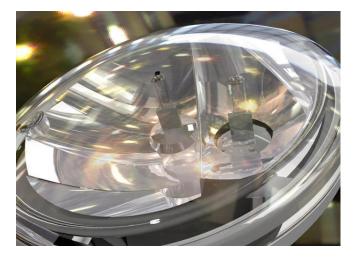
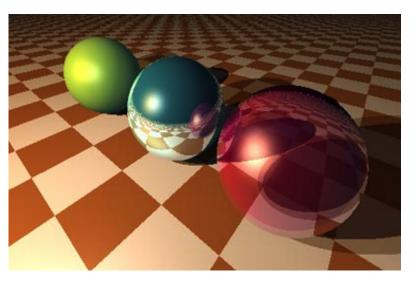
Lancer de Rayon

Objectif

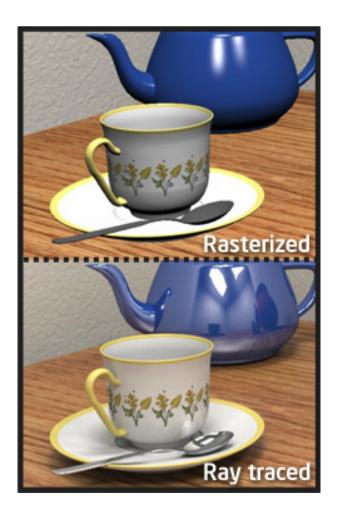




Principaux intérêts

Haute qualité par défaut

- éclairage par pixel
- ombres portées
- réflexions
- réfractions



Principe

Génération des rayons

rayons primaires : rayons émis à partir d'un point de vue, au travers d'une image, vers la scène

Tracé de rayon

trouver la plus proche intersection avec la scène 3D

Calcul de l'apparence

éclairement direct à partir des sources de lumière (rayon d'ombre).

Difficultés

Génération des rayons

Tracé de rayon

- calculer l'intersection rayon / objet
- trouver l'intersection la plus proche le plus rapidement possible!

Calcul de l'apparence

ombres, réfractions, etc.

Génération des rayons primaires

Un rayon: $\underline{r}(t) = \underline{o} + t \underline{d}$

• origine $\underline{\mathbf{o}} = (o\underline{\mathbf{x}}, o\underline{\mathbf{y}}, o\underline{\mathbf{z}})$, direction $\underline{\mathbf{d}} = (d\underline{\mathbf{x}}, d\underline{\mathbf{y}}, d\underline{\mathbf{z}})$ avec $||\underline{\mathbf{d}}|| = |\mathbf{v}|$

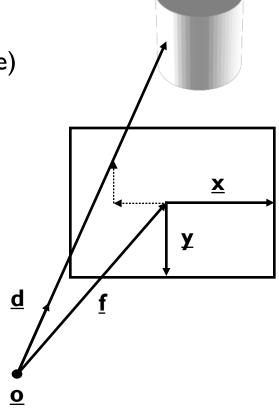
Hypothèse : "Pinhole camera" (sténopé)

• <u>o</u> : origine (point de vue)

• $\underline{\mathbf{f}}$: axe optique (vecteur vers le centre de l'image)

x, y : axes sur l'image

• width, height: résolution de l'image

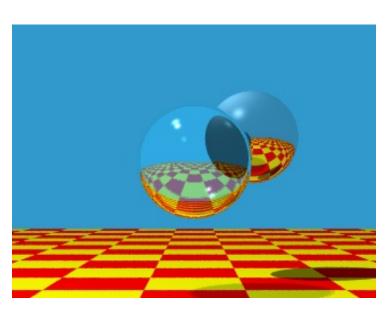


Extension du modèle

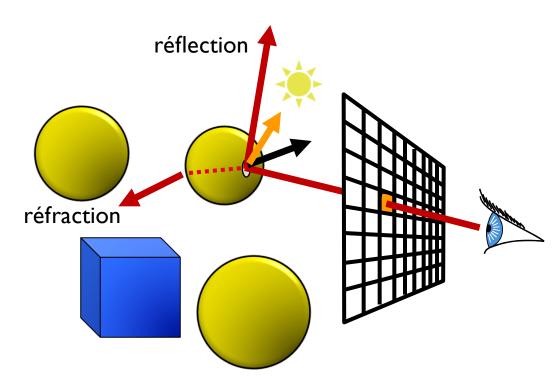
[Turner Whitted 1980]

Trois nouveaux rayons sont générés :

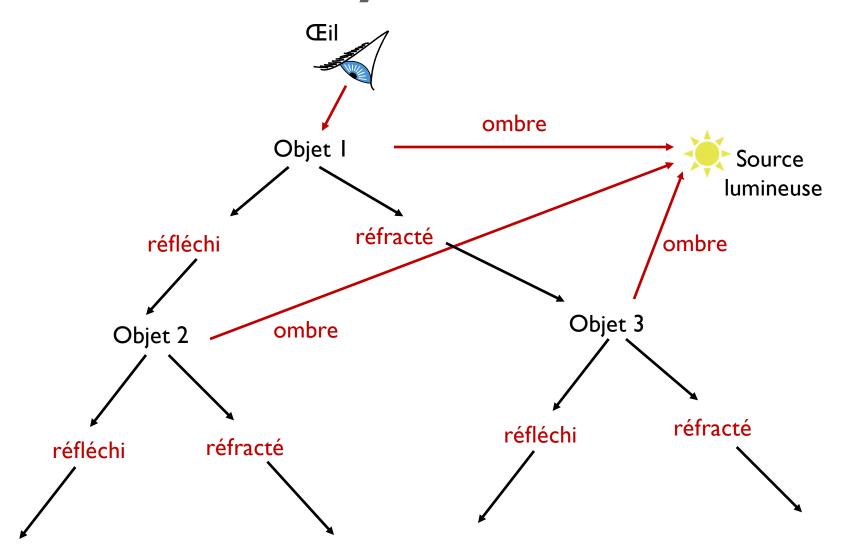
- un rayon réfracté*,
- un rayon d'ombre
- un rayon réfléchi*, ⇒ lancer de rayon récursif



En 1980, 74 min de calcul.

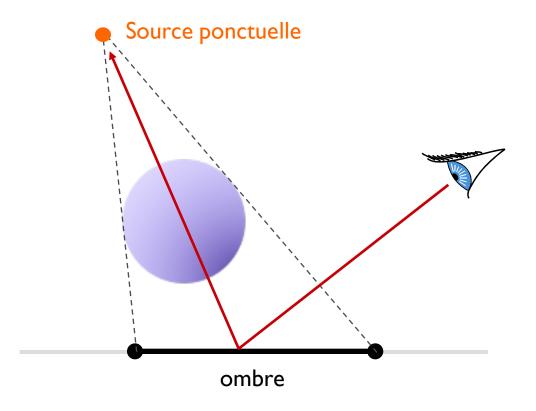


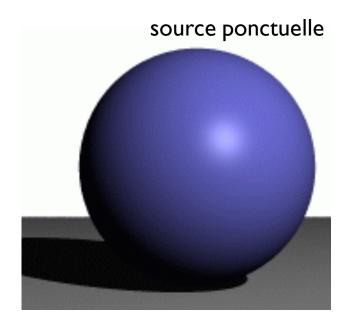
L'arbre des rayons



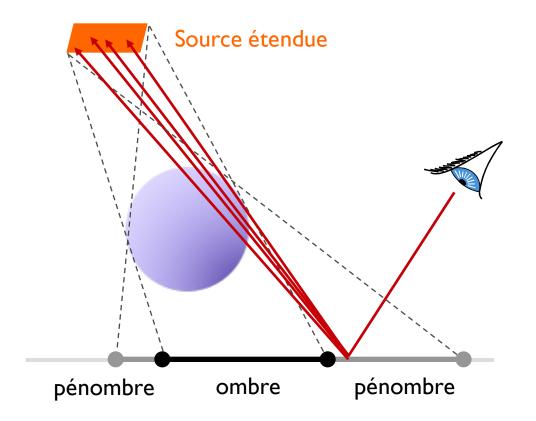
Ombres dures

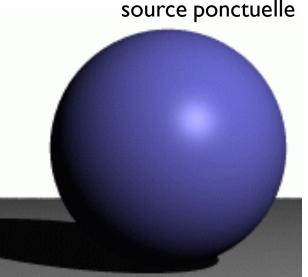
Un rayon d'ombre par source de lumière ponctuelle

