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Abstract
We propose a model that includes interactions between the cortex, the basal ganglia (BG), and the thalamus
based on a dual competition. We hypothesize that the striatum, the subthalamic nucleus (STN), the internal globus
pallidus (GPi), the thalamus, and the cortex are involved in closed feedback loops through the hyperdirect and
direct pathways. These loops support a competition process that results in the ability of BG to make a cognitive
decision followed by a motor one. Considering lateral cortical interactions, another competition takes place inside
the cortex allowing the latter to make a cognitive and a motor decision. We show how this dual competition
endows the model with two regimes. One is driven by reinforcement learning and the other by Hebbian learning.
The final decision is made according to a combination of these two mechanisms with a gradual transfer from the
former to the latter. We confirmed these theoretical results on primates (Macaca mulatta) using a novel paradigm
predicted by the model.

Key words: covert learning; decision making; Hebbian learning; primate; reinforcement learning; theoretical
approach

Introduction
Action-outcome (A-O) and stimulus-response (S-R)

processes, two forms of instrumental conditioning, are
important components of behavior. The former evaluates

the benefit of an action to choose the best one among
those available (action selection), while the latter is re-
sponsible for automatic behavior (routines), eliciting a
response as soon as a known stimulus is presented
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Significance Statement

In this article, we propose a detailed computational model of interaction between basal ganglia (BG) and
cortex, in which the former adapts its response according to the outcome while the latter is insensitive to
it. The model shows how these two processes interact to issue a unique behavioral answer. This prediction
has been verified on monkeys, demonstrating how these two processes are both competing (expression)
and cooperating (learning). These results suggest that a behavioral decision emerges actually from a dual
competition of two distinct but entangled systems.
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(Mishkin et al., 1984; Graybiel, 2008), independently of the
hedonic value of the stimulus. Action selection can be
easily characterized by using a simple operant condition-
ing setup, such as a two-armed bandit task, where an
animal must choose between two options of different
value, the value being probability, magnitude, or quality of
reward (Pasquereau et al., 2007; Guthrie et al., 2013).
After some trial and error, a wide variety of vertebrates are
able to select the best option (Herrnstein, 1974; Graft
et al., 1977; Bradshaw et al., 1979; Matthews and Temple,
1979; Dougan et al., 1985; Herrnstein et al., 1989; Lau and
Glimcher, 2005, 2008; Gilbert-Norton et al., 2009). After
intensive training, which depends on the species and the
task and whether the same values are used throughout the
series of the experiments, the animal will tend to become
insensitive to change and persist in selecting the formerly
best option (Lau and Glimcher, 2005; Yin and Knowlton,
2006). Most of the studies on action selection and habits/
routines agree on a slow and incremental transfer from the
A-O to the S-R system such that after extensive training, the
S-R system takes control of behavior, and the animal be-
comes insensitive to reward devaluation (Packard and
Knowlton, 2002; Seger and Spiering, 2011). Oddly enough,
very little is known on the exact mechanism underlying such
transfer. One difficult question that immediately arises is
when and how the brain switches from a flexible action
selection system to a more static one.

Our working hypothesis is that there is no need for such
an explicit switch. We propose instead that an action
expressed in the motor area results from both the contin-
uous cooperation (acquisition) and competition (expres-
sion) of the two systems. To do so, we consider the now
classical actor-critic model of decision-making elaborated
in the 1980s, which posits that there are two separate
components to explicitly represent the policy indepen-
dently from the value function. The actor is in charge of
choosing an action in a given state (policy), while the critic
is in charge of evaluating (criticizing) the current state
(value function). This classical view has been used exten-
sively for modeling the basal ganglia (BG; Suri and
Schultz, 1999; Suri, 2002; Frank, 2004; Doya, 2007; Glim-
cher, 2011; Doll et al., 2012), although the precise ana-
tomic mapping of these two processes is still subject to
debate and may diverge from one model to the other
(Redgrave et al., 2008; Niv and Langdon, 2016). However,
all these models share the implicit assumption that the
actor and the critic are interacting, i.e., the actor deter-
mines the policy exclusively from the values estimated by

the critic, as in Q-Learning or SARSA. Interestingly
enough, Sutton and Barto (1998) noted in their seminal
work that one could imagine intermediate architectures in
which both an action-value function and an independent
policy would be learned.

We support this latter hypothesis based on a decision-
making model that is grounded on anatomic and physio-
logic data and that identify the cortex-BG (CBG) loop as
the actor. The critic, of which the substantia nigra pars
compacta (SNc) and the ventral tegmental area (VTA) are
essential components, interacts through dopamine pro-
jections to the striatum (Leblois et al., 2006). Decision is
generated by symmetry breaking mechanism that emerges
from competitions processes between positives and neg-
atives feedback loop encompassing the full CBG network
(Guthrie et al., 2013). This model captured faithfully be-
havioral, electrophysiological, and pharmacological data
we obtained in primates using implicit variant of two-
armed bandit tasks that assessed both learning and
decision-making, but was less consistent with the explicit
version (i.e., when values are known from the beginning of
the task) that focus on the decision process only.

We therefore modified this early model by adding a
cortical module that has been granted with a competition
mechanism and Hebbian learning (Doya, 2000). This im-
proved version of the model predicts that the whole CBG
loop is actually necessary for the implicit version of the
task; however, when the BG feedback to the cortex is
disconnected, the system is nonetheless able to make a
decision in the explicit version of the task. Our experimen-
tal data fully confirmed this prediction (Piron et al., 2016)
and allowed us to solve an old conundrum concerning the
pathophysiology of the BG: a lesion or jamming of the
output of the BG improve Parkinson patient motor symp-
toms while it affects marginally their cognitive and psy-
chomotor performances.

