where V is a
finite set of nodes (or vertices) and E a finite set of arcs (or edges), V ∩ E = ∅;
s and t are two total mappings s, t : E → V , denoting ”source” and ”target”;
and F is a set of formulas labelling nodes and edges w.r.t. f : V ∪ E → 2F .

We use SG = VG ∪EG ∪FG to denote the graph objects (symbols) of G, and
µG ∈ {sG, tG, fG} to designate one of the mapping functions of G.

Definition 2 (Graph morphism). A graph morphism between two directed
graphs L and G is a total mapping M : SL → SG where the total mappings
of L and G are preserved, i.e. ∀s ∈ SL : M(µL(s)) = µG(M(s)). Note that
M(S) = {M(s), s ∈ S}.

Rule definition Using the Single Push Out (SPO) approach, a rewriting rule
ρ is a single graph morphism that maps a graph pattern Lρ, and a replacement
graph Rρ.

We define Lρ and Rρ using an appropriate simple declarative language (figure
1). In this language, we use two sets of symbols: T , a set of terms (or variable
symbols), and C, a set of constant symbols. The graph objects of Lρ and Rρ are
represented by symbols from a set Sρ = Tρ ∪ Cρ, where Tρ ⊆ T , and Cρ ⊆ C.

30 Bilal Said and Olivier Gasquet

We denote by SLρ
and SRρ

the subsets of Sρ appearing in Lρ and Rρ. We also
use Kn to denote the set of first order predicates of arity n defined over T ∪ C.

LHSρ RHSρ

If Then

c1: hasElement n1 ♦A a1: createNewNode n1 n2

a2: link n1 n2 R

a3: add n2 A

Fig. 1. LoTREC declarative language for rewriting rules vs usual graphical notation

The objects of SLρ
are related by a set of constraint predicates, called ele-

mentary conditions. A set of elementary actions describes both the changes that
should be made on these objects, and the new objects which should be created
and added to Lρ, in order to obtain the replacement graph Rρ. Formally:

Definition 3 (Elementary Conditions). An elementary condition c of a
given rule ρ is a first order predicate of the form keyword(p1, . . . , pn) where
keyword ∈ Kn and pi ∈ Param(c) s.t. Param(c) ⊆ SLρ

, for i ∈ {1, . . . , n}.

An action a is defined in the same way. We omit the parentheses and commas
from these definitions for the sake of simplicity. The complete list of LoTREC
predefined conditions and actions is given in [5].

Example 1. The condition c1 given in figure 1, hasElement n1 ♦A, is a well
defined condition in LoTREC. It takes in two parameters: a node (n1) and a
formula (♦A). Intuitively, such a condition is used to ensure that, in a matching
subgraph g, the condition ♦A ∈ fg(n1) is satisfied.

Definition 4 (Rewriting rule). A rewriting rule ρ is a pair of ordered sets:
LHSρ = (c1, . . . , cl) of elementary conditions, and RHSρ = (a1, . . . , ar) of ele-
mentary actions.

Note that |LHSρ| is equivalent to |Lρ|, since n conditions at most are suffi-
cient to instantiate n different variables in LoTREC.

In order to allow the verification of a condition c on a given graph g, a subset
of Param(c) should be already instantiated by elements of g. We denote this set
by Activation(c). During this verification, the remaining parameters will also
be instantiated. The set of these parameters is called Update(c). It is clear that
Param(c) = Activation(c) ∪ Update(c), and Activation(c) ∩ Update(c) = ∅.

Example 2. Considering the condition c1, of figure 1, the instantiation of ♦A

should be preceded by the assignment of a concrete instance node to n1. Thus
it is obvious that Activate(c1) = {n1} and Update(c1) = {♦A}.

Efficient Event-driven Pattern Matching 31

Definition 5 (Local search plan). A local search plan for a rule ρ is an
ordered set p = (c1, . . . , cn) defined over the set of conditions LHSρ, such that:
n = |LHSρ|, i.e. all the conditions of ρ are included in p; and ∀ i ∈ {2, . . . , n},
Activate(ci) ⊆ ∪i−1

k=2 Update(ck), i.e. that the needed parameters for a given
condition ci are assured by the former conditions ck s.t. k < i.

We call c1 the head of p, while (c2, . . . , cn) is called the tail of p (see figure
2). Two plans are equivalent if they have the same head condition, regardless
the order of the tail conditions. They are called distinct otherwise.

c1: hasElement n1 ♦A

c2: hasElement n2 �B

c3: isLinked n1 n2 R

↔
c1

c3

c2

c2

c3

c1

c3

c1

c2

head

tail

Fig. 2. Rules compilation: ordered lists of conditions are the local search plans

Rules Compilation The compilation of a rule ρ is the computation of the set of
all possible distinct local search plans of ρ. This set is constructed in polynomial
time before starting the rewriting process, since a rule ρ has at most |LHSρ|
plans, i.e. |Lρ| plans.

Invariant, Added and Removed Symbols We use in the sequel Invρ =
SLρ

∩ SRρ
to denote the set of invariant symbols in ρ, i.e. the objects that

are preserved during ρ application; Addρ = SRρ
\ Invρ to denote the set of

newly created symbols i.e. the objects that will be added to the host graph; and
Remρ = Lρ \ Invρ to denote the set of existing objects that will be removed. In
general Rρ = (Lρ \ Remρ) ∪ Addρ, whereas in LoTREC, Rρ = Lρ ∪ Addρ since
there are no remove actions, i.e. for every rule ρ, Invρ = Lρ.

Rule application A transformation step of a rewriting rule is accomplished,
as shown in figure 3, by first matching Lρ against a subgraph of the current
working graph called the redex, and then replacing it by a copy of Rρ.