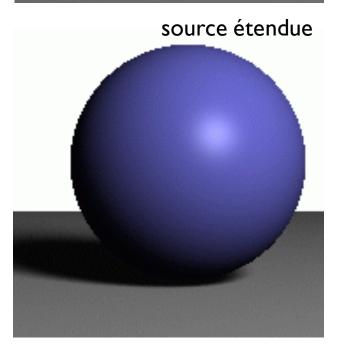


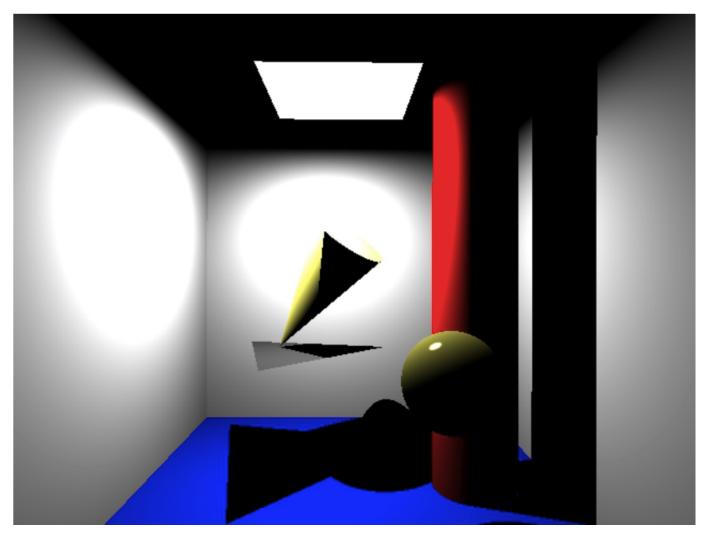


Plusieurs rayons d'ombre par source de lumière **étendue**

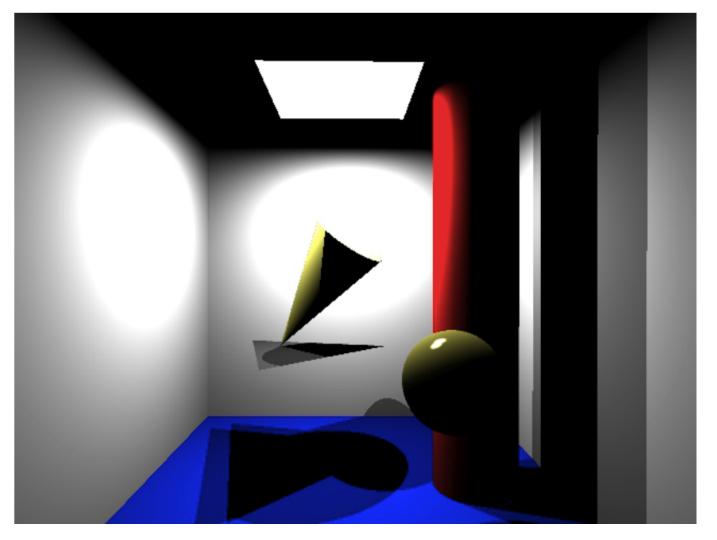




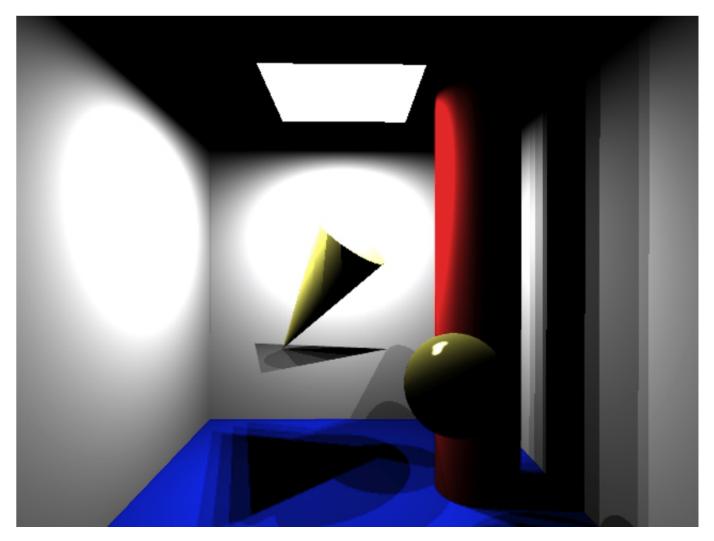




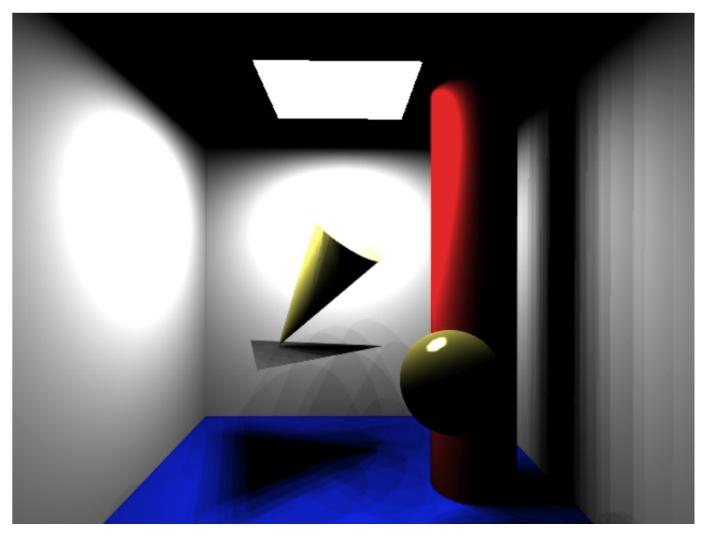
I source



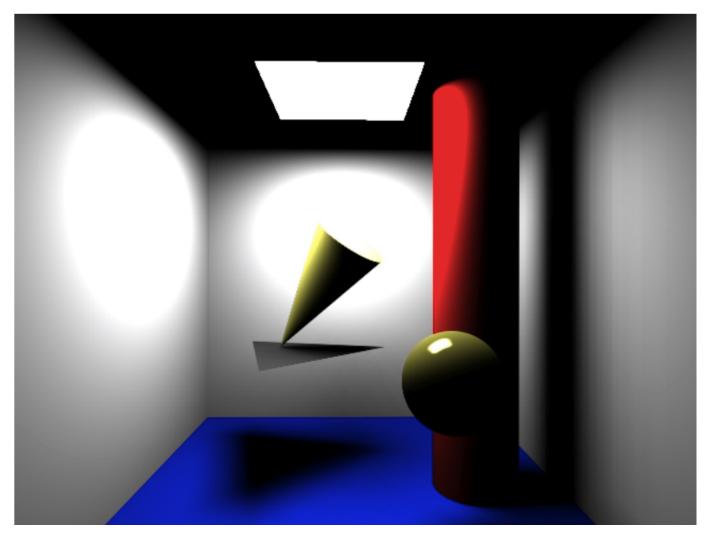
2 sources



4 sources



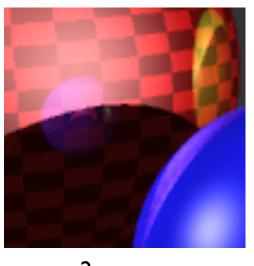
16 sources

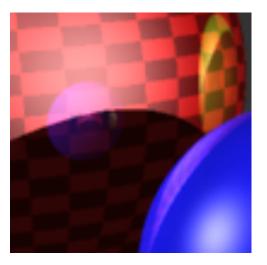


256 sources

Anti-aliasing

I pixel ≠ I point ⇒ I pixel = petit élément de surface
 ⇒ intégrer sur toute la surface du pixel
 En pratique : plusieurs rayons par pixel et moyenner

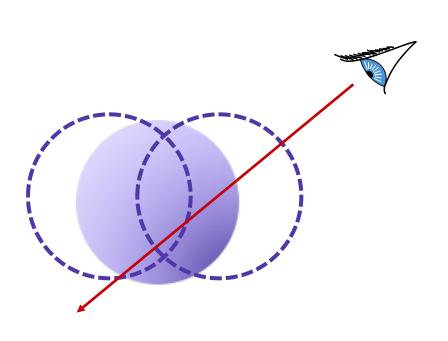




3 rayons

Flou cinétique

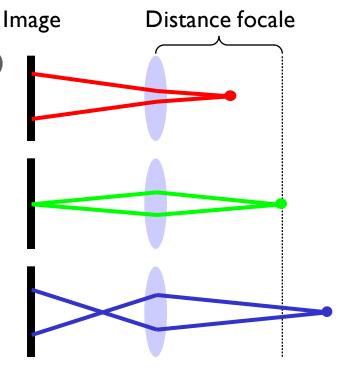
Plusieurs rayon au cours du temps

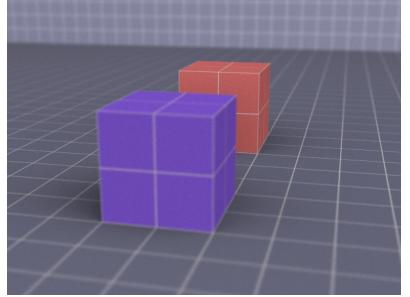


[Cook et al. 1984]

Profondeur de champ

Plusieurs rayons par pixel en considérant une **lentille** (changements de direction dûs à l'objectif)





Intersection rayon-scène

Rayon:
$$\underline{r}(t) = \underline{o} + t \underline{d}$$

 $\underline{o} = (o_x, o_y, o_z), \underline{d} = (d_x, d_y, d_z)$
 \Rightarrow équation explicite

Sphère :
$$||\underline{p} - \underline{c}||^2 - r^2 = 0$$

- c : centre de la sphère, r : rayon de la sphère
- ⇒ équation implicite

$$Plan: (\underline{p} - \underline{a}) \cdot \underline{n} = 0$$

- **n** : normale à la surface, **a** : un point sur le plan
- ⇒ équation implicite

Triangle: partie d'un plan

Intersection rayon-sphère

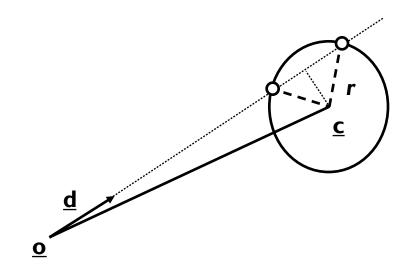
Rayon: $\underline{r}(t) = \underline{o} + t \underline{d}$

 $\underline{o} = (o_{\underline{x}}, o_{\underline{y}}, o_{\underline{z}}), \underline{d} = (d_{\underline{x}}, d_{\underline{y}}, d_{\underline{z}})$

Sphère : $||\underline{p} - \underline{c}||^2 - r^2 = 0$

c : centre de la sphère, **r** : rayon de la sphère

Point d'intersection?