An interesting prediction of this generalized actor-critic
architecture is that the valuation of options and the be-
havioral outcome are segregated. In the computational
model, it is implied that if we block the output of the BG in
a two-armed bandit task before learning, this should in-
duce covert learning during the random choices of the
model, because reinforcement learning should still occur
at the striatal level under dopaminergic control. The goal
of this study is thus two-fold: (1) to present a comprehen-
sive description of the model to provide the framework for
an experimental paradigm that allows to disclose covert
learning, and (2) to test this prediction in monkeys.

Materials and Methods
The task

We consider a variant of a n-armed bandit task (Kate-
hakis and Veinott, 1987; Auer et al., 2002) where a player
must decide which arm of n slot machines to play in a
finite sequence of trials to maximize his accumulated
reward. This task has received much attention in the
literature (e.g., machine learning, psychology, biology,
game theory, economics, neuroscience, etc.), because it
provides a simple model to explore the trade-off between
exploration (trying out a new arm to collect information
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about its payoff) and exploitation (playing the arm with the
highest expected payoff; Robbins, 1952; Gittins, 1979).
This task has been shown to be solvable for a large
number of different living beings, with a brain (Plowright
and Shettleworth, 1990; Keasar, 2002; Steyvers et al.,
2009) or without a brain (Reid et al., 2016), and even a
clever physical apparatus can solve the task (Naruse
et al., 2015).

The computational task
In the present study, we restrict the n-armed bandit

task to n � 2 with an explicit dissociation between the
choice of the option (cognitive choice) and the actual
triggering of the option (motor choice). This introduces a
supplementary difficulty because only the motor choice,
the physical (and visible) expression of the choice, will be
taken into account when computing the reward. If cogni-
tive and motor choices are incongruent, only the motor
choices matter. Unless specified otherwise, we consider a
set of cues {Ci}i �[1,n] associated with reward probabilities
{Pi}i �[1,n] and a set of four different locations ({Li}i �[1,4])
corresponding to the up, down, left, and right positions on
the screen. A trial is made of the presentation of two random
cues Ci and Cj (i � j) at two random locations (Li and Lj) such
that we have Li � Lj (Fig. 1). A session is made of n succes-
sive trials and can use one to several different cue sets
depending on the condition studied (e.g., reversal, devalua-
tion). Unless specified otherwise, in the present study, ex-
actly one cue set is used throughout a whole session.

Once a legal motor decision has been made (i.e., a
motor action corresponding to one of the stimulus posi-
tion), the reward is computed by drawing a random uni-
form number between 0 and 1. If the number is less or
equal to the reward probability of the chosen cue, a
reward of 1 is given, otherwise, a reward of 0 is given. If no
motor choice has been made or if the motor choice leads
to an empty location (illegal choice), the trial is considered
to be failed and no reward is given, which is different from
giving a reward of 0. The best choice for a trial is defined
as the choice of the cue associated with the highest
reward probability among the two presented cues. Per-
formance is defined as the ratio of best choices over the
total number of trials. A perfect player with full-knowledge
can achieve a performance of 1 while the mean expecta-
tion of the reward is directly dependent on the cue sam-
pling policy. For example, in Figure 1, if we consider a
uniform cue sampling policy for 6�n trials, the mean ex-
pected reward for a perfect player with full knowledge is
3/6 � 1 � 2/6 � 2/3 � 1/6 � 1/3 � 14/18 � 0.777. . .).

The behavioral task
With kind permission from the authors (Piron et al.,

2016), we reproduce here the details of the experimental
task which is similar.

The primates were trained daily in the experimental
room and familiarized with the setup, which consisted of
four buttons placed on a board at different locations (0°,
90°, 180°, and 270°), and a further button in a central
position, which detects contact with a monkey’s hand.
These buttons correspond to the four possible display
positions of a cursor on a vertical screen. The monkeys
were seated in chairs in front of this screen at a distance
of 50 cm (Fig. 2). The monkeys initiated a trial by keeping
their hands on the central button, which induced the
appearance of the cursor in the central position of the
screen. After a random delay (0.5–1.5 s), two cues ap-
peared in two (of four) different positions determined
randomly for each trial. Each cue had a fixed probability of
reward (p1 � 0.75 and p2 � 0.25) and remains the same
during a session. Once the cues were shown, the mon-
keys had a random duration time window (0.5–1.5 s) to
press the button associated with one cue. It moves the
cursor over the chosen cue and they have to maintain the
position for 0.5–1.5 s. After this delay, the monkeys were
rewarded (0.3 ml of water) or not according to the reward
probability of the chosen target. The disappearance of the
cursor corresponds to an end-of-trial signal, indicating to
the monkeys that the trial was finished and they could
start a new trial after an intertrial interval between 0.5 and
1.5 s.

The model
The model is designed to study the implications of a

dual competition between the cortex and the BG. It is
segregated into three territories partially overlapping at
the striatal level (for full discussion, see Guthrie et al.,
2013). The motor territory elicits the actual behavioral
choice of the model by selecting one of the two positions
in which the cues are presented. It roughly corresponds
to the supplementary motor area and associated sub-
cortical territories. The cognitive loop chooses one of
the two cues that are displayed roughly corresponding
to the role devoted to the dorsal lateral prefrontal cortex
and associated subterritories. The associative cortex
provides a contextual map indicating which cue is pre-
sented where on each trial and roughly correspond to
the parietal cortex. While in the animal we have access
only to the actual choice (provided by the actual be-
havior of the animal), the model allowed us to have
access to the internal choice by looking at which of the

Figure 1. Three task trials from a four-item cue set (e, Œ, �, �) with respective reward probabilities (1, 0.33, 0.66, and 0).
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two cues was selected at each trial. It could happen
that the cognitive loop chooses one cue, while the
motor loop chooses the position of the other one,
especially at the beginning of the trial, when the syn-
aptic signal-to-noise is still week due to low gain. This
cognitive dissonance maybe a mechanism for impulsiv-
ity, but it is beyond the scope of this paper.

