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a b s t r a c t

During the past decades, the symbol grounding problem, as has been identified by Harnard [Harnard,
S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42, 335–346], became a
prominent problem in the cognitive science society. The idea that a symbol is much more than a mere
meaningless token that can be processed through some algorithm, sheds new light on higher brain
functions such as language and cognition. We present in this article a computational framework that may
help in our understanding of the nature of grounded representations. Two models are briefly introduced
that aim at emphasizing the difference we make between implicit and explicit representations.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the central notions in language is the notion of a symbol
that may be naively described as some shared knowledge between
entities that serve the purpose of representing and exchanging
information. More precisely, Saussurian semiotic defines a sign as
a deterministic functional regularity of a system where a signifier
stands for a signified. When there exists a causal relationship
between the signifier and the signified (e.g. smoke and fire), the
sign is called an index. This notion of semiotic index is deeply
rooted in most animal and human behavior that learn to associate
for example, the odor or the sight of a predator to some imminent
danger. In this case, the odor (the signifier) is a precursor of
the predator (the signified) and elicits a fleeing behavior. More
generally, if A is always followed by B, then A is said to be a
precursor of B and having A is equivalent to having B (but you
do not necessarily need A to get B). This constitutes the base of
Pavlovian conditioning where a dog learns that the ringing of the
bell is an index of some incoming food. Based on an existing index
A–B, it is possible to make the dog learn a second arbitrary index
A′–B′ (most of the time, the conditioned answer B′ is equal to the
unconditioned answer B but they may differ in some paradigms).
Symbols are similarly defined as a functional regularity where

a signifier stands for a signified but this function is grounded on
an arbitrary conventional rule established by some entity. One
difficulty is first constituted by this arbitrary rule that needs to
be shared among the different entities engaged in communication.
If symbols are not shared among entities, communication based
exclusively on those symbols is not possible at all. The second but
greater difficulty lies in the nature of the signified that also needs
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to be shared among the two entities independently and prior to
any symbolic relationship. For example, if you decide to name a
given object a glass and decide to share this symbol with someone
else, you need some formal ways to indicate precisely what you
mean by a glass. One way of achieving such a description of the
glass entity is to use language itself, i.e. to use other already shared
symbols, in order to describe some unique property of the glass
that makes it a glass. However, you cannot pretend to do so for
any given symbols because youwould enter a circular graphwhere
symbols are recursively defined. A simple example of such circular
graphs is a dictionary that needs to definewords usingwords. They
are naturally and deeply recursive. For instance, if you take a closer
look at the definition of light, you would find yourself redirected
to the definition of sun that would redirect you to the definition
of light again. This has been stated quite clearly using the well
known example of the Chinese dictionary from which you cannot
pretend to learn Chinese if you do not possess proper entry points.
Consequently, there is a need to open the graph at some points
and to root is somewhere outside of it. One striking example of
such an open graph where the root points are particularly well
identified is mathematics. The fundamental work by Whitehead
and Russell (1925) explicitly identified in their 3-volume book
entitled Principia Mathematica a reduced set of axioms that aim to
serve as a basis for the derivation of all mathematical truths using
inference rules. In Russell’s word, ‘‘all pure mathematics follows
from purely logical premises and uses only concepts definable
in logical terms’’. Even if this statement has been proved to be
wrong later by Kurt Gödel, this yields nonetheless an interesting
framework for the understanding of what axioms are.
Such axioms implicitly exist in language but are very far from

being well identified. They found their origin in the idea that since
people share a common perceptive and motor apparatus, they are
hence able to develop some common representation such as color,
pain, hunger, etc. that can be named without further explanation.
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The challenge for an artificial system is then being able to develop
such representations that are grounded into a physical reality in
a straightforward way. This is precisely what has been explained
by Harnard in Harnard (1990) and named the symbol grounding
problem that is (quoted from the original article) ‘‘How can the
semantic interpretation of a formal symbol system be made intrinsic
to the system, rather than just parasitic on the meanings in our head’’.
What it does mean indeed is that you cannot pretend to acquire
primary axioms out of nowhere, they should found some support
into the physical reality.
In this sense, traditional Artificial Intelligence (a.k.a. Symbolic