Intersection rayon-sphère

Étant donnée l'équation de la sphère : $||\mathbf{x} - \mathbf{c}||^2 - r^2 = 0$

c : centre de la sphère, **r** : rayon de la sphère

Remplacer x par l'équation du rayon :

$$t^2 \underline{d} \cdot \underline{d} + 2t \underline{d} \cdot (\underline{o} - \underline{c}) + ||\underline{o} - \underline{c}||^2 - r^2 = 0$$

équation du second degré en t

- discriminant négatif = pas d'intersection
- 2 racines : garder la plus proche positive (généralement t_)

⇒ Permet d'obtenir des sphères exactes

Intersection rayon-plan

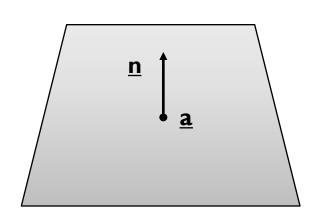
Rayon:
$$\underline{r}(t) = \underline{o} + t \underline{d}$$

$$\underline{o} = (o_{\underline{x}}, o_{\underline{y}}, o_{\underline{z}}), \underline{d} = (d_{\underline{x}}, d_{\underline{y}}, d_{\underline{z}})$$

$$Plan : (\underline{p} - \underline{a}) \cdot \underline{n} = 0, ||\underline{n}|| = 1$$

n : normale à la surface, **a** : un point sur le plan

Point d'intersection?



Intersection rayon-plan

Équation du plan : $\mathbf{x} \cdot \mathbf{n} - \mathbf{D} = \mathbf{0}$, $|\mathbf{n}| = \mathbf{I}$

- Normale : n
- Distance du plan au centre (0,0,0): D = $\underline{\mathbf{a}} \cdot \underline{\mathbf{n}}$

Remplacer x par l'équation du rayon :

$$(\underline{o} + t\underline{d}) \cdot \underline{n} - D = 0$$

La solution devient:

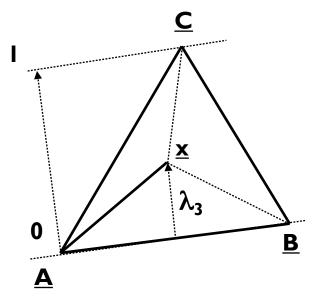
$$t = \frac{D - \underline{o} \cdot \underline{n}}{\underline{d} \cdot \underline{n}}$$

4 cas:

- t infini \implies rayon parallèle et distinct du plan
- t non-défini \Rightarrow rayon confondu avec le plan
- $t < 0 \implies$ intersection derrière la caméra
- $t > 0 \implies$ intersection devant la caméra

Coordonnées barycentriques

- Pour un triangle non-dégénéré ABC
- $\lambda_1 + \lambda_2 + \lambda_3 = 1$
- λ₃ = Aire(ΔAxB) / Aire(ΔACB)
 ⇒ Aire relative signée



Test d'appartenance au polygone

• à l'intérieur si tous les λ_i sont plus grand ou égal à zéro

Interpolation des attributs aux sommets

normales, couleurs, coordonnées de texture, etc.

Calculer l'intersection avec le plan

Attention aux cas tangents!

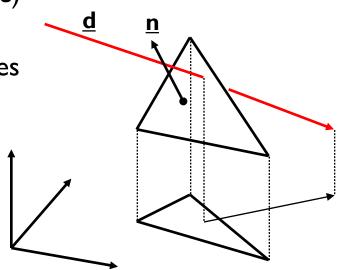
Test d'appartenance au polygone

Possibilité de le faire en 2D

 projection sur un des plans du repère global (choix de l'axe en fonction de la normale)

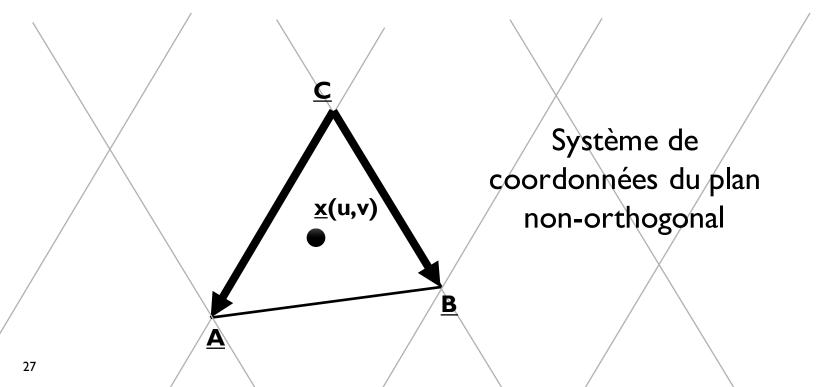
= ignorer une coordonnée

test avec les coordonnées barycentriques



$$\lambda_1 + \lambda_2 + \lambda_3 = I \Leftrightarrow \lambda_3 = I - \lambda_1 - \lambda_2$$

Réécriture avec $u = \lambda_1$ et $v = \lambda_2$:
 $\underline{x} = u \underline{A} + v \underline{B} + (I - u + v) \underline{C}$
 $= u (\underline{A} - \underline{C}) + v (\underline{B} - \underline{C}) + \underline{C}$



Test d'intersection rapide

- t : distance à l'origine
- u,v: coordonnées dans le triangle (u,v dans [0,1])

$$\underline{o} + t\underline{d} = u (\underline{A} - \underline{C}) + v (\underline{B} - \underline{C}) + \underline{C}$$

Système de 3 équations à 3 inconnues, forme matricielle :

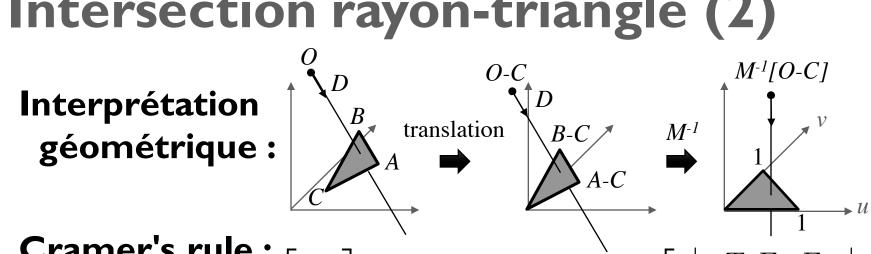
$$[-\underline{d}, \underline{A} - \underline{C}, \underline{B} - \underline{C}][t, u, v]^T = \underline{o} - \underline{C}$$

M: matrice 3x3

Optimisation : stopper dès que u ou v est négatif

Méthode de référence!

« Fast, minimum storage ray-triangle intersection » Tomas Möller and Ben Trumbore, Journal of Graphics Tools, 1997



Cramer's rule:

$$E_1 = A - C$$
 avec
$$E_2 = B - C$$

$$T = O - C$$

Cramer's rule:
$$\begin{bmatrix} t \\ u \\ ext{avec} & E_1 = A - C \\ E_2 = B - C & \begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{\begin{bmatrix} | -D & E_1 & E_2 \\ | -D & E_1 & E_2 \end{bmatrix}} \begin{bmatrix} \begin{vmatrix} T & E_1 & E_2 \\ | -D & T & E_2 \\ | -D & E_1 & T \end{vmatrix} \end{bmatrix}$$

où déterminant: $|A \ B \ C| = -(A \times C) \cdot B = -(C \times B) \cdot A$

D'où:

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{(D \times E_2) \cdot E_1} \begin{bmatrix} (T \times E_1) \cdot E_2 \\ (D \times E_2) \cdot T \\ (T \times E_1) \cdot D \end{bmatrix} = \frac{1}{P \cdot E_1} \begin{bmatrix} Q \cdot E_2 \\ P \cdot T \\ Q \cdot D \end{bmatrix}$$

avec $P = (D \times E_2)$ et $Q = (T \times E_1)$

Avantages Möller-Trumbore:

- Rapide
 - produits scalaires et vectoriels $(1 \div, 27 \times, 17 \pm)$
- Faible coût mémoire
 - équation du plan pas stockée
 - normale pas stockée
- Coordonnées barycentriques en bonus!