The competition inside the cortex is conveyed through
direct lateral interactions using short-range excitation and
long-range inhibition (Wilson and Cowan, 1972, 1973;
Coultrip et al., 1992; Deco et al., 2014; Muir and Cook,
2014), while the competition within the BG is conveyed
through the direct and hyperdirect pathways (Leblois
et al., 2006; Guthrie et al., 2013). Therefore, the indirect
pathway and the external segment of the globus pallidus
(GPe) are not included. to solve the task, the model relies
on the competition between diverging negative feedback
loops that provide lateral inhibition, and parallel positive
feedback loops that promote differential activation allow-
ing the issue of different cognitive and motor choices. This
competitive mechanism occurs at both the basal and
cortical level, but the final decision is derived from the
cortical level. As soon as the motor cortex activity is
above a given threshold, the model is considered to have
made a decision. In contrast to (Gurney et al., 2001;
Frank, 2004; Doya, 2007), our model relies heavily on
feedback mechanisms and closed loops while the latter
are purely feed-forward models that merely answer to
inputs.

Architecture
Our model contains five main groups. Three of these

groups are excitatory: the cortex, the thalamus, and the
subthalamic nucleus (STN). Two populations are inhibitory
corresponding to the sensorimotor territories of the striatum
and the internal globus pallidus (GPi). The model has been
further tailored into three segregated loops (Alexander et al.,
1986; Alexander and Crutcher, 1990; Alexander et al., 1991;
Mink, 1996; Haber, 2003), namely the motor loop, the asso-
ciative loop and the cognitive (or limbic) loop. The motor
loop comprises the motor cortex (supplementary motor
area, primary cortex, premotor cortex, cingulate motor area),
the motor striatum (putamen), the motor STN, the motor GPi
(motor territory of the pallidum and the substantia nigra), and
the motor thalamus (ventrolateral thalamus). The associative
loop comprises the associative cortex (dorsolateral prefron-
tal cortex, the lateral orbitofrontal cortex) and the associative
striatum (associative territory of the caudate). The cognitive
loop comprises the cognitive cortex (anterior cingulate area,
medial orbitofrontal cortex), the cognitive striatum (ventral
caudate), the cognitive STN, the cognitive GPi (limbic terri-
tory of the pallidum and the substantia nigra), and the cog-
nitive thalamus (ventral anterior thalamus).

Populations
The model consists of 12 populations: five motor, four

cognitive, and two associative populations (Fig. 3). These
populations comprise from four to 16 neural assemblies
and each possesses a specific geometry whose goal is
to facilitate connectivity description. Each assembly is

Figure 2. Behavioral task. The monkeys initiate a trial by keeping their hands on the central button, which induced the appearance
of the cursor in the central position of the screen. After a random delay, two cues appear in two different positions. The monkey has
a random duration time window (0.5–1.5 s) to press the button associated with one cue. It moves the cursor over the chosen cue and
has to maintain the position for some duration. After this delay, the monkey is rewarded (0.3 ml of water) or not according to the
reward probability of the chosen cue.
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modeled using a neuronal rate model (Hopfield, 1984;
Shriki et al., 2003) that give account of the spatial mean
firing rate of the neurons composing the assembly.
Each assembly is governed by the following equations:

�
dV
dt

� �V�Isyn � Iext � h (1)

U � f(V � V.n) (2)

where � is the assembly time constant (decay of the synaptic
input), V is the firing rate of the assembly, Isyn is the synaptic
input to the assembly, Iext is the external input representing
the sensory visual salience of the cue, h is the threshold of
the assembly, f is the transfer function and n is the (corre-
lated, white) noise term. Each population possess its own
set of parameters according to the group it belongs to

(Table 1). Transfer function for all population but the striatal
population is a ramp function [f(x) � max(x, 0)]. The striatal
population that is silent at rest (Sandstrom and Rebec, 2003),
requires concerted coordinated input to cause firing (Wilson
and Groves, 1981), and has a sigmoidal transfer function (non-
linear relationship between input current and membrane poten-
tial) due to both inward and outward potassium current
rectification (Nisenbaum and Wilson, 1995). This is modeled by
applying a sigmoidal transfer function to the activation of
cortico-striatal inputs in the form of the Boltzmann equation:

f(x) � Vmin �
Vmax � Vmin

1 � e
Vh�x

Vc

where Vmin is the minimum activation, Vmax the maximum
activation, Vh the half- activation, and Vc the slope. This is

Figure 3. Architecture of the model. The architecture of the model is centered around the hyperdirect pathway (cortex ¡ STN ¡
GPi/SNR ¡ thalamus ¡ cortex), the direct pathway (cortex ¡ striatum¡ GPi/SNR ¡ thalamus ¡ cortex) and the cortex where lateral
interactions take place. The model is further detailed into three segregated circuits (cognitive, associative, motor). The cognitive and
motor circuit each comprises a cortical, a striatal, a thalamic, a subthalamic, and a pallidal population while the associative loop only
comprises a cortical and a striatal population. This latter interacts with the two other circuits via diffused connections to the pallidal
regions and from all cortical populations. Arrows, excitatory connections. Dots, inhibitory connections.
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similar to the use of the output threshold in the (Gurney
et al., 2001) model and results in small or no activation to
weak inputs with a rapid rise in activation to a plateau
level for stronger inputs. The parameters used for this
transfer function are shown in Table 2 and were selected
to give a low striatal output with no cortical activation (1
spike/s), starting to rise with a cortical input of 10 spikes/s
and a striatal output of 20 spikes/s at a cortical activation
of 30 spikes/s.