A.I.) completely escaped the problem by stating that human intel-
ligence was equivalent/reducible to a mere symbol manipulation
problem. It did not address at all the problem of what these sym-
bols are supposed to mean and rather attempted at using a set of
symbols to achieve high-level thinking algorithms. The quest for
intelligence was finally a quest for finding clever deduction algo-
rithms that could support reasoning capacities and problem solv-
ing. On the other hand, the numerical nature of artificial neural
networks (ANN) made them good and natural candidates in early
A.I. to try to tackle the problem of anchoring a symbol into some
physical reality. But dealing with a numerical model is not neces-
sarily a sufficient condition as we would like to explain in the rest
of this article.

2. Symbol grounding problem

In order to properly address the symbol grounding problem,
there is a critical need to avoid explicitly embedding any symbol
anywhere in the model, a priori or a posteriori. If this elementary
precaution has not been taken, there is a risk of facing a situation
where one cannot decide whether emergent symbols are not
simply deductive of symbols primarily embedded within the
system. This is quite equivalent to axioms in mathematics from
where you can derive most of the existing theorems. This does not
mean that such models are useless in the quest for cognition and
language. Axioms in mathematics do not make mathematics and
thus, there is still an urging need to knowhownew representations
may be built on top of the most grounded ones and what are the
mechanisms behind them.
However, to not embed any symbol in a model may be harder

than it appears at first glance. One natural and classical way to
try achieve this is to use numerical models such as for example
artificial neural networks (ANN). ANN may be roughly described
as a set of interconnected groups of artificial units that uses a
specific model for information processing based on parallel and
distributed computations. In most cases, artificial neural networks
are adaptive systems since they change their inner structure
based on external or internal information such as reward, cost
or error signal. On these bases, there exists virtually a myriad
of models that distinguish themselves either by the elementary
computational model, by the architecture or by the adaptive
algorithm that supports learning. For example, the multi-layer
perceptron (Le Cun, 1985; Rosenblatt, 1958; Rumelhart, Hinton,&
Williams, 1987) is a set of feed-forward layers where units from
a layer possess directed connections to the subsequent layer.
The elementary computational model is most generally based
on a simple sigmoid function of the weighted sum of the input,
and the back-propagation algorithm ensures that the universal
approximation theorem applies so that a multi-layer perceptron
with one hidden layermay approximate any function from [0, 1] to
[0, 1]. One strong property of such models is that they are able to
virtually process any numerical input. However, most derivatives
of those early artificial neural networks do not really try to capture
any biological reality anymore and if they were initially inspired
by brain and neural studies, they lost this inspiration in favor
of efficiency and performance. If we now turn ourselves towards
computational neuroscience, we may find again some biologically
plausible neural networks whose goals are to explicitly try to
understand cognition and propose some functionalmechanisms in
this direction.Models in this domain are generally of high precision
and can actually account for biological or psychological data to
some extent. Once again, in this domain, we face many different
models that implement various kinds of computational paradigms
using different sets of constraints (Gerstner & Kistler, 2002;
O’Reilly & Munakata, 2000). But being biologically plausible does
not guarantee anything concerning the emergence of symbols. If
those models can legitimately pretend to be more realistic than
their classical counterparts, they may also completely escape the
problem by considering only symbolic inputs and concentrate
their efforts on understanding some higher mechanisms (see for
example Changeux and Dehaene (1989), Montague, Dayan, and
Sejnowski (1996), O’Reilly, Noelle, Braver, and Cohen (2002) and
Zipser (1991)).
Based on the computational paradigms introduced in O’Reilly

