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Word cloud from the 2015
Computational Neuroscience Symposium
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Amplitude

The biological neuron

A typical neuron consists of a cell
body, dendrites, and an axon.

A neuron Is an electrically excitable
cell that processes and transmits
iInformation through electrical and
chemical signals.
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Neural circults

Neurons never function in isolation:
they are organized into ensembles
or circuits that process specific
Kinds of information.

Afferent neurons, efferent neurons
and Interneurons are the basic
constituents of all neural circuits.
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To model the brain

To emulate — new algorithms
(e.g. deep learning)

To heal = new therapies
(e.g. deep brain stimulation)

To understand— new knowledge
(e.g. visual attention)

Pulse
generator ———



What kind of models?

Connectionist models for
performances & learning

Biophysical models for simulation
& prediction

Cognitive models for the
emulation of behavior




How to build models?

Basic material
« Anatomy and physiology
« Experiments & recordings
 Pathologies & lesions

Working hypotheses
« Extreme simplifications
» Parallel & distributed computing
* Dynamic systems & learning

Validation
* Predictions
 Explanations




Single neuron



Disclaimer

Reminder : Essentially, all models

are wrong but some are useful. .
(George E.P. Box, 1987) SV

Artificial neuron are over-simplified NP
models of the biological reality, but
some of them can give a fair
account of actual behavior.
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The frog sciatic nerve

From frogs to integrate-and-fire
Nicolas Brunel - Mark C. W. van Rossum
Biological Cybernetics (2007)

“Lapicque used a more exotic one, namely, a
ballistic rheotome. This is a gun-like contrap-
tion that first shoots a bullet through a first
wire, making the contact, and a bit later the
same bullet cuts a second wire in its path,
breaking the contact.”

LOUIS LAPICQUE
1866-1952



The formal neuron

The McCulloch-Pitts model (1943)
IS an extremely simple artificial
neuron. The inputs could be either
a zero or a one as well as the

output.

A




The squid giant axon

In 1952, Alan Lloyd Hodgkin and
Andrew Huxley described the
lonic mechanisms underlying the
initiation and propagation of action
potentials in the squid giant axon.




Membrane Potential (mV)

Anatomy of a spike

An action potential (spike) is a
short-lasting event in which the
electrical membrane potential of a
cell rapidly rises and falls, following
a consistent trajectory.
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At the resting potential, all voltage-gated Na* channels and most voltage-gated K* channels are closed. The Na*/K* transporter
pumps K* ions into the cell and Na* ions out.

Na* channel

K* channel . ‘

(b) Depolarization
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In response to a depolarization, some Na* channels open, allowing Na* ions to enter the cell. The membrane starts to depolarize
(the charge across the membrane lessens). If the threshold of excitation is reached, all the Na* channels open.

(c) Hyperpolarization
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At the peak action potential, Na* channels close while K* channels open. K* leaves the cell, and the membrane eventually
becomes hyperpolarized.
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Based on a series of breakthrough
voltage-clamp experiments,
Hodgkin & Huxley developed a
detailed mathematical model of
the voltage-dependent and time-
dependent properties of the Na+
and K+ conductances.
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The Hodgkin & Huxley model (1952)

The empirical work lead to the development of a coupled set of differential
equations describing the ionic basis of the action potential.

The ionic current is subdivided into three distinct components, a sodium current
INa, @ potassium current Ik, and a small leakage current I (chloride ions).

Based on the experiments, they were able to accurately estimate all parameters.
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The Hodgkin & Huxley model (1952)

time (ms) --->



The Hodgkin & Huxley model (1952)

ne Nobel prize was awarded to both men a decade later in 1963.
ne field of computational neuroscience was launched.
More than 60 years later, the Hodgkin-Huxley model is still a reference.
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Reduced models are simpler

The behavior of high-dimensional nonlinear differential equations is difficult to
visualize and even more difficult to analyze.

The four-dimensional model of Hodgkin-Huxley can be reduced to two dimensions
under the assumption that the m-dynamics is fast as compared to u, h, and n, and
that the latter two evolve on the same time scale.
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Formal neuron



Reduced models are still too complex...

Even if conductance-based models are the simplest possible biophysical
representation of an excitable cell and can be reduced to simpler model, they
remain difficult to analyse (and simulate) due to their intrinsic complexity.

For this reason, simple threshold-based models have been developed and are
highly popular for studying neural coding, memory, and network dynamics.
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Leaky Integrate & Fire

In the leaky integrate and fire (LIF) model, spike occurs when the membrane
potential crosses a given threshold, and is instantaneously reset to a given reset
value. But no bursting mode (B), no adaptation (C), no inhibitory rebound (D)

T du(t)/dt = -[u(t) - Urest] + R.I(T)
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|zhikevich model

In 2003, E. |zhikevich introduced a
model that reproduces spiking and
bursting behavior of known types
of cortical neurons. The model
combines the biologically
plausibility of Hodgkin-Huxley-type
dynamics and the computational
efficiency of integrate-and-fire
Neurons.
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Which model for what purpose ?