Connectivity
Although the model takes advantage of segregated

loops, they cannot be entirely separated if we want the
cognitive and the motor channel to interact. This is the
reason why we incorporated a divergence in the cortico-
striatal connection followed by a re-convergence within
the GPi (Graybiel et al., 1994; Parent et al., 2000; Fig. 4).
Furthermore, we considered the somatotopic projection
of the pyramidal cortical neurons to the striatum (Webster,
1961) as well as their arborization (Wilson, 1987;
Parthasarathy et al., 1992; Cowan and Wilson, 1994; Par-
ent et al., 2000) resulting in specific localized areas of
button formation (Kincaid et al., 1998) and small cortical
areas innervating the striatum in a discontinuous pattern
with areas of denser innervation separated by areas of
sparse innervation (Flaherty and Graybiel, 1991; Brown
et al., 1998). We also considered the large reduction in the
number of neurons from cortex to striatum to GPi (Oors-
chot, 1996; Bar-Gad and Bergman, 2001). These findings
combined lead to striatal areas that are mostly specific for
input from one cortical area alongside areas where there
is overlap between inputs from two or more cortical areas
(Takada et al., 2001) and which are here referred to as the
associative striatum.

The gain of the synaptic connection from population A
(presynaptic) to population B (postsynaptic) is denoted as
GA¡B, and the total synaptic input to population B is:

Isyn
B � GA¡B �

A

UA

where A is the presynaptic assembly, B is the postsynap-
tic assembly, and UA is the output of presynaptic assem-
bly A. The gains for each pathway are shown in Table 3.
Gains to the corresponding cognitive (motor) assembly
are initially five times higher than to each receiving asso-
ciative area. Reconvergence from cognitive (motor) and
association areas of striatum to cognitive (motor) areas of
GPi are evenly weighted.

Task encoding
At the trial start, assemblies in the cognitive cortex

encoding the two cues, C1 and C2, receive an external
current (7 Hz) and assemblies in the motor cortex encod-
ing the two positions, M1 and M2, receive a similar exter-
nal current (7 Hz). These activities are ambiguous since
they could mean [C1/M1, C2/M2] or [C1/M2,C2/M1] (binding
problem). This is the reason why the associative cortex
encoding one of these two situations receives an external
current (7 Hz), (C1/M1, C2/M2) that allows to bind a stim-
ulus with a position (Fig. 5). The decision of the model is
decoded from the activity in the motor cortex only, i.e.,
independently of the activity in the cognitive cortex. If the
model chooses a given cue but produces the wrong
motor command, the cognitive choice will not be taken
into account, and the final choice will be decoded from
the motor command, although that it may lead to an
irrelevant choice.

Dynamics
Two different competition mechanisms exist inside the

model. One is conveyed through the direct and hyperdi-
rect pathways, the other is conveyed inside the cortex
through short-range excitation and long-range inhibition.
The former has been fully described and analyzed in
Leblois et al. (2006), while the latter been extensively
studied in a number of experimental and theoretical pa-
pers (Wilson and Cowan, 1972, 1973; von der Malsburg,
1973; Amari, 1977; Callaway, 1998; Taylor, 1999). Each of
these two competition mechanisms can lead to a decision
as illustrated in Figure 6, which shows the dynamic of the
motor loop for all the population in three conditions. In the
absence of the cortical interactions (gain of cortical lateral
connections has been set to 0), the direct and hyperdirect
pathway are able to promote a competition that results in
the selection of one of the two assemblies in each group.
In the absence of GPi output (connection has been cut),
the cortical lateral connections are able to support a
competition resulting in the selection of one of the two
assemblies, although such decision is generally slower
than decisions formed in the BG. The result of the dual
competition is a faster selection of one of the two assem-
blies after learning, when there is no possibility for the two
competitions to be non-congruent (one competition tends to
select move A while the others tend to select move B). We
will see in the results section that if the result of the two
competitions is non-congruent, the decision is slower.

Table 1 Population parameters

Population Geometry � Threshold Noise
Cortex Associative (4,4) 10 ms –3 1.0%

Cognitive (4,1) 10 ms –3 1.0%
Motor (1,4) 10 ms –3 1.0%

Striatum Associative (4,4) 10 ms 0 0.1%
Cognitive (4,1) 10 ms 0 0.1%
Motor (4,1) 10 ms 0 0.1%

GPi Cognitive (4,1) 10 ms –10 3.0%
Motor (1,4) 10 ms –10 3.0%

STN Cognitive (4,1) 10 ms –10 0.1%
Motor (1,4) 10 ms –10 0.1%

Thalamus Cognitive (4,1) 10 ms –40 0.1%
Motor (1,4) 10 ms –40 0.1%

Table 2 Parameters for striatal sigmoid transfer function

Name Value
Vmin 1
Vmax 20
Vh 16
Vc 3
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Learning
Learning has been restricted to the cognitive channel

on the cortico-striatal synapse (between the cognitive
cortex and striatum) and the corticocortical synapses (be-
tween the cognitive and associative cortex). Most proba-

bly there is learning in other structures and pathways, but
the aim here is to show that the proposed restriction is
sufficient to produce the behavior under consideration. All
synaptic weights are initialized to 0.5 (SD, 0.005) and used
as a multiplier to the pathway gain to keep the factors of