and Munakata (2000), we have been exploring such a model
(see Rougier, Noelle, Braver, Cohen, and O’Reilly (2005) and
Rougier and O’Reilly (2002) for details) where the model has been
shown to develop self-organized abstract rule-like representations
that are used for cross-task generalization. The model itself
is designed around a set of tasks that aim at manipulating
attributes such as color, shape, size, etc. This model is supposed
to learn and choose adequately the relevant dimension at any
time based only on an yes/no signal. This is strictly equivalent
to the Wisconsin card sorting task (WCST) where subjects are
asked to sort cards along some criteria chosen by the experimenter
but not communicated to the subject. After some learning, the
model is able to develop representations for dimensions and to
use them adequately to solve the different tasks. One important
property of these representations is that they are shared among
the different tasks. This means that a representation learned in the
context of a specific task may be re-used in the context of a novel
task. These representations have been shown to develop through
experience on this basic set of sensory-motor tasks via synaptic
learning mechanisms through a broad range of experience across
multiple tasks. However, if this model describes a biologically-
based alternative to abstract symbol processing models, it fails
at explaining the very nature of those representations. More
precisely, explicit symbols have been introduced at the level of the
input (i.e. one unit for red, one unit for big, etc.) and thus it came
as no surprise that the so-called self-developed representations
are tightly linked to the symbolic nature of those inputs. The color
representation can develop itself only because red, blue, yellow
and green are statistically relevant in the same context during
some time and can be explicitly manipulated. Consequently, we
decided to go down one level in our modeling hypotheses in order
to try to get rid of explicit symbols once and for all.

3. A tentative modeling framework

As we explained in the previous section, designing a predictive
model about emergence using regular artificial neural networks
does not guarantee you anything against modeling artifacts. If
you do not design your model into a strongly constrained and
well defined modeling framework, you are taking the risk of
having some a posteriori interpretation of properties that have
been primarily embedded within the model. Based on our own
experience in modeling, we think that it is possible to avoid most
modeling artifacts by using a set of simple conditions that need to
be enforced anytime and anywhere in the model:
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• Distributed
• Asynchronous
• Numerical

These conditions are not really something new and have been
usedmore or less explicitly in a number of works (Giovannangeli &
Gaussier, in press; Ménard & Frezza-Buet, 2005; Pfeifer & Bongard,
2006; Spencer, Simmering, Schutte & Schoner, 2008). We would
like to make them explicit and to stress each one of them in order
to explain why it is important to enforce them if we want to go
further in our understanding of cognition.

3.1. Distributed

Distributed property is one of the most advertised properties of
neural networks while this is actually hardly the case in a number
of models. This distributed property must indeed be considered
at two different levels: computation and representation. We may
have computational paradigms using distributed representations
and unified computations and we may of course also have
the counterpart of unified representations with distributed
computations. Fundamentally, a distributed representation is one
in which the underlying information it represents cannot be
accurately extracted from a single unit. One would say that not
only it cannot be accurately extracted from a single unit, but it
cannot be extracted at all from a single unit. While this may
sound nicer, this is not always the case since it depends on the
very nature of the information that needs to be encoded. If this
information is partitionable in someway, then you can respectively
assign the representation of n sub-parts of the information to n
distinct units and as a consequence, you need to have all the units
to get the whole picture. The other way around is to consider
that each unit holds a degraded representation of the whole
information and only the combination of those representations
allows us to build accurately the original information. This yields
the advantage of graceful degradation in the face of dysfunctional
or missing units (see for example Johnson, Spencer and Schoner
(in press) where a color variable is continuously encoded using
a distributed representation). As an illustration, let us consider
the simple case of encoding a variable X in the interval [0, 1].
The simplest representation is to have a single unit whose activity
varies continuously between 0 and 1 and thus directly represents
X . A distributed representation of this same information may be
done using n units whose activities represent how far X is from
a given value characteristic of each unit. If these characteristic
values are evenly spread on the [0, 1] segment, thenwe can rebuild
the original value with fair precision (without having the exact
value of X , only if n tends toward the infinite can we get an
exact representation of the original information). The advantage
of such a representation is that any unit holds anytime a degraded
representation of the information that can be used effectively.
This has direct consequences on the nature of computations