Fig. 3. Rewriting rule application in Single Push-Out approach

Definition 6 (Redex). The redex of Lρ w.r.t. M is g ⊆ G s.t. M(Lρ) = g.

Property 1. A redex g verifies the conditions of LHSρ w.r.t. the variable instan-
tiation M : SLρ

→ SG, namely g |=M LHSρ.

Definition 7 (Replacement). The replacement g′ of a redex g, g′ = ρ∗(g) =
M∗(Rρ), is computed w.r.t M∗ : SRρ

→ SH ; namely g′ |=M∗ RHSρ, such that:
M∗(s) = M(s), for every s ∈ SLρ

, otherwise M∗(s) = Cs where Cs is a new
(constant) object introduced to SH .

32 Bilal Said and Olivier Gasquet

It our case g ⊆ g′, and H can be viewed as G doted by new objects created
and added by ρ, i.e. H = G∪M∗(Addρ). However, we can extend this definition,
in order to deal with remove actions, to : H = (G \M∗(Remρ))∪M∗(Addρ) by
using partial morphisms instead of total ones.

Example 3. Consider the subgraph g = ({N1}, ∅, {♦�q}, s, t, f) where f(N1) =
{♦�q}. It consists of a single node N1 containing the formula ♦�q. The appli-
cation of the rule of figure 1 on g leads to the graph g′ = ({N1, N2}, {E},
{♦�q, �q, R}, s′, t′, f ′) where N2 is a new created node, E is a new created edge,
s′(E) = N1, t′(E) = N2, f ′(N1) = f(N1), f ′(N2) = {�q}, f ′(E) = {R}.

Strategies In LoTREC, we make no choice among matching subgraphs, so that
a transformation step consists of applying a given rule wherever it is possible
in the host graph. However, the choice of the rule is made by a user-defined
strategy. A strategy can call a set of rules, other strategies or a set of simple
control structures, called routines, such as Repeat, All-Rules and First-Rule

(for more details see [2]).

2 Event-driven Pattern Matching Process

Events When an elementary action is applied on a subgraph of the host graph,
it launches an event of a corresponding type which embeds information about
the action parameters. Thus the events are defined similarly to conditions and
actions (c.f. definition 3). The graph objects embedded in an event can be viewed
as pins used to fix the value of one or more variables of the LHS. In this way,
the other variables are instantiated by searching, locally around these pins, for
their convenient matches.

Example 4. The application of a1, a2 and a3, of the example 3, generate respec-
tively the events E1 = NodeCreated(N1, N2), E2 = NodesLinked(N1, N2, E)
and E3 = FormulaAdded(N2, �q).

Events Dispatching Once launched due to a given rule application, an event is
dispatched at run-time to every rewriting rule, including the rule that launches
it. Each rule has its own events queue, which is simply an ordered set of events.
The events received by a given rule are enqueued at the end of its events queue.

Local Redex Initialisation and Completion When it is called by the strat-
egy, a rule treats the events, stored in its queue since the last strategy call, with
respect to their arrival order. Given an event, exploring a local search plan con-
sists of processing the event with the head condition to establish an partial redex.
Partial redexes are completed during the verification of the tail conditions.

Example 5 (Redex initialization). Processing the event E3 of the example 4 with
the head condition c2:hasElement n2 �B of the middle search plan of figure 2,

Efficient Event-driven Pattern Matching 33

succeeds in initializing the partial redex (n2 = N2 and B = q) in the graph g′ of
example 3. Verifying C3 on this redex is possible with (n1 = N1). Verifying C1

on this last partial redex also succeeds, and completes it with (A = �q).

Discussion and Conclusion

A main difference between this system and general purpose systems is that the
formula instantiation is integrated within the pattern matching process. This
makes the experimental benchmarks difficult to design, and thus only theoretical
results are discussed.

Comparing to PROGRES [8], the compilation of a rule ρ leads to |Lρ|! dif-
ferent plans, while in LoTREC it is bound by the size of its left-hand side |Lρ|.
In addition, although PROGRES supports an incremental technique called at-
tributes update, this technique detects only the invalidation of possible variable
assignments. Thus it does not exploit the whole information embedded in the
changes made on the graphs. In LoTREC we use these information to detect
new possible valid assignments.

Similarly to incremental update [7], our method avoids restarting already-
done pattern matching processes. However, our technique is less space and time-
consuming. In fact, in our system, a rule keeps only the events occurred since its
last application, and releases them all after being applied once again. Whereas
the incremental update needs to keep successful matches in tables during the
whole run-time. Furthermore, these tables need a considerable amount of pre-
processing at initialization time and they are maintained by continuous updates,
while the events stored temporary in our rules need neither initialization nor up-
date, and thus have no additional time-cost.

In this paper we present a graph rewriting system adapted to theorem proving
by tableau for modal logics. We propose a local and event-driven mechanism for
limiting the effect of the graph pattern matching problem. At a given rewriting
step, we establish the match process only on the local subgraphs changed by the
rules during the previous step. It is clear that this technique has no advantage in
specific applications where the redexes matched at each step are as numerous as
possible. However, in the applications where the rules are applied alternatively
in k redexes at each step where k is likely to be far less than N , our technique
reduces the N factor of O(|NL|) time complexity of this problem to k.

Acknowledgements We would like to thank the anonymous reviewers for their
helpful comments. We would also like to thank David Fauthoux who established
the conception of the LoTREC rewriting system.