Figure 4. Partial connectivity in the cognitive and associative loops. For clarity, only one assembly has been considered. The motor
loop is symmetric to the cognitive one. The T symbol on some name means the geometry of the group has been transposed (for
readability). A, The direct pathway from cognitive cortical assemblies diverge from cortex to associative and cognitive striatum. The
pathway converges into cognitive GPi, sends parallel projection to the thalamus, and forms a closed loop with the original cognitive
cortical assembly. B, Thanks to the convergence of motor and cognitive pathways in associative striatum, there is a cross talk
between the motor and cognitive loops. This allows a decision to be made in the cognitive loop to influence the decision in motor
loops and vice versa. C, The hyperdirect pathway from cognitive cortical assembly diverges from STN to GPi, innervating all cognitive,
but not motor, GPi regions and feeds back to all cognitive cortical assemblies. D, The pathway from associative cortex and associative
striatum is made of parallel localized projections.
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gain and weight separately observable. All weights are
bound between Wmin and Wmax (Table 4) such that for
any change �W (t), weight W (t) is updated according to
the equation:

W(t) ¢ W(t) � �W(t)(Wmax � W(t))(W(t) � Wmin)

Reinforcement learning
At the level of cortico-striatal synapses, phasic changes

in dopamine concentration have been shown to be nec-
essary for the production of long-term potentiation (LTP;
Kerr and Wickens, 2001; Reynolds et al., 2001; Surmeier
et al., 2007; Pawlak and Kerr, 2008). After each trial, once
reward has been received (0 or 1), the cortico-striatal
weights are updated according to the reward prediction
error (RPE):

�WB
A � LTPRL � RPE � UB if RPE � 0 (3)

� LTDRL � RPE � UB if RPE 	 0 (4)

where �WB
A is the change in the weight of the cortico-

striatal synapse from cortical assembly A to striatal as-
sembly B, RPE is the RPE, the amount by which the actual
reward delivered differs from the expected reward, UB is
the activation of the striatal assembly, and 
 is the actor
learning rate. Generation of LTP and long-term depres-
sion (LTD) in striatal MSNs has been found to be asym-
metric (Pawlak and Kerr, 2008). Therefore, in the model,
the actor learning rate is different for LTP and LTD. The
RPE is calculated using a simple critic learning algorithm:

RPE � R � Vi

where R, the reward, is 0 or 1, depending on whether a
reward was given or not on that trial. Whether a reward
was given, it was based on the reward probability of the
selected cue (which is the one associated with the direc-
tion that was chosen); i is the number of the chosen cue,
and Vi is the value of cue i. The value of the chosen cue is
then updated using the RPE:

Vi ¢ Vi � 
RPE

Hebbian learning
At the level of corticocortical synapses, only the co-

activation of two assemblies is necessary for the produc-
tion of LTP (Bear and Malenka, 1994; Caporale and Dan,
2008; Feldman, 2009; Hiratani and Fukai, 2016). After
each trial, once a move has been initiated, the corticocor-
tical weights are updated according to:

�WB
A � LTPHL � UA � UB

where �WB
A is the change in the weight of the corticocor-

tical synapse from cognitive cortical assembly A to asso-
ciative cortical assembly B. This learning rule is thus
independent of reward.

Experimental setup
Experimental data were obtained from two female ma-

caque monkeys (Macaca mulatta). Experiments were per-
formed during the daytime. Monkeys were living under a
12/12 h light/dark diurnal rhythm. Although food access
was available ad libitum, the primates were kept under
water restriction to increase their motivation to work. A
veterinary skilled in health care and maintenance in non-
human primates supervised all aspects of animal care.

Table 3 Connectivity gains and pattern between the different
populations

Pop. A Pop. B Pathway Pattern Gain
Cortex Striatum cog. ¡ cog. � (i,1) ¡ (i,1) 1.0

mot. ¡ mot. (i,1) ¡ (i,1) 1.0
ass. ¡ ass. (i,j) ¡ (i,j) 1.0
cog. ¡ ass. (i,1) ¡ (i,�) 0.2

mot. ¡ ass.(1,i) ¡ (�,i) 0.2
STN cog. ¡ cog. (i,1) ¡ (i,1) 1.0

mot. ¡ mot.(1,i) ¡ (1,i)1.0
Thalamus cog. ¡ cog. (i,1) ¡ (i,1) 0.1

mot. ¡ mot.(1,i) ¡ (1,i)0.1
Cortex cog. ¡ cog. (i,1) ¡ (�,1) �0.5

mot. ¡ mot. (1,i) ¡ (1,�) �0.5
ass. ¡ ass. (i,j) ¡ (�,�) �0.5
ass. ¡ mot. (�,i) ¡ (1,i) 0.025
ass. ¡ cog. (i,�) ¡ (i,1) 0.01
cog. ¡ ass. � (i,1) ¡ (i,�) 0.025

mot. ¡ ass.(1,i) ¡ (�,i) 0.01
Striatum GPi cog. ¡ cog. (i,1) ¡ (i,1) –2.0

mot. ¡ mot. (1,i) ¡ (1,i) –2.0
ass. ¡ cog. (i,�) ¡ (i,1) –2.0

ass. ¡ mot.(�,i) ¡ (1,i)–2.0
STN GPi cog. ¡ cog. (i,1) ¡ (i,1) 1.0

mot. ¡ mot.(1,i) ¡ (1,i)1.0
GPi Thalamus cog. ¡ cog. (i,1) ¡ (i,1) –1.0

mot. ¡ mot.(1,i) ¡ (1,i)–1.0
Thalamus Cortex cog. ¡ cog. (i,1) ¡ (i,1) 1.0

mot. ¡ mot. (1,i) ¡ (1,i) 1.0

For connectivity patterns, � means all. For example, (1,i) ¡ (1,�) means one-
to-all connectivity, while (1,i) ¡ (1,i) means one-to-one connectivity. Plastic
pathways are indicated by a � symbol.