that may be performed. Let us consider again the illustration
introduced previously and let us suppose that we would now
like to discriminate cases where the X variable is above or below
a given threshold. If there is a single unit representing X , the
computation that can be performed to make the decision can be
reduced to a single comparison problem where we only need
to know if the source value is above or below the threshold.
We could use as many decision units as we want to compute
the decision without fundamentally changing the underlying
algorithm since the decision source is unique. Any extra unit
would be actually redundant with the first one. In the case of
a distributed representation however, there are several decision
sources available that may be used distinctively within one or
more ‘‘decision’’ units. This leads to an extended set of decision
functions where you can, for example, explicitly decide to give
higher precision for a given range of the source value.
3.2. Asynchrony

Most computational paradigms linked to artificial neural
networks or cellular automata use implicitly what is called
synchronous evaluation of activity. This means that information
at time t + 1t is evaluated exclusively on information available
at time t . The usual way of performing such a synchronization
is to explicitly implement a temporary buffer at the unit level
where activity computed at time t + 1t is stored. Once all units
have evaluated their activity at time t + 1, the ‘‘public’’ activity is
replaced by the content of the buffer (there exists of course other
ways of doing this synchronous evaluation but the idea remains
the same not to mix information between time t and time t + 1).
To perform such a synchronization, there is thus a need for a global
signal that basically tells units that evaluation is over and they can
replace their previous activity with the newly computed one. At
the computational level, this synchronization is rather expensive
and is mostly justified by the difficulty of handling asynchronous
models. For example, cellular automata have been extensively
studied during the past decades for the synchronous case and
many theorems has been proved in this context. However, some
recent works on asynchronous cellular automata showed that the
behavior of the models and associated properties may be of a
radical different nature depending on the level of synchrony of the
model (you can asynchronously evaluate only a sub-part of all the
available automata, see Fates (2008)). At a more behavioral level,
we want to avoid any kind of global synchronization since it could
first, interfere with the interpretation of results in the end (as we
will explain in the next section), but more importantly, it would
mean that there exists some synchronization supervisor thatwould
be able to synchronize every unit.

3.3. Numerical

What is actually computed by a unit is of the uttermost
importance since it directly impacts model behavior. But here
again, we have to be very careful aboutwhat is computed by a unit
and how it is actually computed. The philosophy of artificial neural
networks is to consider a unit to be a very simple processor that
is able to handle some inputs in order to compute some output.
The difficulty that immediately arises is to define what we call
simple in order to avoid having too smart units (Cook, 2004). We
propose endowing units with a numerical property that requires
a unit to compute its activity unconditionally (no if within the
computation algorithm) and in a straightforward way. This clearly
opposes symbolic computation as can be found, for example in
rule-based or derivative neural networkmodels. More specifically,
it means that a unit is not able to ‘‘decide’’ to perform this or
that evaluation based on a set of premises regarding inputs or any
other kind of information, not even self-information. Evaluation
is unconditional and must be performed each time it is required.
This evaluation may result in no change at all in the unit activity
but this must be clearly integrated at the level of the equation
that governs its behavior. Moreover, the activity of a unit must
be a continuous (possibly bound) variable. If it is supposed to
hold discrete levels of activation, this must be integrated within
the equation. This is indeed a strongly constrained context that
prevents, for example, implementing classic cellular automata
such as the game of life. Apart from its synchronous nature, this
game depends also explicitly on the comparison of the number of
neighbors against some game constants. This numerical constraint
is hence very strong and implicitly rejects a number of models out
of the framework. This is the price to pay in order to avoid having
units that are finally smarter than the model they are embedded
in.
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4. Emergence