References

1. M. A. Castilho, L. Farinas del Cerro, O. Gasquet, and A. Herzig. Modal Tableaux
with Propagation Rules and Structural Rules. Fundamenta Informaticae, 1997

34 Bilal Said and Olivier Gasquet

2. L. F. del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin, and F. Massacci.
Lotrec: The Generic Tableau Prover for Modal and Description Logics. Lecture
Notes In Computer Science, vol. 2083. Springer-Verlag, 2001

3. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. Lecture
Notes In Computer Science. Springer-Verlag, 1998

4. M. Rudolf. Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern
Matching. Lecture Notes In Computer Science, Springer-Verlag, 2000

5. M. Sahade. The conditions and actions in LoTREC language. Tech. report, 2004
6. G. Taentzer. Adding visual rules to object-oriented modeling techniques. In Pro-

ceedings of Technology of Object-Oriented Languages and Systems, 1999.
7. G. Varró and D. Varró. Graph Transformation with Incremental Updates. Elec-

tronic Notes in Theoretical Computer Science, 2004
8. A. Zündorf. Graph Pattern Matching in PROGRES. Lecture Notes In Computer

Science. Springer-Verlag, 1996

Editing Nested Constraints and

Application Conditions

Karl Azab

Carl v. Ossietzky Universität Oldenburg, Germany ∗

azab@informatik.uni-oldenburg.de

Abstract. Nested constraints and application conditions express first-
order properties on graphs and are implemented in the system EN-
FORCe. While ENFORCe has been without a GUI, ROOTS is a new
GUI for the graph transformation engine of AGG and provides stan-
dard editing functionality for graphs and graph transformation rules.
We integrated ENFORCe with ROOTS to get these editing features and
implemented a tree-oriented visualization for editing nested constrains
and application conditions.

1 Introduction

Graph programs use graph transformations to compute relations on graphs [1].
Graph transformations is a formalism which describes how graphs are rewritten
by rules with graphs as left and right hand sides. An overview of the computa-
tions that can be made by graph transformations is given in [2–4].

We use nested constraints and applications conditions – (nested) graph con-
ditions for short – as described in e.g. [5] as a visual representation of first-order
logic formulas on graphs. As constraints, graph conditions express properties
on graphs and as application conditions they limit the applicability of graph
transformation rules. Given a (double-pushout) rule, there are transformations
of constraints into application conditions that limit the applicability of that rule
in such a way that the constraint is satisfied if the rule can be applied [6]. When
graph conditions specify pre- and postconditions on graph programs, a weakest
precondition can be computed [7].

ENFORCe [8] (ENsuring FORmal Correctness of high-level programs) imple-
ments the transformations and static analysis methods for nested graph condi-
tions mentioned above. Transformations are done on a categorical level with the
help from structure specific plug-ins (also called engines). ENFORCe has an en-
gine for directed labeled graphs but input and output from ENFORCe has been

∗This work is supported by the German Research Foundation (DFG) under grant
no. HA 2936/2 (Development of Correct Graph Transformation Systems). The author
thanks Stefan Jurack for making the ROOTS software available and providing technical
assistance. We also thank Annegret Habel and Karl-Heinz Pennemann for commenting
on a draft of this paper.

36 Karl Azab

via text files which need to be manually created and interpreted. This is of course
a tedious and error prone method. To more conveniently access ENFORCe, a
GUI for graphs, rules, and nested graph conditions is needed.

ROOTS [9] (Rule based Object Oriented Transformation System) is a new
GUI for the graph transformation engine of AGG [10]. It contains editors for e.g.
graphs and rules and supports graph layout. ROOTS is based on an extensible
EMF model which is only loosely coupled to AGG and can therefore relatively
easily be ported to other graph transformation tools. While ROOTS have editors
for atomic constraints and negative application conditions, it does not natively
support nested constraints and application conditions.

There are other GUIs for graph transformation systems, e.g. Fujaba [11],
with established plugin architectures, but both ROOTS/AGG and ENFORCe
work on double-pushout graph transformations and their verification techniques.
In a longer perspective, we hope this similarity will have a synergetic effect on
the integration’s usability.

This paper describes the integration of ENFORCe and ROOTS and the im-
plemented extensions necessary for editing nested graph conditions. The inte-
gration was done at the interface between ROOTS and AGG: synchronization
routines were added for the features in ROOTS that are also available in EN-
FORCe. The new editor extensions for graph conditions are synchronized to
ENFORCe’s internal data structures.

The paper is organized as follows: In Sect. 2 we review graph conditions and
explain the visualization approach we used for nested graph conditions. Section 3
describes how ENFORCe was integrated with ROOTS, the implemented exten-
sions to ROOTS and show how existing view components could be reused with
only small changes. We conclude our work in Sect. 4.

2 Layout of Graph Conditions

In this section we first review the formal definition of graph conditions and then
show the basic idea of how the implemented editor visualizes them. We define
graph conditions as in [5–7] but omit the standard definitions of graphs and
graph morphisms, and point the reader to e.g. [12] for details.

Definition 1 ((nested) graph conditions). A graph condition over a graph P

is of the form ∃a or ∃(a, c), where a : P → C is an injective graph morphism and
c is a condition over the graph C. Moreover, Boolean formulas over conditions
(over P) are conditions (over P). A morphism p : P → G satisfies a condition
∃a (∃(a, c)) over P if there exists an injective morphism q : C → G with q ◦
a = p (satisfying c). A graph G satisfies a condition ∃a (∃(a, c)) if all injective
morphisms p : P → G satisfy the condition. The satisfaction of conditions over
P by graphs or morphisms with domain P is extended to Boolean formulas over
conditions in the usual way. We use an abbreviation ∀(a, c) to denote ¬∃(a,¬c).

Editing Nested Constraints and Application Conditions 37

Since we are interested in editing, we will focus on the syntactic structure of
graph conditions, the reader interested in the semantics of nested graph condi-
tions is referred to e.g. [5]. We use graph conditions in different contexts – on
graphs, then called constraints and graph transformation rules, then referred to
as application conditions, see e.g. [5, 6] for details.