Figure 5. Task encoding. Assemblies in the cognitive cortex
encoding the two cues, C1 and C2, receive an external current,
and assemblies in the motor cortex encoding the two positions,
M1 and M2, receive a similar external current. These activities are
not sufficient to disambiguate between [C1/M1, C2/M2] or [C1/M2,
C2/M1] (binding problem). This is the reason why the associative
cortex encoding one of these two situations receives also an
external current, (C1/M1, C2/M2) to disambiguate the two cases,
hence solving the binding problem.
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Figure 6. Activity in different populations during a single trial of action selection before learning. The trial starts at time t � 0 ms, and
the model is allowed to settle to a steady state until the presentation of the cues at t � 500 ms. Solid lines represent activity related

Theory/New Concepts 9 of 17

November/December 2018, 5(6) e0339-17.2018 eNeuro.org



Experimental procedures were performed in accordance
with the Council Directive of 20 October 2010 (2010/63/
UE) of the European Community. This project was ap-
proved by the French Ethic Committee for Animal
Experimentation (50120111-A).

Surgical procedure
Cannula guides were implanted into the left and right

GPi in both animals under general anesthesia. Implanta-
tion was performed inside a stereotaxic frame guided by
ventriculography and single-unit electrophysiological re-
cordings. A ventriculographic cannula was introduced
into the anterior horn of the lateral ventricle and a contrast
medium was injected. Corrections in the position of the
GPi were performed according to the line between the
anterior commissure (AC) and the posterior commissure
(PC) line. The theoretical target was AP: 23.0 mm, L: 7.0
mm, P: 21.2 mm. A linear 16-channel multielectrode array
was lowered vertically into the brain. Extracellular single-
unit activity was recorded from 0 to 24 mm relative to the
AC–PC line with a wireless recording system. Penetration
of the electrode array into the GPi was characterized by
an increase in the background activity with the appear-
ance of active neurons with a tonic firing rate (around the
AC–PC line). The exit of the electrode tips from the GPi
was characterized by the absence of spike (around 3–4
mm below the AC–PC line). When a clear GPi signal from
at least three contacts had been obtained, control radi-
ography of the position of the recording electrode was
performed and compared to the expected position of the
target according to the ventriculography. If the deviation
from the expected target was less than 1mm, the elec-
trode was removed and a cannula guide was inserted with
a spare cannula inside so that the tip of the cannula was
superimposed on the location of the electrode array in the
control radiography. Once the cannula guide was satis-
factorily placed, it was fixed to the skull with dental ce-
ment.

Bilateral inactivation of the GPi
Microinjections were delivered bilaterally 15 min before

a session. For both animals, injections of the G AB AA
agonist muscimol hydrobromide (Sigma) or saline (NaCl 9)
were randomly assigned each day. Muscimol was deliv-
ered at a concentration of 1 �g/�l (dissolved in a NaCl
vehicle). Injections (1 �l in each side) were performed at a
constant flow rate of 0.2 �l/min using a microinjection
system. Injections were made through a 30-gauge can-
nula inserted into the two guide cannula targeting left and
right GPi. Cannulas were connected to a 25-�l Hamilton
syringe by polyethylene cannula tubing.

Data analysis
Theoretical and experimental data were analyzed using

Kruskal-Wallis rank sum test between the three conditions
[saline (C0), muscimol (C1) or saline following muscimol
(C2)] for the six samples [12 � 10 first trials of C0 (control),
12 � 10 last trials of C0 (control), 12 � 10 first trials of C1
(GPi Off/muscimol), 12 � 10 last trials of C1(GPi Off/
muscimol), 12 � 10 first trails of C2(GPi On/saline), 12 �
10 last trials of C2(GPi On/saline)] with post hoc pairwise
comparisons using Dunn’s test for multiple comparisons
of independent samples; p values have been adjusted
according to the false discovery rate (FDR) procedure of
Benjamini–Hochberg. Results were obtained from raw
data using the PMCMR R package (Pohlert, 2014). Sig-
nificance level was set at p 	 0.01. Experimental raw data
is available from (Kase & Boraud, 2017) under a CC0
license, theoretical raw data and code are available from
(Rougier & Topalidou, 2017) under a CC0 license (data)
and BSD license (code). The data and the codes are also
available as extended data (respectively model codes and
experimental data files).

Table 5 Theoretical results statistical analysis on correct
answers

H0 statistic (H) p value
C0 start � C2 start 2.965 0.0051
C1 start � C2 start 4.986 1.8e-6
C1 end � C2 start 3.099 0.0036

Kruskal–Wallis rank sum test between the three conditions [saline (C0), mus-
cimol (C1), or saline following muscimol (C2)] with post hoc pairwise com-
parisons using Dunn’s test for multiple comparisons of independent sam-
ples. The script used for the analysis (R language) is available from Rougier
and Topalidou (2017).

continued
to the selected population, dashed lines represent activity related to the non-selected population. Decision threshold has been set to
40 spikes/s between the two cortical populations and is indicated on the x-axis. Raster plots are related to the cortical populations
and has been generated from the firing rate of 10 neurons. A, Activity in the motor populations in the absence of lateral competition
in the cortical populations. The damped oscillations during the settling phase are characteristic of the delayed feedback from the STN
(excitation) and the striatum (inhibitory) through the globus pallidus and the thalamus. B, Activity in the motor populations in the
absence of the feedback from the BG (GPi) to the cortical populations via the thalamus. Decision threshold is reached thanks to the
direct lateral competition in both cognitive and motor cortical channels. There is no damped oscillation, since there is no delay
between the cortical populations, and the decision times are slower than in the previous case. C, Activity in the motor populations
in the full model with a dual competition, one cortical and one basal. When congruent (cortical and basal decision are the same),
decision time for both the motor and cortical channels are faster than in the absence of one of the competition loop.

Table 4 Learning parameters

Name Value
Wmin 0.25
Wmax 0.75
LTPRL 0.050
LTDRL 0.030
LTPHL 0.005

 0.025
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Figure 7. Theoretical and experimental results. Histograms show the mean performance at the start and the end of a session in C1
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Results
Our model predicts that the evaluation of options and

the behavioral outcome are two separate (but entangled)
processes. This means that if we block the output of the
BG before learning, reinforcement learning still occurs at
the striatal level under dopaminergic control and should
induce covert learning of stimuli value although the be-
havioral choice would appear as random.