Intersection rayon-scène

Polygones : [Appel '68]

Quadriques, CSG: [Goldstein & Nagel '71]

• Torres : [Roth '82]

- Patches bi-cubiques : [Whitted '80, Kajiya '82, Benthin '04]

Surfaces algébriques : [Hanrahan '82]

Swept surfaces: [Kajiya '83, van Wijk '84]

Fractales : [Kajiya '83]

NURBS : [Stürzlinger '98]

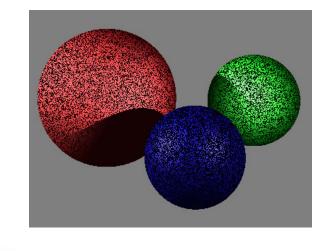
Surfaces de subdivision : [Kobbelt et al. '98, Benthin '04]

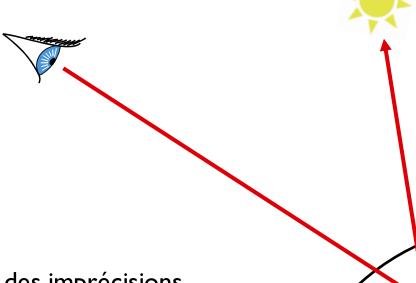
Points: [Schaufler et al. '00, Wald '05]

Problème de précision

Un point n'est jamais exactement

- sur le plan ou la sphère
- dans le triangle





Le calcul d'ombrage peut créer des ombres non-souhaités

À cause des imprécisions, le point est juste derrière la surface

Lancer de rayon : avantages

Pas de calculs supplémentaires pour

- l'élimination des parties cachées
- les ombres
- la transparence
- le plaquage de textures (y compris procédurales)

Inter-réflexions spéculaires entre objets

Primitives graphiques quelconques

pas seulement pour les polygones!

Lancer de rayon : limitations

Arbre limité à une certaine profondeur

Les objets complexes peuvent avoir un problème (diamant, cristal...)

Limité à Snell-Descartes

- Tous les objets réfléchissant sont métalliques
- Pas d'inter-réflexion entre objets diffus

Lent

95 % du temps est utilisé pour les intersections

Structures d'accélération

Trouver l'intersection la plus proche

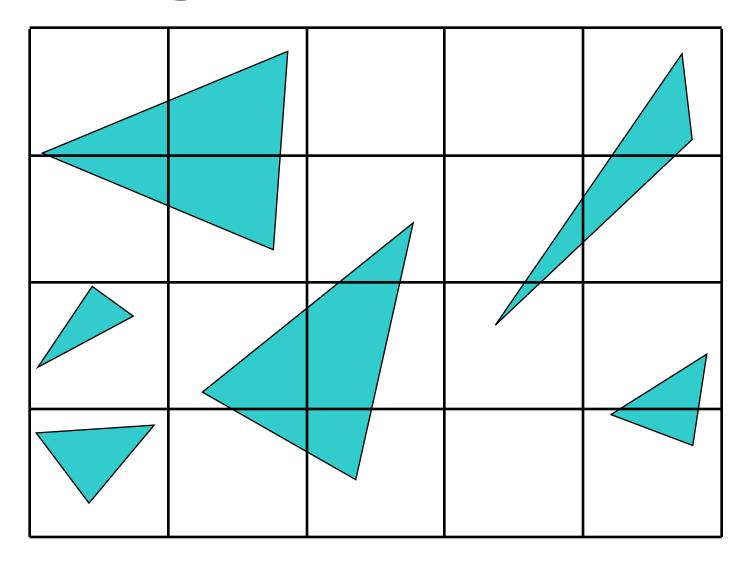
- Tester l'intersection du rayon avec tous les objets
- N objets, M rayons \Rightarrow O(NM)
- Trop coûteux!

Objectif

- Faire en sorte que la 1 ère intersection calculée soit la bonne
- En pratique : compromis

Solution : partitionnement de l'espace (souvent hiérarchique)

Grille régulière



Grille régulière

Construction

- Subdivision de la boîte englobante
- Résolution : souvent $\sim \sqrt[3]{n}$
- Une cellule : liste des objets l'intersectant

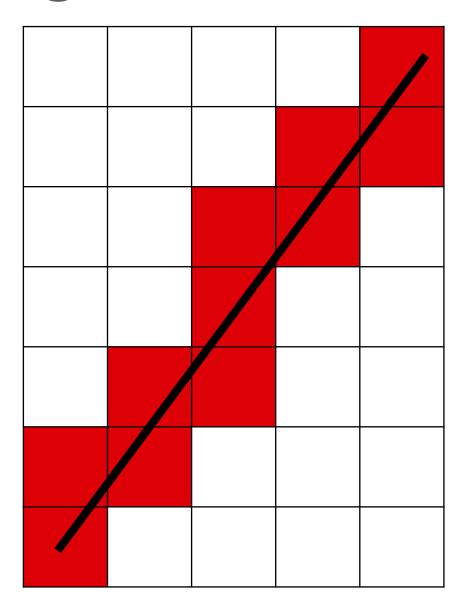
Parcours

- De proche en proche
- De l'origine vers l'arrière
- Arrêt si une intersection est trouvée

Parcours dans la grille

3DDDA

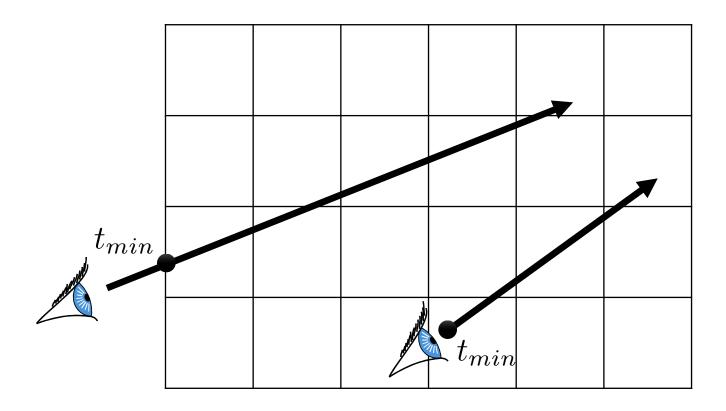
Three Dimensional Digital Difference Analyzer



Initialisation

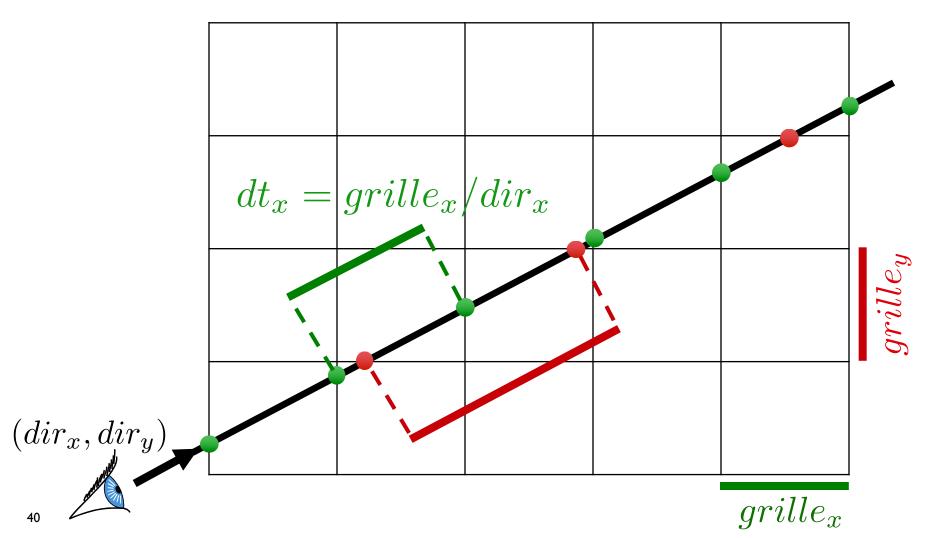
Calculer l'intersection avec la boite englobante t_{min}

(Attention, l'origine du rayon peut être dans la boîte)