To demonstrate, let us model two responsibilities of an operating system:
scheduling and resource allocation. A core, process, and resource is represented
by a node labeled C, P, and R, respectively. That a core is devoted to executing
the threads of a particular process is modeled by an edge from a C-node to a
P-node. A request from a process to obtain a resource is modeled by an edge
from a P-node to an R-node. That a resource has been assigned to a process is
modeled by an edge from an R-node to a P-node. We can formulate two desirable
properties for this model: (1) A resource may at most be assigned to one process,
which expressed as a graph condition looks like ¬∃(∅ → P R P) and (2) Every
core is assigned to run threads in exactly one process, shown in Fig. 1.

∀(∅ → C , ∃(C → C P) ∧ ¬∃(C → P C P))

Fig. 1. A nested graph condition for scheduling.

As already becoming apparent from the condition in Fig. 1, large graph
conditions can be difficult to read. To present a survey of a graph condition,
we represent graph conditions as trees: A quantifier together with its morphism
becomes a node and its nested condition becomes its child. Boolean formulas
are represented as trees in the obvious way. To simplify the layout and reuse
existing view components, we show the graph condition tree in two views: one
for the tree structure and one for morphisms. We then only need to layout trees
and morphisms separately – and tree layout is easy and for morphisms the only
difficult part is to layout the domain and codomain, and functionality for graph
layout already exists in ROOTS. The tree layout for the nested graph condition
from Fig. 1 is shown in Fig. 2 (a). The separated tree and morphism view of that
graph condition is shown in Fig. 2 (b). In the latter figure, a, b1 and b2 identifies
the entry point of the morphism view into the tree view.

3 Implementation

ROOTS is implemented as an Eclipse plugin and is based on the model-view-
controller pattern, where the model is generated by EMF [13]. That generated
model is supplemented with routines to synchronize it with AGG’s internal data
structures. Our integration adds synchronization routines to ENFORCe for the
common functionality of AGG and ENFORCe. The extensions for graph condi-
tions are only synchronized to ENFORCe, as there is no suitable data structure

38 Karl Azab

∀∅ → C

∧

∃ C → C P ¬

∃ C → P C P

∀a

∧

∃b1 ¬

∃b2

a : ∅ → C

b1 : C → C P

b2 : C → P C P

(a)— (b)

Fig. 2. (a) Tree representation and (b) two views of of a condition.

available in AGG. In this way, many editing features become (for the end-user)
seamlessly available also for ENFORCe, see Fig. 3. An advantage of using an ap-

ROOTS Editor Features Our Extensions

AGG Specifics
Type graphs, n.a.c.

Common Functionality
Graphs, rules, mappings

ENFORCe Specifics
Nested graph conditions

AGG-plugin ENFORCe-plugin

Fig. 3. Model synchronization.

plication framework like EMF is that some features come for free: Persistence of
model states (i.e. saving and loading). Furthermore, models generated by EMF
implements the Observer pattern, meaning that changes made in the model by
e.g. a result from ENFORCe will automatically be propagated to its observers
(yielding the backwards synchronization from ENFORCe to the views). EMF
also makes it easy to extend ROOTS’ underlying EMF model to work with
graph conditions.

ROOTS and AGG are software for typed attributed graphs while ENFORCe
works on directed labeled graphs. For a smooth port, we disabled ROOTS’ model
editor and used a static model consisting of a singular symbol type and link type,
each with one attribute: a string for labels.

For graph conditions, we extended ROOTS’ EMF model by a few interfaces,
the inheritance hierarchy for those are shown in Fig. 4. The two interfaces ROOTS
and Rule are part of the original ROOTS model (see [14] for details), the others
are our extensions. ROOTS collects graphs, rules, etc, into a graph transformation
system, and GCROOTS adds nested graph conditions and rules with left and right
application conditions to these transformation systems.

Editing Nested Constraints and Application Conditions 39

The already existing interface for negative application conditions were not
expanded upon, since its view in ROOTS is too different from the morphism
view we are aiming for – our morphism view is more similar to ROOTS’ rules.
GCMorphism is a generalization of the nodes with morphisms in the tree view
and therefore extends Rule, this allows us to reuse the components for edit-
ing a rule’s left and right hand side to the editing of the morphism’s domain
and codomain. NestedGraphCondition specifies the nesting of graph conditions
and is therefore a supertype of all types that are represented as nodes in the
tree view. The original ROOTS model already supports binary Boolean formu-
las, but our conditions are best represented by junctions on sets of conditions.
Boolean formulas are therefore represented by the new types GCConjunction,
GCDisjunction, and GCNegation.

GCRule extends normal rules with left and right application conditions, GCLAC
and GCRAC – both consisting of a set of NestedGraphCondition objects. The
interface GCContainer specifies the possible contexts of where a NestedGraph-

Condition may occur.

«interface»

GCROOTS
«interface»

GCRAC

«interface»

GCForall

«interface»

GCContainer

«interface»

GCMorphism

«interface»

GCLAC

«interface»

GCConjunction

«interface»

GCExists

«interface»

GCNegation

«interface»

GCRule

«interface»

GCDisjunction

«interface»

NestedGraphCondition

«interface»

Rule

«interface»

ROOTS

Fig. 4. Model extension for editing graph conditions.

Recalling the two views discussed in Sect. 2, we now discuss a few issues
regarding their implementation in ROOTS. The tree view was implemented as
an extension to ROOTS’ existing tree editor for graphs, rules, etc. As an example,
we show the tree view from Fig. 2 (a) in the bottom of the left area in Fig. 5,
named GraphCondition there. The right area of Fig. 5 shows the morphism view
– the reused rule view – of the morphism identified by b2 in Fig. 2 (b).