Using this modeling framework, we have been exploring the
concept of emergence through a very simple model of visual
attention using the Continuum Neural Field Theory (CNFT, see
Appendix). The proposed model is composed of two maps (input
and focus), each of them being of size n × n units. These units
are governed by the discretized version of Eq. (3) given in the
Appendix, resulting in a single numerical output value bound
between 0 and 1 for any unit. The equation is numerically
solved using the forward Euler method with asynchronous update
(see Rougier andHutt (submitted for publication) for details). Units
are organized into maps and for any unit, every link originating
from the same map is considered to be a lateral link (i.e. it is part
of the lateral connection weight kernel) while every other link is
considered to be either feed-forward or feed-back and is part of
the input (I) in Eq. (3). The model perceived the external world
via a primitive low-resolution camera that is only able to detect a
specific color intensity. The world itself is made of colorful objects
(fruits in our case) lying on a table and the resulting input is a set of
blob-like activities feeding the model. At each time step, the input
map is clamped with the perception coming from the camera and
this activity feeds the focus map using a one to one connectivity.
An object is consequently represented in the input map as a set
of several active units. This model is actually enforcing the three
properties we introduced previously:

• Distributed: the position of an object is perceived as a set of
several active units.
• Numerical: the state of a unit is entirely described by a single
real value (potential) that is updated at each time step from
inputs.
• Asynchronous: all computations are asynchronous.

4.1. Emergence of attention

As explained in Rougier and Vitay (2006), the model (see Fig. 1)
is able to focus on a specific blob and to remain focused on this
blob in spite of noise, movement, distractors or saliency. This has
been accurately measured in the context of different experimental
setups by explicitly decoding the activity in the focus map.
Furthermore, it is quite easy to actually see the point of attention
using proper visualization tools. One can see the formation of the
blob of activity within the focus map that represents the focused
stimulus. Since we are able to decode the information provided by
the activity in the focus map, the existence of this blob of activity
is not really questionable.
The fact is that the blob of activity within the focus map

exists only for an external observer who knows how to decode
the information. Said differently, the blob is held in the eye of
the beholder. A focus map is a set of units whose activations, if
interpreted correctly, may be linked to the assumed focused stimuli.
But such an interpretation does not exist within the model since it
is made of a single map. There is no such thing as a homunculus or
central supervisor who would be able to interpret anything. This
is what makes the challenge of not embedding any symbol a priori
or a posteriori in a model quite counter-intuitive and difficult. Our
natural anthropomorphic attitude towards the model makes us
project ourselves in the model and decide that the blob of activity
does represent a point of attention while it does not.
4.2. Grounding the representation

One way to avoid having any interpretation of what is really
happening within the model is to ground this model into the
physical reality. As we explained in the previous subsection,
the emerging bubble of activity may be interpreted as the
focused stimuli. One way to achieve such an interpretation is to
consider that each unit of the focus map codes for an elementary
displacement that is relative to the position of the unit within the
map. Let us consider the unit at position (i, j)with activity aij in the
focusmap (which is of size n×n).We can consider this unit to code
for the elementary movement aij. in along the x axis and aij.

j
n along

the y axis. To get the overallmovement (xc, yc) from the focusmap,
we can compute it as follows:

(xc, yc) =


∑
i,j

i
naij∑

i,j
aij
− 0.5,

∑
i,j

j
naij∑

i,j
aij
− 0.5

 . (1)

Furthermore and since the CNFT equation ensures us that there is
only one bubble of activity within the focus map at any time, we
can simplify the equation by considering themean activity A of the
focus map which is more or less constant:

(x̂c, ŷc) =

(
1
A

∑
i,j

i
n
aij − 0.5,

1
A

∑
i,j

j
n
aij − 0.5

)
. (2)