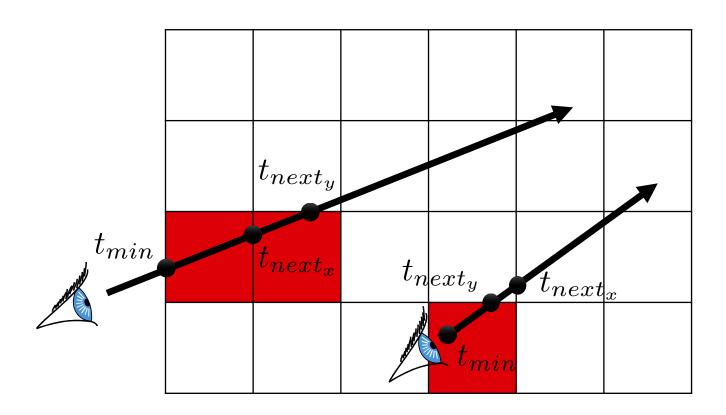


L'intersection est répétitive

Les intersections sur les axes sont équidistantes

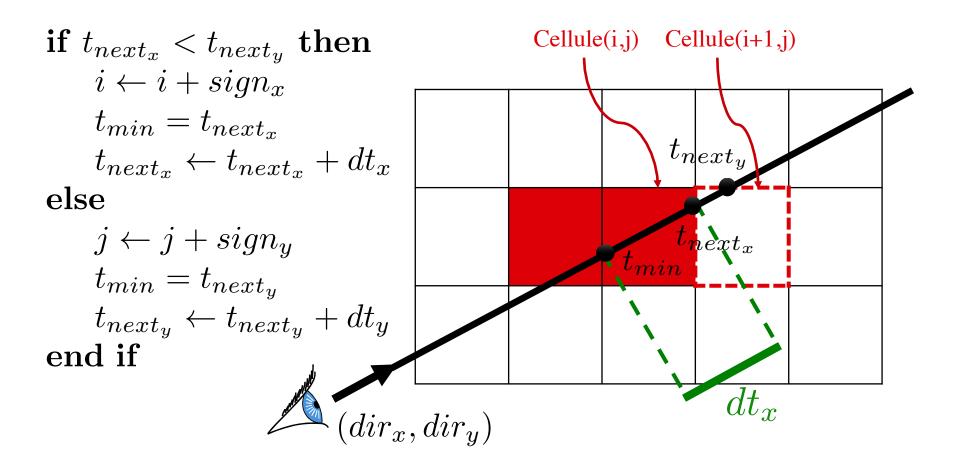


Calculer les 2 intersections suivantes avec les axes $\begin{cases} t_{next_x} \\ t_{next_y} \end{cases}$

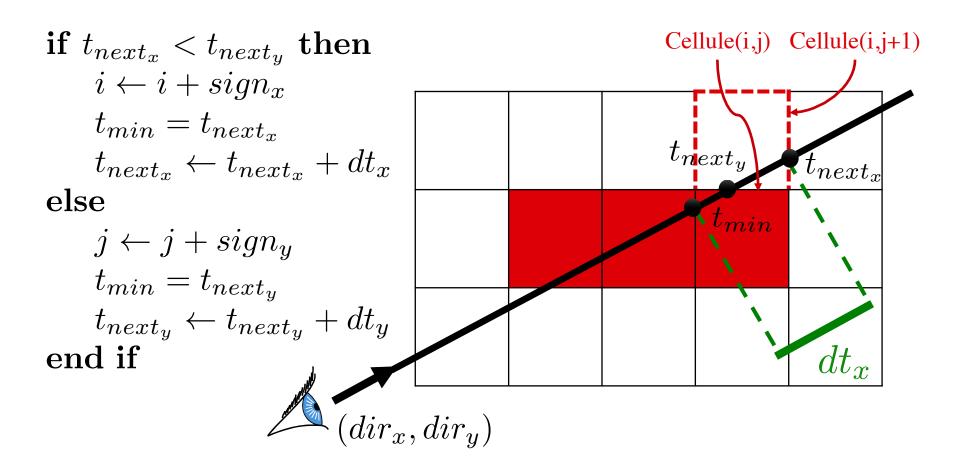




if $dir_n > 0$ then $sign_n \leftarrow 1$ else $sign_n \leftarrow -1$ end if



if $dir_n > 0$ then $sign_n \leftarrow 1$ else $sign_n \leftarrow -1$ end if



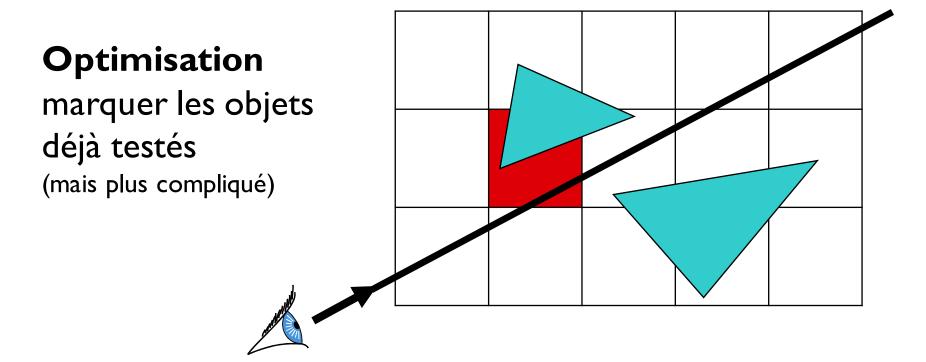
if $dir_n > 0$ then $sign_n \leftarrow 1$ else $sign_n \leftarrow -1$ end if

Test à faire sur chaque cellule

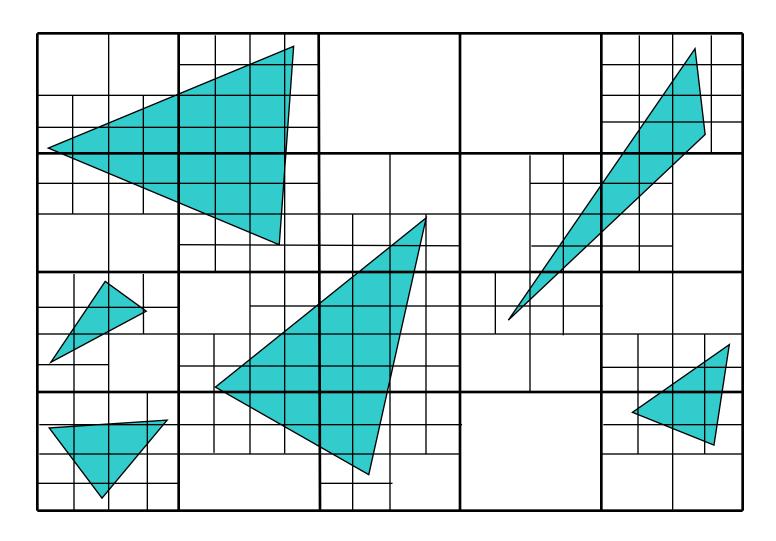
Intersection(s) dans la cellule?

Oui : retourner la plus proche

Non:continuer



Grille adaptative: Octree [Meagher '80]



Grille adaptative: Octree

Partitionnement hiérarchique de l'espace

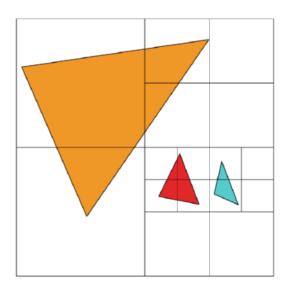
Subdivise adaptivement chaque voxel en 8 sous-voxels

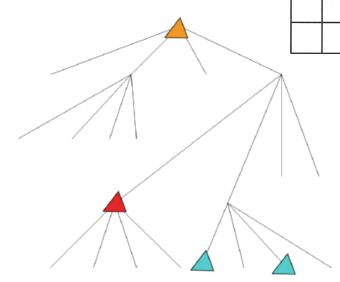
de manière récursive

Différents critères possibles

nombre de primitives par cellules

ratio de « vide »





Question – 3 mn

Comparer grille régulière et Octree

Comparaison

Grille régulière

- √ construction facile et rapide
- √ parcours simple
- × nombreuses cellules vides
- cellules avec beaucoup d'objets
- X choix de la résolution

Octree

- √ initialisation rapide
- ✓ peu de cellules vides
- × parcours récursif couteux
- X convergence lente pour les zones complexes

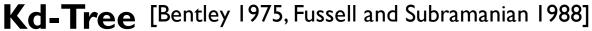
Grille adaptative: BSP- et Kd-Trees

Arbres binaires

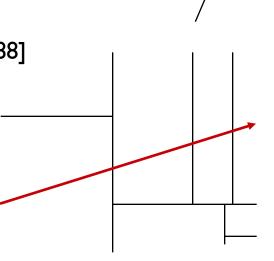
Nœud = plan de subdivision de l'espace

Binary Space Partition [Fuchs et al. 1980]

- Plans quelconques « judicieusement » placés
- Couteux à construire, stocker et utiliser

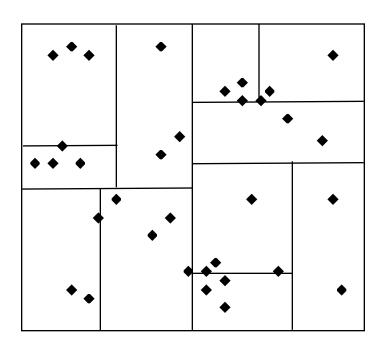


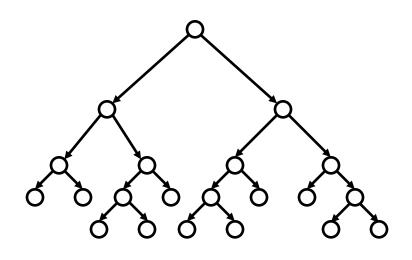
- Plans alignés sur les axes
- Simple, léger et très efficace