Since graph conditions can also be used in a rule context, the corresponding
visual additions where made to a special kind of rule with left and right applica-
tion condition. Figure 5 compares the previous rules with negative application

40 Karl Azab

conditions (named Rule in that figure) and the new rules with left and right
application conditions (there named Rule w. a.c.).

Fig. 5. Editing a nested constraint.

The morphism view is implemented by making some extensions to the rule
editor of ROOTS, e.g. when a nested condition is created, it is by default set to
the identity morphism of the codomain of its closest ancestor of a GCMorphism

subtype. Commands for editing the trees and opening the morphism editor from
the tree view are integrated with ROOTS’ standard mouse operations.

4 Summary

We reported on an integration of ENFORCe and the ROOTS GUI for graph
transformation systems and described an extension for graph conditions. Our
layout approach were based on the nesting structure of graph conditions and
was separated into two views, one for nesting and one for morphisms. We could
therefore reuse existing ROOTS components and visually integrate the extension

Editing Nested Constraints and Application Conditions 41

with other GUI elements. The resulting editor is however still quite similar to
the representation used in e.g. [7].

It would be interesting to have a plug-in architecture in ROOTS that al-
lows new features to be integrated more easily. Plug-ins would initially report
to ROOTS on the particular category they support. ROOTS could then better
layout objects of the particular category and report on what tool features are
available to which categories. This would also allow the editor to be generalized
to work on nested high-level conditions. Since the tree structure and mapping
mechanism can work on objects from any HLR category, only the object visual-
ization needs to be updated for new categories.

References

1. Habel, A., Plump, D.: Computational completeness of programming languages
based on graph transformation. In: Proc. Foundations of Software Science and
Computation Structures (FOSSACS 2001). Volume 2030 of Lecture Notes in Com-
puter Science., Springer-Verlag (2001) 230–245

2. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1: Foundations. World Scientific (1997)

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications,
Languages and Tools. World Scientific (1999)

4. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G.: Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 3: Concurrency,
Parallelism and Distribution. World Scientific (1999)

5. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science (2008)
To appear.

6. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and appli-
cation conditions: From graphs to high-level structures. Fundamenta Informaticae
74(1) (2006) 135–166

7. Habel, A., Pennemann, K.H., Rensink, A.: Weakest preconditions for high-level
programs. In: Graph Transformations (ICGT 2006). Volume 4178 of Lecture Notes
in Computer Science., Springer-Verlag (2006) 445–460

8. Azab, K., Habel, A., Pennemann, K.H., Zuckschwerdt, C.: ENFORCe: A system
for ensuring formal correctness of high-level programs. In: Proc. of the Third Inter-
national Workshop on Graph Based Tools (GraBaTs’06). Volume 1 of Electronic
Communications of the EASST. (2006)

9. Jurack, S., Taentzer, G.: ROOTS: An Eclipse Plug-in for Graph Transformation
Systems based on AGG. In: Pre-proc. of the Third International Symposium,
Applications of Graph Transformations with Industrial Relevance (Agtive 2007).
(2007)

10. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and environ-
ment. In: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume 2. World Scientific (1999) 551–603

11. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wende-
hals, L., Zündorf, A.: Tool integration at the meta-model level within the fujaba
tool suite. International Journal on Software Tools for Technology Transfer (STTT)
6 (August 2004) 203–218

42 Karl Azab

12. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Graph-
Grammars and Their Application to Computer Science and Biology. Volume 73 of
Lecture Notes in Computer Science., Springer-Verlag (1979) 1–69

13. Foundation, T.E.: Eclipse application frameworks. Web pages available at
http://www.eclipse.org/{emf,gef} Visited June 3, 2008.

14. Jurack, S.: Konzeption und Implementirung einer Entwicklungsumgebung für
regelbasierte Graphtransformationssysteme basierend auf AGG und Eclipse (2007)
Master thesis, TU Berlin.

Parallel Graph Transformations in Distributed Adaptive
Design

Leszek Kotulski1 and Barbara Strug2

1 Department of Automatics, AGH University of Science and Technology
Al. Mickiewicza 30, 30 059 Krakow, Poland

2Department of Physics,Astronomy and Applied Computer Science,
Jagiellonian University, Reymonta 4, Krakow , Poland,

kotulski@agh.edu.pl, barbara.strug@uj.edu.pl

Abstract. In this paper a graph transformation system with the parallel derivation is
used to model the process of distribution and adaptation for computer aided design.
It is based on earlier research in formal language theory, especially graph grammars,
and distributed models. The motivation for the ideas presented here is given and
possible ways of application are described. The application of this idea by the
GRADIS multi-agent framework is also considered. The theoretical approach is
illustrated by the example from the domain of flat layout design.

1. Introduction
This paper deals with a linguistic approach [2] to distributed parallel design. The formal
model of computer-aided design is based on graph structures for which a lot of research
has been done in context of design [3]. Semantic knowledge about the design is expressed
by attributes. Graphs representing design object structures are generated by grammars
which consist of graph rules.

Usually a complex design problem is divided into a number of subproblems.
Therefore we propose a distributed design system consisting of several cooperating graph
grammars. Searching for each subproblem solution is supported by one grammar. Solving
the whole problem requires the ability of grammars assigned to subproblems to
communicate [4,5,6,7,8,9].