If we now consider again the pan–tilt camera that served to acquire
the original image, we can now control its pan–tilt motors by using
the previous definition of (x̂c, ŷc) as the desired motor position
alongpan and tilt. This requires the abstraction of the actualmotors
(with only one global command for pan and one global for tilt) into
n× n elementary motor commands. Each unit at position (i, j) can
then be linked to the corresponding panmotor i and tiltmotor j (for
example). This would result in the camera automatically centering
on the actual focused stimuli.
However, we could also consider a completely different scheme

of connection where for example a unit at position (i, j) is linked
to pan motor n–i and tilt motor n–j. The resulting behavior would
then be the camera moving in the exact opposite direction of the
‘‘focused’’ stimulus. In fact there is a large amount of connectivity
patterns that lead to as much different behaviors. This underlines
the fact that the a priori interpretation of the bubble of activity
cannot be made without the embodiment of the model into the
physical reality. This is very similar to actual motor neurons that
act on muscle fibers in a stereotypical way, grounding their action
into the reality.

4.3. Using representation

The question that remains is to determine how this supposed
focus of attention can be moved to another location, especially
when the currently attended place has no behavioral relevance.
A solution used in the bottom–up visual attention model by Itti
(2003) is to locally inhibit the attended location to allow the sys-
tem to switch to another salient location. This has been done in
reference to the inhibition of return (IOR) phenomenon proposed
by Posner and Cohen (1984) who showed that previously attended
locations have decreased processing abilities, as if they were par-
tially inhibited. The drawback of this mechanism is that the switch
of attention is automatic (each location is attended a fixed amount
of time depending on the neural dynamics) and that nothing en-
sures that each potentially interesting location will be attended.
For example, if the inhibition is too short, the focus of attention
can switch back and forth between the two most salient locations
only. The purpose of the extended model (see Fig. 2) was to deal
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Fig. 1. The model of attention is made of twomaps (input and focus), each of them being of size n× n units (n = 40 in experiments). Input map (on the left) corresponds to
an entry that is feeding the focusmap (on the right) which represents a cortical layerwhose units possess localized receptive fields on the surface of the input. In otherwords,
each unit xij of focus map receives its input from the input map which corresponds to a localized receptive field, being more or less broad depending on some constants. The
input map does not have any lateral interaction or feed-back while each unit in the focus map is laterally connected using a difference of Gaussian. Activation of units from
the focus map is governed by an equation introduced by Amari (1977) and extended by Taylor (1999) which considers a neural continuum governed by a simple differential
equation. This architecture implements the most rudimentary form of attention that allows the model to focus on one static or moving stimulus without being disturbed by
noise, movement or distractors.
Fig. 2. The model is a direct extension of the attention model introduced in the previous section. The raw camera input is received within the input map and the focus
maps implement the visual attention on a single stimulus as explained in the previous section. To ensure a consistent attention-switching mechanism, a dynamic working
memorymap (WM) has been added to themodel in order to keep track of already attended stimuli. The inhibitionmap (inhibition) ensures an inhibitory action that prevents
the model from focusing onto an already focused stimuli. All the maps share a common topology (with different input and output) and all units are governed by the same
equation with slightly different parameters. A detailed description of the model as well as parameters can be found in Vitay and Rougier (2005).
with these issues: building a system that can explore all the salient
locations in a scene without exploring twice the same place and
that is able to stop switching whenever a satisfying target is found.
Thus there is a need for two different mechanisms: a mechanism
able to change the focus of attention when required; a mechanism
ensuring that a previously visited location cannot be chosen again.
Without entering the details of the model (see Fix, Vitay, and

Rougier (2006) and Vitay and Rougier (2005)), we showed that the
model exhibits a purely sequential behavior (the sequential scan-
ning of the salient locations) in the real (but simplified) world de-
spite noise, target positions and movements, etc. This sequential
behavior is a direct consequence of the inner dynamics of the units
and of the architecture of the system (the links between the units).
While this architecture is not meant to model precisely the actual
structure of the brain (even if the overall architecture is inspired by
biological data), it nonetheless shows that a unique homogeneous
substrate (several maps using the same dynamics) can be involved
in a given function without ever being explicitly specialized to a
given sub-problem of the task. If we now turn back to the original
question that initially motivated the model, the answer is yes: the
point of attention is somehow virtual for themodel but it can be ex-
ploited accurately without the need for a central supervisor or an
homunculus. All computations remain distributed, numerical and
asynchronous.