It depends on what you’re trying to achieve...

I '.integrate-and-fire
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"quadratic integrate-and-fire
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Circuits



o Presynaptic

The biological synapse -

Action potential
arrives at axon
terminal.

Excitatory synapses excite
(depolarize) the postsynaptic cell

' ' . (3 ca* entry causes \ —
via eXCIta'tory post_synaptlc neurotransmitter-containing

. ool @ .
potential (EPSP)

Synaptic cleft

Axon terminal

Voltage-gated Ca?*
channels open and
Ca?* enters the
axon terminal.

Inhibitory synapses inhibit
(hyperpolarize) the postsynaptic @ pevoranier s s
cell via inhibitory post-synaptic Lk b
potential (IPSP)
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ion channels, resulting in graded potentials. and diffusion reduce neurotransmitter levels, terminating the
a -" signal.

3 EPSP's



Neural circuits

A. Feedforward excitation D. Lateral inhibition

. '. ' @O ——q Excitation

) INHibiItioON
@O

B. Feedforward inhibition E. Feedback/Recurrent inhibition F. Feedback/Recurrent excitation

onvergence/divergence F2 a
C.‘C/g\ /diverg - i 2
‘\] H 0—. ) .




Instantaneous connections In a small network

Instantaneous excitatory connections Instantaneous inhibitory connections
synchronization no synchronization



Delayed connections in a small network

Delayed excitatory connections Delayed inhibitory connections
no synchronization synchronization



Random population

Simulation (by A.Garenne) of
100,000 Izhikevich neurons.
sparsely and randomly connected
(patchy connections)

— No input but spontaneous
activity because of noise

— Spontaneous bursts of activity
(centrifugal propagating wave)




L1

Structured population

Max Planck Florida Institute b
scientists create first realistic 3D -
reconstruction of all nerve cell
bodies in a cortical column in
the whisker system of rats. The _—
colour indicates the cell type of the o
nerve cell.




Neural Coding



What information is conveyed by spikes ?




Temporal coding

e Rank order (Thorpe & Gautrais, 1991)
— most of the information about a new
stimulus is conveyed during the first 20 or
50 milliseconds after the onset of the
neuronal response




Temporal coding

Rank order (Thorpe & Gautrais, 1991)
— most of the information about a new
stimulus is conveyed during the first 20 or
50 milliseconds after the onset of the
neuronal response

e Synchrony (Wang & Terman, 1995)
— synchrony between a pair or many
neurons could signify special events and
convey information which is not contained
in the firing rate of the neurons

Etc...
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Rate coding

But spike trains are not reliable...

* Average over time
— the spike count in an interval of
duration T

* Average over population
— the spike count during in a population
of size N in an interval of duration dt

* Average over runs
— the spike count for N runs in an interval
of duration dt

A
B
||
o
N=5g |
g
o

F=n/T

F(t) =n/(N dt)

F(t) =n/(N dt)



Rate models

To model a rate model, no need to
first model a spiking neuron and
then compute the rate code.

Better use a direct model instead.
TdV/dt = =V + Isyn + Lext

But not enough time today...
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Population



Between cells and tissue

The number of neurons and
synapses in even a small piece of
cortex Is iImmense. Because of this
a popular modelling approach
(Wilson & Cowan, 1973) has been
to take a continuum limit and study
neural networks in which space is
continuous and macroscopic state
variables are mean firing rates.




Neural fields

We consider a small piece of cortex to be a continuum (€2). The membrane

potential u(x,t) at any point x is a function of other the input current and the lateral
Interaction.

28D ety + | wla,y)fut, )y + I@.0)+ b

The w(x,y) function is generally a difference of Gaussian (a Mexican hat).

Filtering Selection Memory Tracking

|




Visual attention

“Everyone knows what attention is.

It is the possession by the mind, in
clear and vivid form, of one out of
what seem several simultaneously
possible objects or trains of
thought.” (W. James, 1905)

° 80°
20° 40 90°

10°

60°

30°

00

-90° -90°
+ Foveal Peripheral — «— Rostral Caudal —
0 4.8 (mm)

-30°

-60°

Give the ages of the people.

Remember positions of people and
objects in the room.

Surmise what the family had 4
been doing before the arrival
of the unexpected visitor.

Estimate how long the visitor had
been away from the family.

Estimate material circumstances
of the family

Remember the clothes
worn by the people.

3 min. recordings
of the same
subject




Visual attention
(Vitay & Rougier, 2008)

Several studies suggest that the
population of active neurons in
the superior colliculus encodes
the location of a visual target to

foveate, pursue or attend to.
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A clockwork orange

Using the output of the focus map
we can control a robot.