Our first attempt to solve the problem of cooperation strategy, where the sequence (in
which component grammars are activated) is determined by a control diagram, is
presented in [10,11,12]. In this paper the system communication is realized by a specially
introduced agents the notion of complementary graphs [13] and conjugated graph
grammars [14]. The proposed approach is illustrated on the example of designing house
layouts and internal rooms arrangements

2. GRADIS agent model.
The GRADIS framework (that is an acronym of GRAph DIStribution toolkit) makes
possible the distribution of a centralized graph and the controlling its behavior with the
help of concurrent processes. The proposed solution is based on multiagent approach; an
agent is responsible for both a modification of the maintained (local) graph, in a way

44 Leszek Kotulski and Barbara Strug

described by the graph transformation rules associated with it and a cooperation with
other agents in order to maintain the cohesion of the graph system. The GRADIS agent
model assumes the existence of two types of agents, called: maintainers and workers.

The maintainer agent – maintains the local graph; the whole set of maintainers takes
care of the system cohesion understood as a behavior equivalent to the graph
transformations carried out over the centralized graph. Initially we assume, that at the
beginning one maintainer controls the centralized graph, but it is able to split itself into a
set of maintainer agents controlling parts of the previous graph. The cooperation of the
maintainers is based on the exchange of information among the elements of the agent’s
local graph structure; the graph transformation rules are inherited from the centralized
solution.

The worker agents are created: temporarily, in order to carry out a given action (eg. to
find a subpattern), or permanently - to achieve a more complex result (eg. for detail
design of an element represented at the lower graph hierarchy). The worker’s graph
structure is generated during its creation (by a maintainer agent or another worker agent)
and is associated with a part of the parent’s graph structure. This association in not one
between some nodes of a graph structure maintained by these agents. The parent-worker
association is done at the graph transformation level i.e.some worker’s transformations
enforce the application of some graph transformations over the parent’s graph structure.

2.1. Complementary graph as a background for maintainer agent work

The data structure, that is maintained and transformed by agents, has a form of labeled
(attributed) graphs. Let Σv and Σe be a sets; the elements of Σv are used as node labels and
the elements of Σe are used as edge labels. The graph structure is defined as follows:

Definition 2.1
A (Σv,Σe)-graph is a triple (V,D,v-lab) where V is a nonempty set, D is a subset of

V×Σe×V, and v-lab is a function from V into Σv. ■
For any (Σv,Σe)-graph G, V is set of nodes, D is set of edges and v-lab is a node

labeling function. It can be extended. by introduction attributing functions for both nodes
and edges, but it has no influence on the graph distribution.

Our intention is to split the graph G into several parts and to distribute them to different
locations. Transformations of each subgraph Gi will be controlled by some maintainer
agent.
To maintain the compatibility of centralized graph with the set of split subgraphs some
nodes (called border nodes) should be replicated and placed in the proper subgraph. We
will mark a border node by a double circle. During the splitting of the graph we are
interested in checking if the connection between two nodes crosses a border between
subgraphs The algorithms for splitting a common graph and joining partial graphs into
the common graph are presented in [13].

For any border node v in the graph Gi we can move boundary in such a way that, all
nodes that are connected with v (inside other complementary graphs) are incorporated to
Gi as a border nodes and the v node replicas are removed from another graphs (i.e. v

Parallel Graph Transformations in Distributed Adaptive Design 45

becomes a normal node). For graphs presented in Fig. 3.1b an incorporate((0,1),1)
operation creates graphs presented in Fig. 3.1c.

The GRADIS framework associates with each distributed complementary graph the
maintainer agent, that not only makes the local derivations possible, but also assures the
coordination and synchronization of parallel derivations on different complementary
graphs.

.

Fig. 3.1 a Graph G. ,b.,c sets of

 complementary graphs

 .

The main idea is to either apply transformation locally or to create the appriopriate local
environment (with the use of incorporate operation) in which to properly apply
transformatons locally. The application of a transformation is strongly dependent on the
graph transformation mechanism; for the ETPL(k) graph grammars the formal description
is presented in [13] The presented approach does not depend on the specific properties of
the graph transformation mechanism like NLC embedding transformation (in case of the
algorithmic approach) [15] or single- and double-pushout (in the case of the algebraic
approach) [16]. In [13,17] the cooperation among the agents in the case of these types of
graph transformations is considered and a detail algorithms based on these
transformations properties are presented.

2.2 Conjugated graph grammar as a background for workers agents cooperation.

 The formal background for the worker agent cooperation is based on a conjugated graph
grammars theory [14,18]. In the conjugated graph a new type of nodes appears – remote
nodes (Fig. 3.2). There is fundamental difference between complementary and conjugate
approaches: in the first one, the agents create a local environment for correct application
of a given production (so there is no synchronization at the production level), in the
second approach the local graphs that consist of partially replicated nodes are
synchronized with the help of application of the conjugated transformation rules. More
precisely remote nodes represent the nodes appearing in other graph structures.

46 Leszek Kotulski and Barbara Strug

In the conjugated graphs grammars we assume that, the graph transformations P (on the
first agent’s graph structure) in which a remote node w exists and is associated with the
graph transformation Q (on the other agent’s graph structure), such that it modifies the
neighborhood of the node represented by w. The pair P and Q are called conjugated
transformations in context of the remote node w. In order to synchronize the set of
conjugated graph transformations we assume that, GRADIS assures that both P and Q
graph transformations will be successfully performed. Here we assume that graph
grammars are transactional conjugated graph grammars i.e. either both P and Q are
applied or neither action is carried out.

Figure 3.2 Associations in conjugated graphs.
Let’s notice that in conditional and transactional models, there is no assumption on the
type of graph transformation used by agents. There is no objection to constructing a
system in which parent and son agents use different graph transformation systems.