KD-tree: définition

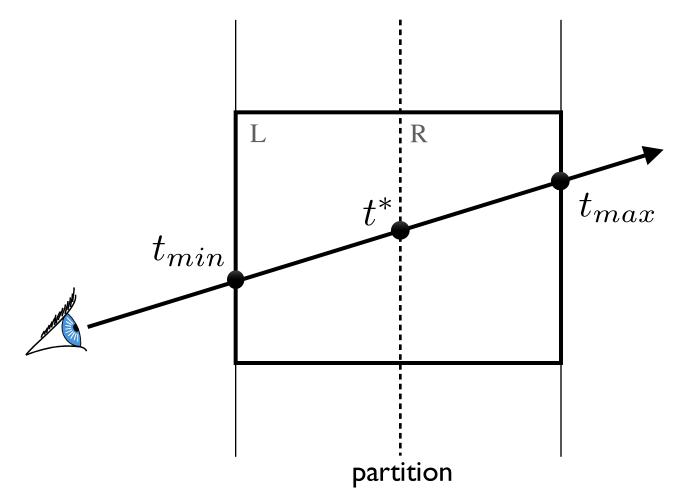
Subdivision récursive





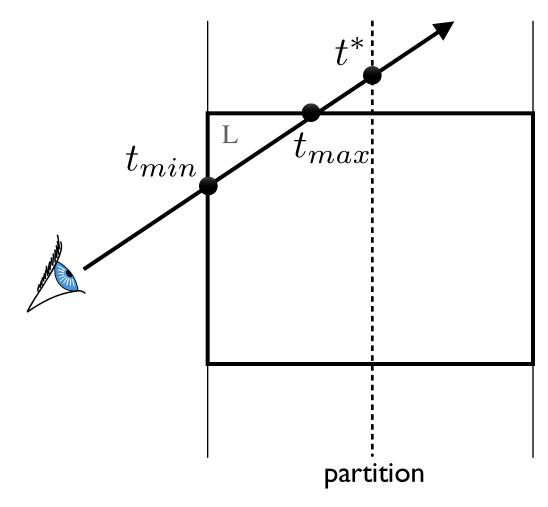
KD-tree: parcours récursif

 $t_{min} < t_* < t_{max} \Rightarrow \text{Intersect}(L, t_{min}, t^*) \text{ et Intersect}(R, t^*, t_{max})$



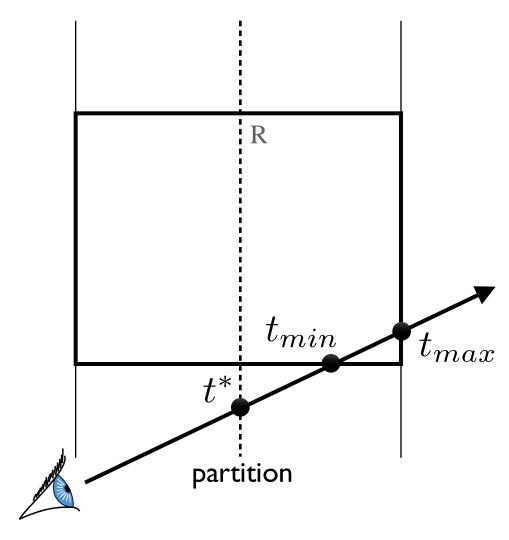
KD-tree: parcours récursif

 $t_{max} < t^* \Rightarrow \text{Intersect}(L, t_{min}, t_{max})$



KD-tree: parcours récursif

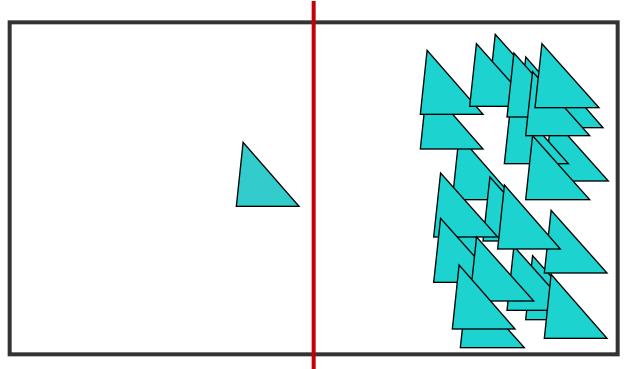
 $t_* < t^{min} \Rightarrow \text{Intersect}(R, t_{min}, t_{max})$



Algo « naïf »

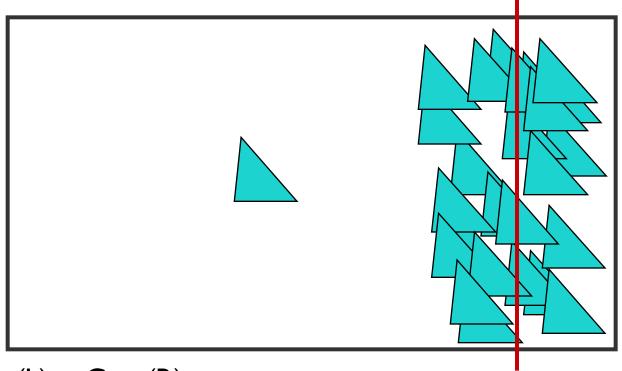
- Axe de coupe : le long de la plus grande dimension
- Position de coupe : au centre ou médian de la géométries (arbre équilibré)
- Critère d'arrêt : nombre de primitives, profondeur max.

Couper au milieu



- Prob(Hit L) = Prob(Hit R)
- Ne prend pas en compte le coût de L & R

Couper à la médiane



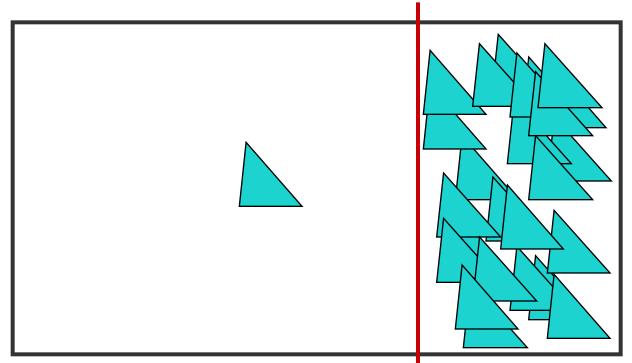
- Cost(L) = Cost(R)
- Ne prend pas en compte les probabilités d'entrer dans L et R

Algo « intelligent »

- Objectif : choisir le plan de coupe qui rend le tracé de rayon le moins couteux possible
- Définir un modèle de coût et le minimiser
- Quel est le coût de tracer un rayon au travers d'une cellule ?

```
Cost(cell) = C_trav + Prob(hit L) \times Cost(L) + Prob(hit R) \times Cost(R)
```

Optimisation de la fonction de coût



- Isole automatiquement et rapidement les zones complexes
- Génère de grands espaces vides / concentre les primitives dans de petits nœuds

[MacDonald and Booth 1990]

Probabilité de rentrer dans une cellule

 \Rightarrow proportionnel à l'aire de la surface de la cellule (SA)

Coût de parcours d'une cellule

⇒ nombre de triangles (TriCount)

$$Cost(cell) = C_trav + Prob(hit L) \times Cost(L) + Prob(hit R) \times Cost(R)$$
$$= C_trav + SA(L) \times TriCount(L) + SA(R) \times TriCount(R)$$

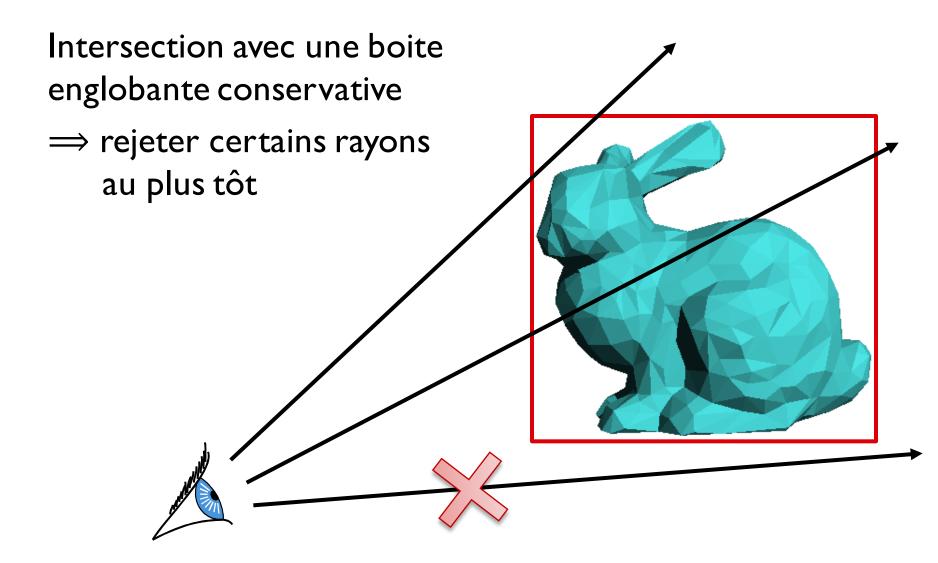
Critère d'arrêt

⇒ quand subdiviser ne réduit plus le modèle de coût (seuillage)