Sgﬂierlcy




Plasticity & learning



Plasticity

Synaptic plasticity is the ability of

synapses to strengthen or weaken
over time, in response to INncreases
or decreases in their activity

Structural plasticity is the
reorganisation of synaptic
connections through sprouting or
pruning.

Intrinsic plasticity is the persistent
modification of a neuron’s intrinsic
electrical properties by neuronal or
synaptic activity




Hebb’s Postulate: fire together, wire together

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells
firing B, is increased (Hebb, 1949).
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Some plasticity rules

Spike-timing dependent plasticity is
a temporally asymmetric form of
Hebbian learning induced by tight
temporal correlations between the
spikes of pre- and postsynaptic
neurons.

The BCM (Bienenstock, Cooper,
and Munro) is characterized by a
rule expressing synaptic change as
a Hebb-like product of the
presynaptic activity and a nonlinear
function ¢(y) of the postsynatic
activity, V.

0 o 4w t-d
Pre
before post




Learning

e The cerebellum is specialized for
supervised learning, which is guided
by the error signal encoded in the
climbing fiber input from the inferior
olive learning

* The basal ganglia are specialized for
reinforcement learning, which is
guided by the reward signal encoded
in the dopaminergic input from the
substantia nigra

* [he cerebral cortex is specialized for
unsupervised learning, which is
guided by the statistical properties of
the input signal itself, but may also
be regulated by the ascending
neuromodulatory inputs

Current Opinion in Neurobiology

Unsupervised learning
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Plasticity in the somatosensory cortex
(Florence, 2002)

A Somatosensory maps in the cortex B Detail of representation
of the owl monkey of the palm
Area 3b Area 1

5 -,1—,— Palm (H.T,,P,-P,) D,
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Random dot pattern

el Gmcrons
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E

A model of area 3b
(Detorakis & Rougier, 2013)

Using a neural field, we've

Receptive Field

modelled the primary sensory

cortex (3b) in the primate using

unsupervised learning.

—
(]
>
3}
—
“©
9
-
-
(@)
O

We (X)

Neuron

Stimulus

Input Layer

Receptor



Decision making
(Topalidou et al, 2016)

Ratio of optimum trials
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Numerical simulations



Clock-driven vs event-driven simulation

There are two families of algorithms

for the simulation of neural networks:

e synchronous or clock-driven
algorithms, in which all neurons are
updated simultaneously at every
tick of a clock

t0 Time

e asynchronous or event-driven
algorithms, in which neurons are
updated only when they receive or
emit a spike

to

Time




NEURON

www.neuron.yale.edu/neuron

NEURON is a simulation
environment for modelling
iIndividual neurons and networks of
neurons. It provides tools for
conveniently building, managing,
and using models in a way that is
numerically sound and
computationally efficient.

NEURON
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http://www.neuron.yale.edu/neuron

NEST simulator
www.nest-simulator.org

NEST is a simulator for spiking
neural network models that
focuses on the dynamics, size and
structure of neural systems rather
than on the exact morphology of
individual neurons.
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http://www.nest-simulator.org

Brian simulator
priansimulator.org

Brian is a simulator for spiking
neural networks available on
almost all platforms. The
motivation for this project is that a
simulator should not only save the
time of processors, but also the
time of scientists.

100

Time (ms)

from brian import *

eqs = ''!

dv/dt = (ge+gi-(V+49*mV))/(20*ms) : volt

dge/dt = -ge/(5*ms) S ot

dgi/dt = -gi/(10*ms) : volt

P = NeuronGroup(4000, model=eqs,

threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge')

Ci = Connection(Pi, P, 'gi')

Ce.connect_random(Pe, P, p=0.02,
weight=1.62*mV)

Ci.connect_random(Pi, P, p=0.02,
weight=-9*mV)

M = SpikeMonitor(P)

P.V = -60*xmV+10*mV*rand(len(P))
run(.5*second)

raster_plot(M)
show()


http://briansimulator.org

Reproducible Science

Over the years, the Python language
has become the preferred language
for computational neuroscience.

PYNN is an interface that make
possible to write a simulation script
once, using the Python programming
language, and run it without
modification on any supported
simulator.
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ReScience

Reproducible science is good. Replicated science is better.

rescience.github.io


http://rescience.github.io

Beyond this short course

D Purves, GJ Augustine GJ, D Fitzpatrick, et al. Neuroscience, 2001.

P Dayan, L Abbott, Theoretical Neuroscience, MIT Press, 2005.

W Gerstner, W Kistler, Spiking Neuron Models, Cambridge Univ. Press, 2002.
C Koch, | Segev, Methods in Neuronal Modeling, MIT Press, 1998.
M Arbib, Handbook of Brain Theory and Neural Networks, MIT Press, 1995.
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