3. Distributed Adaptive Design

The model described in previous section is very appropriate for the design process. The
example of such design process is presented below. For the clarity of presentation the
design patterns are restricted to minimal elements that allows us to illustrate the
introduced concept. In our example we use a flat layout and arrangement design problem.
This process is composed of several phases: firstly we create basic plans (eg. a
building), next we can plan rooms arrangement and finally details of the furniture. Graph
transformations seem to be very promising in this application domain [10]. In fig 3.1a a
layout of a flat is presented. A graph representing this layout at the highest level is
presented in fig. 3.1b. This graph contains only nodes representing spaces (P), walls (S)
and doors (D). It can be noticed that even for such small apartment and a very high level
of representation this graph large. Adding to it nodes representing elements of furniture,
and then parts of every single piece of furniture would make it rather overwhelming. So
the use of approach from the GRADIS framework seems to be a good way to reduce
amount of data that has to be taken into account at a time.

We assume that, the building plan is maintained by a set of maintainer agents, and
each of maintainer agents takes care of the subgraph responsible for parameterization
(allocation of walls, doors, windows, etc.) of one or more rooms. In case of design
problems, the splitting is performed across “natural” borders. In house design problem
nodes representing walls and doors seem to be good candidates for such natural border
nodes. In fig. 3.2 three subgraphs resulting from splitting the full graph are depicted. It
means that any operation including these nodes can not be carried out locally but must

Parallel Graph Transformations in Distributed Adaptive Design 47

involve cooperation with other agents maintaining subgraphs containing the same border
nodes. Let’s imagine that we want to move doors (change attributes associated with a
node labeled by D). As D is a border node for any rule to be applied to it we must first
carry out a sequence of incorporate operations. Each incorporate operation collects the
neighbourhood nodes of D in other subgraph and then “moves” it into the graph in which
the rule is to be applied. This operation thus moves the border and, at the same time,
makes a node “D” internal one. Then the required transformation are applied. Moreover
with each of the rooms it is associated a permanent worker agent that is responsible for
this room arrangement. Let’s note that the maintainer-worker relationship is more
complex. Moving walls or doors has a strong influence on the room arrangement process
and on the other hand putting the chair or a table again the wall with door is possible
only when these door will be transferred to another place. Thus the cooperation between
graph trans-formation systems supported by maintainer and worker agents should be very
close.

In fig. 3.2 the subgraph representing one of rooms is depicted with a bit more details.
From the point of view of the maintainer agent for this room only two nodes, B and T, are
important as this agent is responsible for positioning the chair. This structure is
maintained by agent responsible for designing a chair. An example of the structure for
such an agent is depicted in fig 3.1c. Any change in this structure that does not influence
the remote nodes is local

In fig. 3.2b a general hierarchy of workers and maintainers in a considered example is

presented
.
Figure. 3.1 a. A layout of a flat , b. a graph representing the layout from a. c internal structure of a chair

Figure 3.2 Three of 7 complementary graphs generated after splitting a full graph (fig. 3.1) and a diagram
representing a hierarchy of maintainer and worker agents.

48 Leszek Kotulski and Barbara Strug

5. Conclusions.
In this paper a general framework for distributing large graph structures into smaller and
thus easier to maintain and transform was presented It is worth noticing that this approach
does not make any assumptions about the type of graph transformations that are used as
rules at different levels (by different agents).

The proposed formalism was applied to the domain of distributed design that is in
particular need of a good formalism that would allow for both distribution and adaptation
within one general framework. The dynamic character of design in which external and
internal constraints may require adaptation can be described by such a formalism.
Moreover the problem of the subsystems modification is solved.

This paper lays a ground for further research in both general methodology and its
application to the domain of dynamic design. The use of this method in design context
both simplifies it and adds complexity. On one side by introducing natural borders for
splitting and natural hierarchy of tasks for maintainers and workers it makes the problem
simpler than in a more general case. On the other hand the domain of design adds its own
problems, especially a potential for deep propagation of cooperation and lead to a cascade
of requests.

In future we plan to test more intensively the different types of cooperation
(conditional, transactional) and their influence on the working of this methodology in real
situations.

6. Reference.
1. Rozenberg, G.: Handbook of Graph Grammars and Computing By Graph Transformation:

Volume I, Foundations. Ed. World Scientific Publishing Co., NJ, (1997)
2. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars and

Computing By Graph Transformation: Volume II, Application, Languages and Tools. Ed. World
Scientific Publishing Co., NJ, (1999)

3. E.Grabska, W. Palacz. Hierarchical graphs in creative design. MG&V, 9(1/2), pp. 115-123,
(2000)

4. E. Csuhaj-Varju and Gy. Vaszil. On context-free parallel communicating grammar systems:
Synchronization, communication, and normal forms. Theoretical Computer Science, 255(1-2),
pp. 511-538 (2001).

5. E. Csuhaj-Varju, J. Dassow, J. Kelemen and Gh. Paun. Grammar systems. A grammatical
approach to distribution and cooperation. Topics in Computer Mathematics 8. Gordon and
Breach Science Publishers, Yverdon (1994)

6. E. Csuhaj-Varju: Grammar systems: A short survey, Proceedings of Grammar Systems Week
2004, 141-157, Budapest, Hungary, July 5-9 (2004).