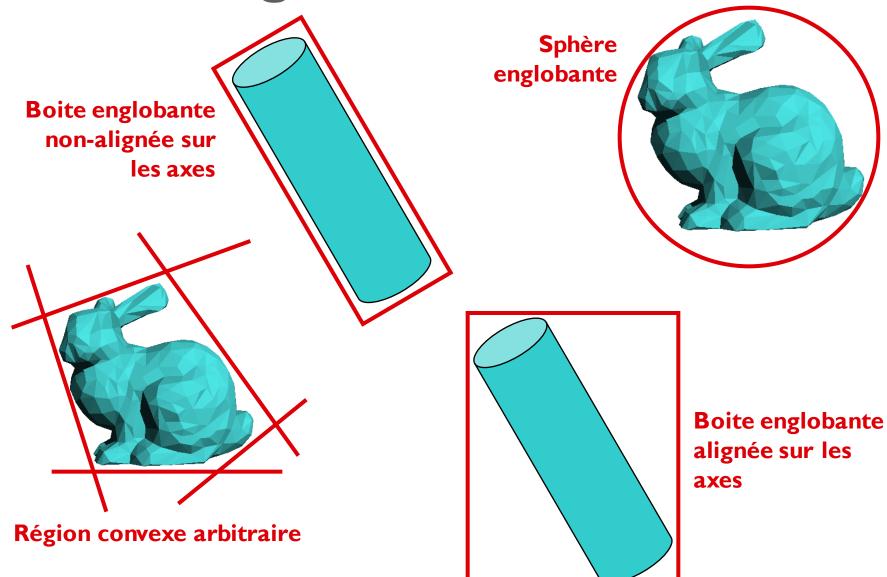
Résultats

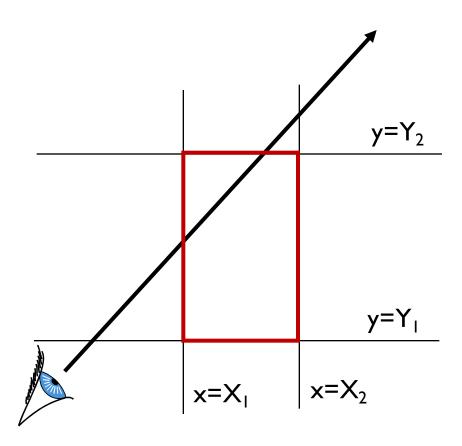
 \Rightarrow un « bon » KD-tree est de 2 à 5 fois plus rapide

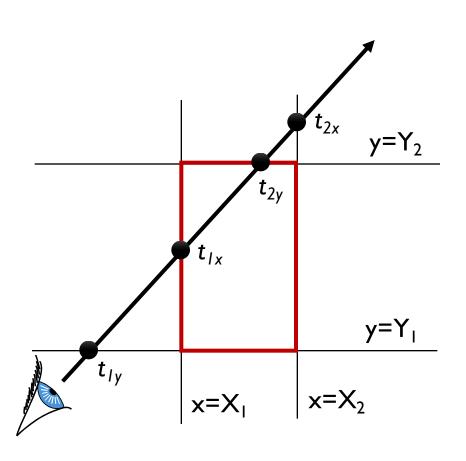
Boites englobantes



Boites englobantes

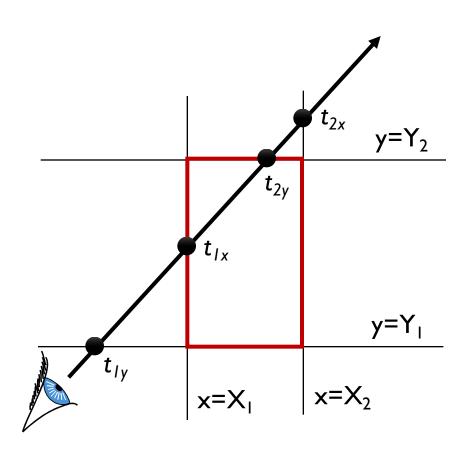






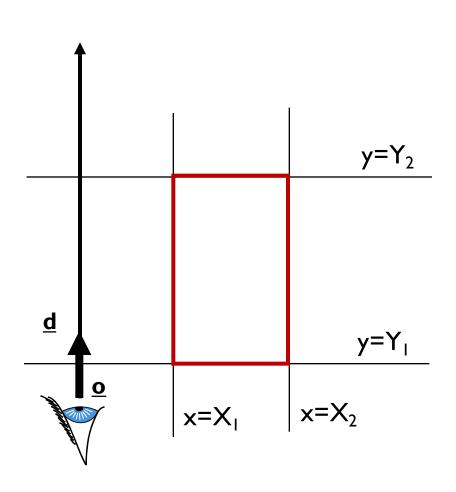
- Boîte = 6 plans
- Calculer toutes les intersections
- Conserver la plus proche à l'intérieur de la boîte

Simplifier les calculs



- Chaque paire de plan a la mêmes normale
- Une seule composante de la normale est non-nulle
- considérer une dimension à la fois

Tester si le rayon est parallèle

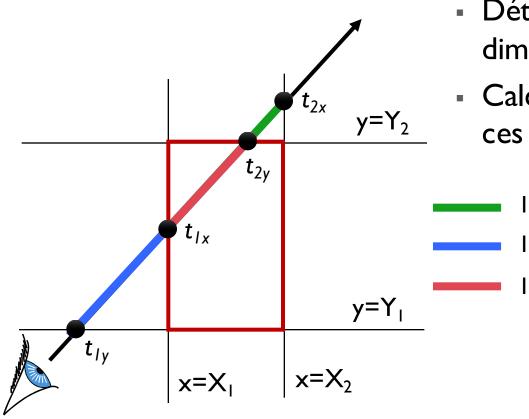


$$\underline{\mathbf{d}}_{\mathbf{x}} = \mathbf{0}$$

...et s'il n'y a pas d'intersection : $o_x < X_1$ ou $o_x > X_2$

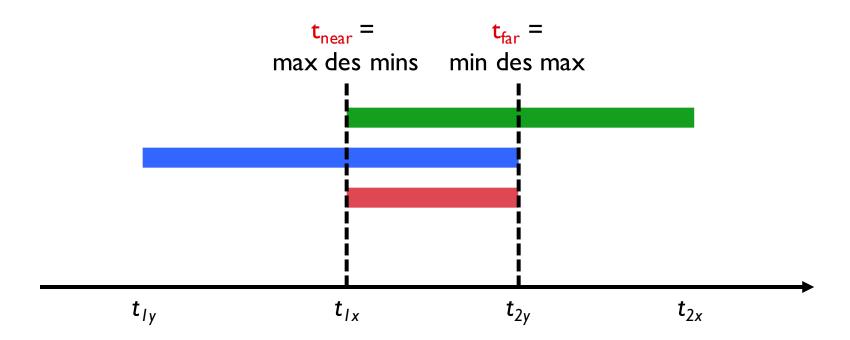
(Idem en Y et Z, bien-sûr)

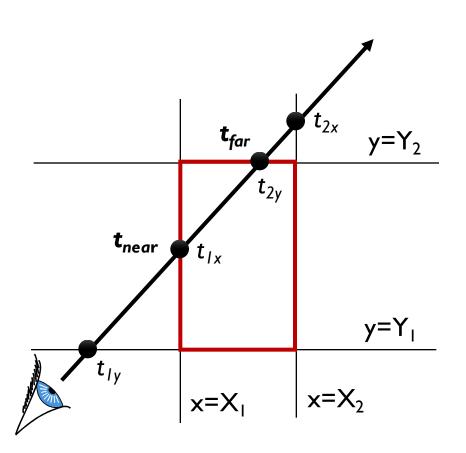
Trouver les intersections par axe



- Déterminer un intervalle par dimension
- Calculer l'intersection de ces intervalles ID
 - Intervalle entre X_1 et X_2
 - Intervalle entre Y₁ etY₂
 - Intersection

Intersection d'intervalles ID





Calculer les distances d'intersection t_1 et t_2 pour chaque axe :