5. Conclusion

The two models that have been briefly introduced illustrate a
situation where information is manipulated and used by a model
without ever possessing an explicit knowledge of the underlying
nature of the information. Considering a primitive body made of a
pan–tilt camera situated in a simplified world (made of fruits lying
on a table), the panel of internal representations that may arise
from the interaction with such a world is of course quite limited.
Nonetheless, as we explained, the first model has been proved to
be able to focus on a single object (an object being defined as a
blob in this simplified world) and we could externally interpret
this point of attention as a representation for a concept like
‘‘this’’ or ‘‘object’’. If we consider now the underlying mechanisms
supporting the model, we found that on the one hand, there does
not exist such an explicit interpretation (since the model does
not possess the proper structure to do so) while on the other
hand, the second model showed us that there is no such need
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of an explicit information to carry out a visual search behavior.
Using an equivalent constrained modeling framework, the model
introduced in Andry, Gaussier, and Nadel (2005) goes even further
and allows a control architecture to behave like an homeostatic
machine that triggers a systematic imitation behavior thanks to an
ambiguity in the perception.
Before even considering communication between some entities

(either natural or artificial) using a set of shared symbols, an
implicit prerequisite is that these two entities share some common
‘‘concepts’’ that can be transcribed later into some formal symbols.
But, as we illustrated using the proposed constrained modeling
framework, this may prove to be insufficient since those concepts
may be largely implicit and not directly addressable by the entity.
Thus, the question remains whether this implicit knowledge is
sufficient to support some early communication with another
similar entity. For example, considering the imitation game as
proposed by Andry et al. (2005), there is clearly a bias in favor of
the human experimenter who teaches the robot and knows how
to interpret robot behavior (is it lost at imitating me? do I have to
slow down? etc.).
The fact that two entities share some common perception

is probably a necessary condition but may prove insufficient to
establish any communication. The real challenge for artificial
systems is not only being able to develop representations that are
grounded into a physical reality, but also being able to explicitly
manipulate them for entering some process that could lead to
communication with another entity.

Appendix. Continuum neural field theory

Using notations introduced by Amari (1977), a neural position
is labelled by a vector x. This represents a two-component quantity
designing a position on amanifoldM in bijectionwith [−0.5, 0.5]2
and represents the membrane potential of a neuron at the point
x at time t and is denoted by u(x, t). It is assumed that there is
lateral connection weight functionw(x− x′)which is in our case a
difference of theGaussian function as a function of the distance |x−
x′|. There exists also an afferent connection weight function s(x, y)
from the position y in the manifold M ′ to the point x in M . The
membrane potential u(x, t) satisfies the following equation (3):

τ
∂u(x, t)
∂t

= −u(x, t)+
∫
M
wM(x− x′)f [u(x′, t)]dx′

+

∫
M ′
s(x, y)I(y, t)dy+ h (3)

where f represents the mean firing rate as some function of the
membrane potential u of the relevant cell, I(y, t) is the output from
position y at time t inM ′ and h is the neuron threshold.wM is given
by Eq. (4).

wM(x− x′) = Ae
|x−x′ |2

a2 − Be
|x−x′ |2

b2 with A, B, a, b ∈ R∗+. (4)

Furthermore, afferent connections are described by Eq. (5).

s(x, y) = Ce
|x−y|2

c2 with C, c ∈ R∗+. (5)
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