
Reinforcement Learning
Part II – Methods

Nicolas P. Rougier
INRIA Bordeaux Sud-Ouest

Institute of Neurodegenerative Diseases

3rd Latin America Summer School in Computational Neuroscience
13-31 January 2014, Valparaiso, Chile

Problem

• The learner and decision maker is called the agent
• Everything outside is called the environment

Agent

Environment

action
at

reward
rt

state
st

rt+1

st+1

• The agent and environment interact at discrete time steps t = 0, 1, 2, ...
• What to do at step t ?

Methods

1. Dynamic Programming
The model of the environment (T and R) must be known.

2. Monte Carlo Methods
Nomodel is required but learning occurs only at the end of an episode.
• On-policy→ Behavior policy= Estimation policy
• O�-policy→ Behavior policy 6= Estimation policy

3. Temporal-Di�erence Learning
Learning occurs at each time step.
• Model based→ Build a model of T and R
• Model free→ Build π∗ directly

We can use one step (TD(0)) or n-step (TD(λ)) lookups.

Reminder

State-Value function

Vπ(s) = Eπ{Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}

Action-Value function

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}

Bellman equation

Vπ(s) =
∑
a

π(s, a)
∑
s′
Pass′ [Ra

ss′ + γVπ(s′)]

Dynamic programming

Policy Evaluation & Improvement
(Dynamic programming)

Policy Evaluation
Require: π the policy to be evaluated
V(s)← 0 for all s in S
repeat

for each s in S do
v ← V(s)
V(s)←

∑
a π(s, a)

∑
s′ Pass′ [Ra

ss′ + γV(s′)]
∆← max(∆, |v − V(s)|

end for
until∆ < ε (small positive number)

Ensure: V ≈ Vπ

Policy Improvement
Let us modify the policy π anf check if it is better or not.

Policy Iteration
(Dynamic Programming)

Start froms a random policy and
for each state s, choose the best
action a’ such that
V(π(s, a′)) ≥ V(π(s, a))

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0

• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0

• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.00 0.00

0.59 0.73 0.81 0.00

0.43 0.00 0.00

0.48 0.00 0.00 0.00 0.00

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.00

0.59 0.73 0.81 0.90

0.43 0.00 0.00

0.48 0.43 0.00 0.00 0.00

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1

• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.53

0.59 0.73 0.81 0.90

0.43 0.53 0.53

0.48 0.43 0.59 0.66 0.59

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.53

0.48 0.53 0.59 0.66 0.59

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2

• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.53

0.48 0.53 0.59 0.66 0.59

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.53

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3

• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Policy Iteration
(Dynamic Programming)

• Pick random policy π0
• Evaluation of π0
• Improvement of π0 → π1

• Evaluation of π1
• Improvement of π1 → π2

• Evaluation of π2
• Improvement of π2 → π3

• Evaluation of π3
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

Require: π the policy to be evaluated
V(s)← 0 for all s in S
repeat

for each s in S do
v ← V(s)
V(s)← maxa

∑
s′ Pass′ [Ra

ss′ + γV(s′)]
∆← max(∆, |v − V(s)|

end for
until∆ < ε (small positive number)

Then we get π(s) = argmaxa
∑

s′ Pass′ [Ra
ss′ + γV(s′)]

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.90

0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.81

0.81 0.90

0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.73 0.81

0.73 0.81 0.90

0.73

0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.73 0.81

0.73 0.81 0.90

0.66

0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.73 0.81

0.59 0.73 0.81 0.90

0.66

0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.53 0.66

0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Evaluation (greedy policy)
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)

• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Value Iteration
(Dynamic Programming)

• Start from V = 0 everywhere
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Evaluation (greedy policy)
• Done

0.53 0.73 0.81

0.59 0.73 0.81 0.90

0.43 0.53 0.66

0.48 0.53 0.59 0.66 0.73

0.66 0.73 0.81 0.90 1.00

Monte-Carlo methods
(not covered in this tutorial)

Temporal di�erence learning

Temporal di�erence learning
Let’s go watch a movie

You’re going to the movie theater that happens to be sit at the end of a very
long one-way street. There are places to park your car all along the street,
but as you approach the theater, it is more andmore unlikely you’ll find a
free place. And if you don’t find a free place, you will have to go back to the
beginning of the street and you’ll be late for the movie. Since you do not
want to walk, you want to find a place that is both free and close to the
theater.

Where do you choose to park ?
• As soon as you see a free place (exploitation) ?
• Or you feel lucky and try to go a little further (exploration) ?

Exploration vs. Exploitation

Online decision-making involves a fundamental choice between:

Exploitation

• Tomake the best decision given current information.
• Short-term, immediate, certain benefits.

Exploration

• To gather more information to make a better decision.
• Long-term, risky, uncertain.

To solve the dilemna, a trade-o� has to be found between exploration and
exploitation (ε-greedy, upper-confidence bounds, bayes rules, etc.)

Time of change
Monte Carlo / Reinforcement learning

Monte Carlo update

actual outcome

45

40

35

30

leaving
office

reach
car

exiting
highway

secondary
road

home
street

arrive
home

Situtation

Pr
ed

ic
te

d
to

ta
l t

ra
ve

l t
im

e

Change occurs at the end of an episode.