7. J. Kelemen. Syntactical models of cooperating/distributed problem solving. Journal of
Experimental and Theoretical AI, 3(1), pp. 1-10 (1991)

8. C. Martin-Vide and V. Mitrana. Cooperation in contextual grammars. In A. Kelemenov, editor,
Proceedings of the MFCS'98 Satellite Workshop on Grammar Systems, pp. 289-302. Silesian
University, Opava (1998)

9. M. Simeoni and M. Staniszkis. Cooperating graph grammar systems. In Gh. Paun and A.
Salomaa, editors, Grammatical models of multi-agent systems, pp. 193-217. Gordon and Breach,
Amsterdam (1999)

Parallel Graph Transformations in Distributed Adaptive Design 49

10.E. Grabska, B. Strug. Applying Cooperating Distributed Graph Grammars in Computer Aided
Design, Parallel Processing and Applied Mathematics (PPAM 2005), LNCS vol 3911, pp.
567-574 Springer (2006)

11. E. Grabska, B. Strug. G Slusarczyk, A Graph Grammar Based Model for Distributed Design,
International Conference on Artificial Intelligence and Soft Computing, Artificial Intelligence
and Soft Computing, EXIT, Warszawa 2006, pp 440-445 (2006)

12.Kotulski L., Strug B.: Distributed Adaptive Design with Hierarchical Autonomous Graph
Transformation Systems. ICCS 2007, LNCS 4488, pp. 880-887, Beijing(China) (2007)

13.Kotulski L.: GRADIS – Multiagent Environment Supporting Distributed Graph Transformations.
M. Bubak et all (eds.): ICCS 2008, Part I, LNCS 5101, pp. 386-395, 2008.

14.Kotulski L., Fryz : Conjugated Graph Grammars as a Mean to Assure Consistency of theŁ
System of Conjugated Graphs. Accepted at the Third International Conference on Dependability
of Computer Systems DepCoS – RELCOMEX (2008)

15.Engelfriet, J., Rozenberg, G.: Node Replacement Graph Grammars, 3-94 in [1]
16.Ehrig H., Heckel R. Löwe M., Ribeiro L., Wagner A.: Algebraic Approaches to Graph

Transformation – Part II: Single Pushout and Comparison with Double Pushout Approach. In [1]
pp. 247-312.

17.Kotulski L.: Distributed Graphs Transformed by Multiagent System. L. Rutkowski et all(Eds.):
ICAISC 2008, LNAI 5097, pp. 1234-1242, 2008.

18.Kotulski L., Fryz : Assurance ofŁ system cohesion during independent creation of UML
Diagrams. Proc. 2nd International Conference on Dependability of Computer Systems DepCoS -
RELCOMEX 2007, pp. 51-58, IEEE Computer Society P2850, , Poland (2007)

19.Kotulski L., S dziwy A.: ę Agent framework for decomposing a graph
into the subgraphs of the same size, accepted to WORLDCOMP'08 (FCS’08) Las Vegas, USA
(2008).

Visidia: An Environment for Programming

Distributed Algorithms

Mohamed Mosbah

University of Bordeaux 1

Abstract. Visidia is a software tool that has been developed in order
to help in the design, the experimentation, the validation and the vi-
sualization of distributed algorithms described by relabelling systems.
Visidia allows the user to model a network, to implement and to execute
a relabelling system.
A friendly Graphical User Interface allows the user to draw by “drag
and drop” a graph which model the network. The user can add, delete,
or select vertices, edges or subgraphs. Visual attributes of vertices and
edges such as labels, colors or shapes have default values, but they can be
easily customized. The tool provides a library of high level primitives to
program the corresponding local computations .These primitives include
the synchronizations between vertices depending on the type of local
computation, the communication between processors such as send and
receive messages, etc. The user can write an algorithm and execute it by
pressing on appropriate buttons provided by the interface. The system
automatically creates and assigns to each vertex a java thread which will
run a copy (a clone) of the code implementing the relabelling system. The
user can observe the messages exchanged between vertices (threads), and
their states. In particular, label changes of vertices can be seen on-the-fly.
The whole algorithm is animated in such a way that the user can follow
its execution. Moreover, the number of exchanged messages is computed
and displayed. This can be used to perform experiments for particu-
lar distributed algorithms and obtain statistical parameters. A control
panel allows the user to play animation, pause it at any point during its
execution, and stop it. Many distributed algorithms are already imple-
mented and can be directly animated. Extensions to deal with agents or
algorithms for sensor networks are under implementation. Visidia can be
used as a platform for teaching or as a research platform for designing
and validating distributed algorithms.
References:
[1] Bauderon, M., Metivier, Y., Mosbah, M., Sellami, A.: From local com-
putations to asynchronous message passing systems. Research Report RP
1271-02, University of Bordeaux I (2002)
[2] Derbel, B., Mosbah, M., Gruner, S. Mobile agents for implementing
local computations in graphs. In: Graph Transformations (ICGT 2008).
LNCS, Springer (2008)
[3] http://www.labri.fr/visidia

AGG: A Tool Environment for Algebraic Graph

Transformation

Gabriele Taentzer

University of Marburg

Abstract. The AGG tool environment consists of a graph transforma-
tion engine, several analysis tools for graph transformations and a graph-
ical user interface for convenient user interaction. AGG supports the al-
gebraic approach to typed, attributed graph transformation. It provides
a typing concept for nodes and arcs which supports node type inheri-
tance. Its attribution concept is based on Java expressions. Transforma-
tion rules may be equipped with negative application conditions. Rule
applications may be controlled by graph constraints and explicit con-
trol constructs. Analysis tools offer graph parsing, critical pair analysis
and applicability checks for transformation rules, as well as checking of
termination criteria for controlled rule applications.

Author Index

Azab, Karl, 35

Chalopin, Jeremie, 4

Gasquet, Olivier, 28
Geiß, Rubino, 5

Hoffmann, Berthold, 5

Jakumeit, Edgar, 5
Jannsens, Dirk, 2

Klempien-Hinrichs, Renate, 17

Kotulski, Leszek, 43
Kreowski, Hans-Jörg, 1

Luderer, Melanie, 17

Mosbah, Mohamed, 50

Plump, Detlef, 3

Said, Bilal, 28
Strug, Barbara, 43

Taentzer, Gabriele, 51