Protocol
The protocol has been consequently split over two

consecutive conditions (C1 and C2) using the same set of
stimuli and a dissociated control (C0) using a different set
of stimuli (using same probabilities as for C1 and C2):

C0 60 trials, GPi On (model), saline injection (primates),
stimulus set 1 (A1, B1) with PA1 � 0.75, PB1 � 0.25

C1 60 trials, GPi Off (model), muscimol injection (pri-
mates), stimulus set 2 (A2, B2) with PA2 � 0.75, PB2 �
0.25

C2 60 trials, GPi On (model), saline injection (primates),
stimulus set 2 (A2, B2) with PA2 � 0.75, PB2 � 0.25

Computational results
We tested our hypothesis on the model using 12 differ-

ent sessions (corresponding to 12 different initializations
of the model). On day 1 (condition C1), we suppressed the
GPi output by cutting the connections between the GPi
and the thalamus. When the GPi output has been sup-
pressed, the performance is random at the beginning, as
shown by the average probability of choosing the best
option (expressed as mean � SD) in the first 10 trials
(0.408 � 0.161), and remains so until the end of the
session (0.525 � 0.164). Statistical analysis revealed that
no significant difference between the 10 first and 10 last
trials. On day 2 (condition C2), we reestablished the con-
nections between GPi and thalamus and tested the model
to the same task as in C1 using the same set of stimuli.
Results show a significant change in behavior: the model
starts with an above-chance performance on the first 10
trials (0.717 � 0.241), and this change is significant
(Table 5; Fig. 7) compared to the start of C1, compared to
the end of C1 and compared to the start of C0, confirming
our hypothesis that the BG have previously learned the
value of stimuli although they were unable to alter the
behavior of the model.

Experimental results
We tested the prediction of the model on two female

macaque monkeys which have been implanted with two
cannula guides into their left and right GPi (for details, see

Materials and Methods). To inhibit the GPi, we injected
bilaterally a GABA agonist (muscimol, 1�g) 15 min before
working session on day 1 (condition C1). The two mon-
keys were trained for seven and five sessions, respec-
tively, using the same set of stimuli for each session.
Results show that animals were unable to choose the best
stimulus in such condition from the start (0.433 � 0.236)
to the end (0.492 � 0.250) of the session. Statistical
analysis revealed no significant difference between the 10
first and 10 last trials in C1. On day 2 (condition C2), we
injected bilaterally a saline solution 15 min before working
session, and animals had to perform the same protocol as
in C1. Results show a significant change in behavior
(Table 6; Fig. 7): animals start with an above-chance
performance on the first 10 trials (p � 0.667 � 0.213),
compared to the start of C1, compared to the end of C1
and compared to the start of C0, confirming our hypoth-
esis that the BG has previously learned the value of
stimuli.

Discussion
Revisiting an old idea

The model architecture we proposed in this manuscript
is not totally original in the sense that the model imple-
ments known pathways that have been established for
quite a long time and taken into account in a number of
models. More precisely, several computational models in
the literature include both the inner BG pathways as well
as the feed-forward and feed-back loops from and to the
cortex (through thalamus). However, most of these mod-
els (if not all) put a specific emphasis on the role of the BG
without considering the cortex as a decision-making
structure. To the best of our knowledge, virtually none of
these models take advantage of a dual competition mech-
anism similar to the one we introduced. For example, the
model by O’Reilly and Frank (2006), which solves the
temporal and structural credit assignment problems on a
working memory task, includes a Hebbian learning com-
ponent for the posterior cortical part; however, O’Reilly

continued
and C2 conditions for both the model (A) and the monkeys (B). At the start of C2, the performance for both the model and the monkeys
is significantly higher compared to the start and end of C1, suggesting that covert learning has occurred during C1 although
performances are random during C1. C, Individual trials (n � 2 � 60) for all the sessions (n � 12) for the primates (monkey 1: sessions
1–7, monkey 2: sessions 8–12). D, Individual trials (n � 2 � 60) for all the sessions (n � 12) for the model. A black dot means a
successful trial (the best stimulus has been chosen), an outlined white dot means a failed trial (the best stimulus has not been chosen).
Measure of success is independent of the actual reward received after having chosen one of the two stimuli. The bottom part of each
panel shows the mean success rate over a sliding window of ten consecutive trials and averaged across all the sessions. The thick
black line is the actual mean and the gray-shaded area represents the SD over sessions.

Table 6 Experimental results

H0 statistic (H) p value
C0 start � C2 start 3.181 0.0024
C1 start � C2 start 3.738 0.0004
C1 end � C2 start 2.803 0.0069

Statistical analysis on correct answers. Kruskal–Wallis rank sum test be-
tween the three conditions [saline (C0), muscimol (C1), or saline following
muscimol (C2)] with post hoc pairwise comparisons using Dunn’s test for
multiple comparisons of independent samples. The script used for the anal-
ysis (R language) is available from Rougier and Topalidou (2017).
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and Frank (2006) show that Hebbian learning is not critical
for performances (only a 5% drop in performance) and did
not specifically study lesions in the BG. Similarly, the
model by Brown et al. (2004) does include a laminar
frontal part with a specific emphasis on the interaction
between the BG and the frontal cortex and explain how to
balance between reactive and planned behaviors. How-
ever, authors considers that “lesions of the BG uniquely
cause devastating disorders of the voluntary movement
system,” which is not always the case as we have shown
with experimental data (Desmurget and Turner, 2010;
Piron et al., 2016). The model by Schroll et al. (2014) and
Villagrasa et al. (2018) is notably similar to our own model
and suggests that the CBG pathway is not required to
perform previously well-learned SR associations, which is
quite consistent with our own hypothesis. By using a
simple S-R association tasks, authors show that a focal
GPi lesion do not impact significantly performances over
a previously well learned task. This is made possible
thanks to the cortico-thalamic pathway that learn “to
interconnect those cortical and thalamic neurons that are
simultaneously activated via reward-sensitive BG path-
ways.” The main difference with our own model is the
localization of the Hebbian learning and the lateral com-
petition. We hypothesize this learning to occur at the