Reinforcement learning update

45

40

35

30

leaving
office

reach
car

exiting
highway

secondary
road

home
street

arrive
home

Situtation
Pr

ed
ic

te
d

to
ta

l t
ra

ve
l t

im
e

actual
outcome

Change occurs ater one or several steps
(TD(0), TD(λ))

Reinforcement learning

TDmethods learn their estimates in part on the basis of other estimates.They
learn a guess from a guess–they bootstrap.

And yet, we can still guarantee convergence to the correct answer.

TD(0)
(Simplest method)

TD(0)
Require: π the policy to be evaluated
V(s)← 0 for all s in S
repeat for each episode

a← π(s)
repeat for each step of episode

Take action a, observe reward r and next state s′

V(s)← (1− α)V(s) + α(r + γV(s′))
s← s′

until s is terminal
until nomore episode

Note: we need r and s′ to update V(s). We need 1-step backup.

Sarsa
(On-policy, temporal di�erence)

Sarsa = (st, at, rt+1, st+1, at+1)
Require: Arbitrary Q(s,a)
repeat for each episode

Choose a from s using policy derived from Q (e.g. ε-greedy)
repeat for each step of episode

Take action a, observe reward r and next state s′

Choose a′ from s′ using policy derived from Q (e.g. ε-greedy)
Q(s, a)← (1− α)Q(s, a) + α(r + γQ(s′, a′))
s← s′, a← a′

until s is terminal
until nomore episodes

Q-Learning
(O�-policy, temporal di�erence)

Q-Learning (Watkins, 1989)
Require: Arbitrary Q(s,a)
repeat for each episode

repeat for each step of episode
Choose a from s using policy derived from Q (e.g. ε-greedy)
Take action a, observe reward r and next state s′

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxaQ(s′, a))
s← s′

until s is terminal
until nomore episodes

Actor-critic methods
(On-policy, temporal di�erence)

Actor-critic methods are TDmethods that have a separate memory structure
to explictly represent the policy independent of the value function.

Actor
(policy)

Critic
(value function)

Environment

TD error

rt+1

st+1

reward rt

action at

state st

TD(λ)

n-step TD prediction

• Monte-Carlo methods use full episode lookup
• TD(0) methods use one step lookup
• TD(λ) methods use n− step lookup

TD(λ)
Forward view

n-step backup
In one-step backups the (one step) target G(1)t is the first reward plus the
discounted estimated value of the next state:

V(st)← (1− α)V(st) + α(rt+1 + γV(st+1)︸ ︷︷ ︸
Gt(1)=target

)

where, by definition:

V(st+1) = rt+2 + γVt+2

Hence, a two-step target would be:

G(2)t = rt+1 + γ(rt+2 + γV(st+2))

More generally we have:

G(n)t = rt+1 + γrt+2 + ...+ γnV(st+n)

Eligibility traces
TD(λ)

Backups can be done not just toward any n-step return, but toward any
average of n-step returns. The TD(λ) algorithm is one particular way of
averaging n-step backups: Gλt = (1− λ)

∑∞
n=1 λ

n−1G(n)t

t T

Weight 1- λ

decay by λ

total area = 1

weights given to
actual final return

Weights given to
the 3-step return

Time

For each state visited, we look forward in time to all the future rewards and
decide how best to combine them. This requires knowledge of the future.

TD(λ)
Forward and backward views

Eligibility traces
An eligibility trace is a temporary record of the occurrence of an event, such
as the visiting of a state or the taking of an action.The trace marks the
memory parameters associated with the event as eligible for undergoing
learning changes. When a TD error occurs, only the eligible states or actions
are assigned credit or blame for the error.

Zt(s) =

{
γλZt−1(s) if s 6= st
γλZt−1(s) + 1 if s = st

Evolution of Z(s) over time and visits

Eligibility traces are a basic mechanism for temporal credit assignment

TD(λ)

TD(λ)
V(s)← 0 for all s in S
repeat for each episode

Z(s)← 0 for all s in S
repeat for each step of episode

Take action a, observe reward r and next state s′

δ ← r + γV(s′)− V(s)
Z(s)← Z(s) + 1
for all s in S do

V(s)← V(s) + αδZ(s)
Z(s)← γλZ(s)

end for
s← s′

until s is terminal
until nomore episode

Take-Away message

• A Markov Decision Process (MDP) is a tuple (S, A, T, R).
• Di�erent type of learning methods:

- Dynamic programming (T and R are known)
- Monte Carlo (learning at end of episode)
- Temporal Di�erence (one step, learning at each time step)
- Eligibility traces (n-step, learing at each time step)

• State-Value function
Vπ(s) = Eπ{Rt|st = s} = Eπ

{∑∞
k=0 γ

krt+k+1|st = s
}

• Action-Value function
Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{∑∞
k=0 γ

krt+k+1|st = s, at = a
}

Reference
Reinforcement learning : An Introduction, Richard S. Sutton and Andre G. Barto