cortical level and take advantage of a lateral competition
mechanism that is necessary to solve our decision task
(while it is not necessary for a simple S-R task). This lateral
competition acts indeed as a Go/NoGo substitute in the
absence of the BG output. Furthermore, authors did not
specifically conclude on the presence of covert learning
when GPi is lesioned. They showed that the model has
very bad performance when learning a new task, but they
did not test the model once GPi is unlesioned. We sus-
pect that if they had tested it, they would have found
results similar to our own.

Covert learning in the BG
These results reinforce the classical idea that the BG

architecture is based on an actor critic architecture where
the dopamine serves as a reinforcement signal. However,
the proposed model goes beyond this classical hypothe-
sis and proposes a more general view on the role of the
BG in behavior and their entanglement with the cortex.
Our results, both theoretical and experimental, suggest
that the critic part of the BG extends its role beyond the
BG and makes it de facto a central component in behavior
that evaluates any action, independently of their origin.
This hypothesis is very congruent with the results intro-
duced in Charlesworth et al. (2012), where authors show

Figure 8. Model performance during a single session. Filled dots indicate the chosen cue between A and B. Filled red dots indicate
if a reward has been received following the choice. Reward probability is 0.75 for cue A and 0.25 for cue B, but the displayed values
are computed according to the actual reward received for each option. They are based on the history of the session, not the
theoretical values. A, Intact model (C0). The BG output drives the decision and evaluates the value of cue A and cue B with a strong
bias in favor of A, because this cue is chosen more frequently. In the meantime, the Hebbian weight relative to this cue is strongly
increased, while the weight relative to the other cue does not change significantly. B, Lesioned model (C1). The BG output has been
suppressed and decisions are random. Hebbian weights for cue A and cue B are both increased up to similar values at the end of
the session. In the meantime, the value of cue A and cue B are evaluated within the BG and the random sampling of cue A and cue
B leads to an actual better sampling of value A and B. This is clearly indicated by the estimated value of B that is very close to the
theoretical value (0.25).
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that the anterior forebrain pathway in Bengalese finches
contributes to skill learning even when it is blocked and
does not participate in the behavioral performance.
This is also quite compatible with the hypothesis that
the BG is a general purpose trainer for corticocortical
connections as proposed by Ashby et al. (2010) and
Hélie et al. (2015). Here, we introduced a precise com-
putational model using both reinforcement and Heb-
bian learning, supported by experimental data, that
explains precisely how this general purpose trainer can
be biologically implemented.

This can be simply understood by scrutinizing a session
in control and lesion condition (Fig. 8). In control condi-
tion, the model learns to select the best cue thanks to the
BG. Learning the best stimulus induces a preferential
selection of the best stimulus to obtain a higher probabil-
ity of reward. If the process is repeated over many trials,
this leads implicitly to an over- representation of the more
valuable stimuli at the cortical level and consequently,
Hebbian learning will naturally reinforce this stimulus. In
the lesion condition, selection is random and each stim-
ulus is roughly selected with equal probability, which
allows the BG to evaluate the two stimuli even more
precisely. We believe this is the same for the monkeys

although we do not have access to internal values and
weights. However, we can see in Figure 9 that the esti-
mated value of stimuli (computed as the probability of
reward) reflects the highest value for the best stimulus.
Similarly, the number of times a given stimulus has been
selected is correlated with its actual value.

From reinforcement to Hebbian learning
These new results, together with our previous results

(Piron et al., 2016), shed light on a plausible neural mech-
anism responsible for the gradual mix between an A-O
and a S-R behavior. The novelty in our hypothesis is that
two systems that act and learn together, and we tend to
disagree with the hypothesis of a hierarchical system
(Dezfouli and Balleine, 2013). In our case, the final behav-
ioral decision results from a subtle balance between the
two decisions. When a new task needs to be solved, the
BG initially drives the decision because initially it has a
faster dynamic. In the meantime, the cortex takes advan-
tage of this driving, and gradually learns the decision
independently of the reward. We’ve shown how this could
be the case for monkeys, although we lack experimental
evidence that the decision in muscimol condition is actu-
ally driven by the cortex. The actual combination of the

Figure 9. Monkey performance during a single session. Filled dots indicate the chosen cue between A and B. Filled red dots indicate
if a reward has been received following the choice. Reward probability is 0.75 for cue A and 0.25 for cue B, but the displayed values
are computed according to the actual reward received for each option. They are based on the history of the session, not the
theoretical values. A, In saline condition (C0), the monkey is able to slowly choose for the best cue with a slight preferences for A at
the end of the 60 trials. Estimation of the perceived value of the two cues shows the actual value of A is greater than the value of B
at the end of the session B, In muscimol condition (C1), the monkey chooses cues randomly as indicated by the overall count of
choices A and B. Estimation of the perceived value of the two cues (dashed lines) reveals a greater estimation of the value of A
compared to the value of B.
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two systems might be more complex than a simple
weighted linear combination and this make the study even
more difficult to carry on. What we see at the experimental
level might be the projection of a more complex phenom-
enon. Persisting in a devaluated task does not mean that
the system is frozen, but the time to come back from a
S-R oriented behavior might be simply longer than the
time to initially acquire the behavior.
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