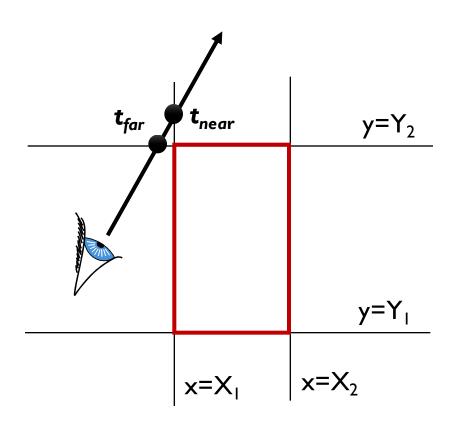
$$t_{1x} = (X_1 - \underline{o}_x) / \underline{d}_x$$

$$t_{2x} = (X_2 - \underline{o}_x) / \underline{d}_x$$

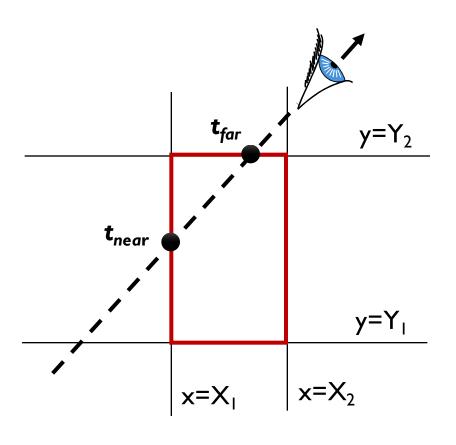
puis:

$$t_{\text{near}} = \max (t_{1x}, t_{1y})$$

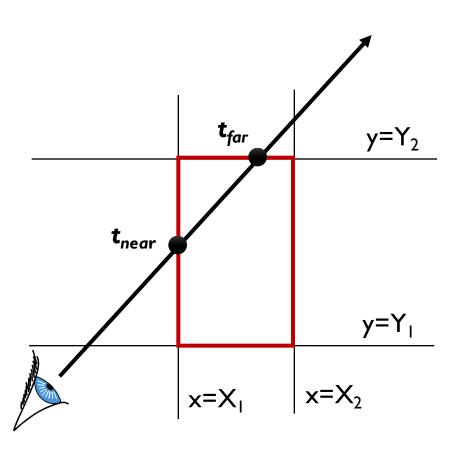
$$= t_{far} = min(t_{2x}, t_{2y})$$



Si $t_{near} > t_{far}$, pas d'intersection

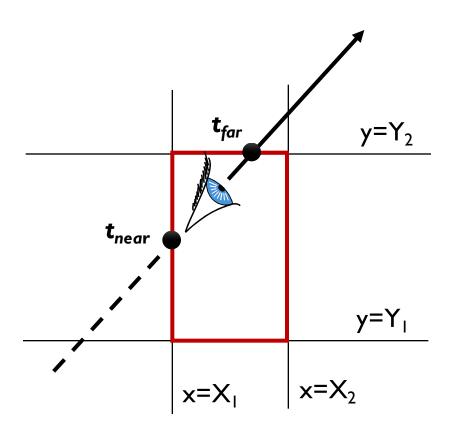


Si t_{far}< t_{min}, la boîte est derrière



Si $t_{near} > t_{min}$, l'intersection se fait à la distance t_{near}

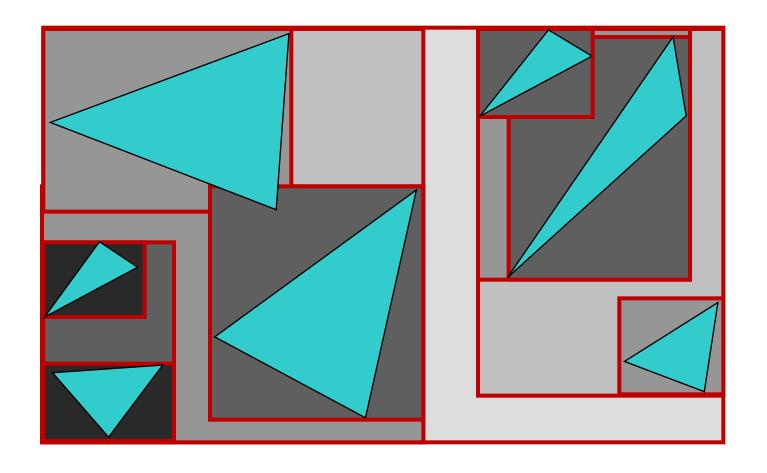
Boîte englobante alignée sur les axes



Sinon, elle se fait à t_{far}

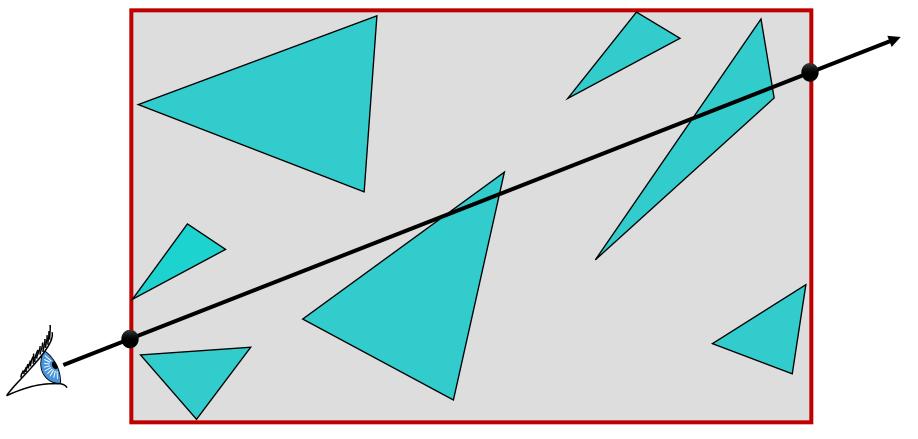
Hiérarchie de boites englobantes

BVH = KD-tree avec I boîte par nœud



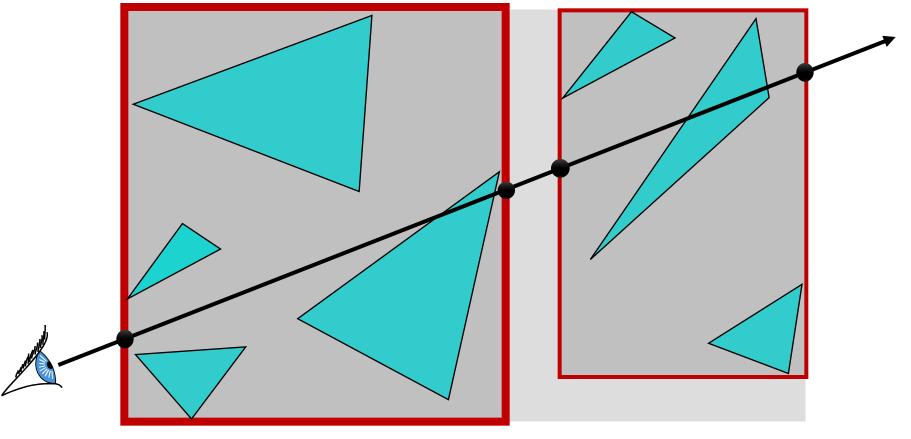
BVH: intersection

Tester la boîte parente



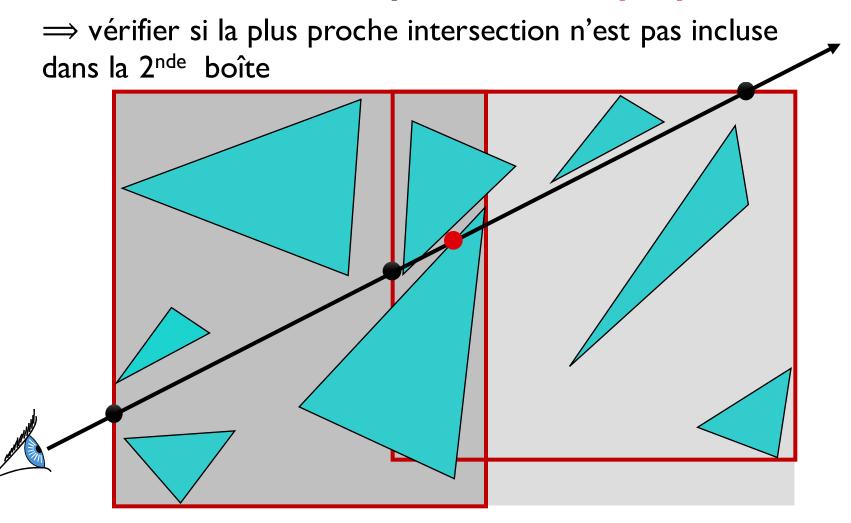
Hiérarchie de boites englobantes

Si Intersection, descendre sur les fils Tester la boîte avec l'intersection la plus proche



Hiérarchie de boites englobantes

Attention, les boîtes peuvent se superposer!



Question – 3 mn

Comparer KD-tree et BVH

Comparaison

KD-tree

- léger en mémoire (si bien codé)
- parcours simple et rapide
- construction optimale plus facile

BVH

- arbre moins profond
- permet de décaler légèrement un objet sans avoir à reconstruire entièrement l'arbre

Conclusion

- Scènes statiques ⇒ KD-tree
- Scènes dynamiques ⇒ BVH
 (les préférences semblent converger vers le tout BVH)

Lancer de rayon cohérent

Idée: 2 rayons proches ont de fortes chances d'intersecter la même primitive

- Tracer des paquets de KxK rayons en même temps (e.g., 8x8)
- Amortissement du coût de traversée de l'arbre
- Permet d'exploiter au mieux les instructions SIMD (e.g., SSE)
- Réduit les défauts de cache

Gros facteur d'accélération (~ x I 0) Attention aux rayons secondaires! (vectorisation par rayon préférable)

[Wald et al. EG 2001]

Parallélisation

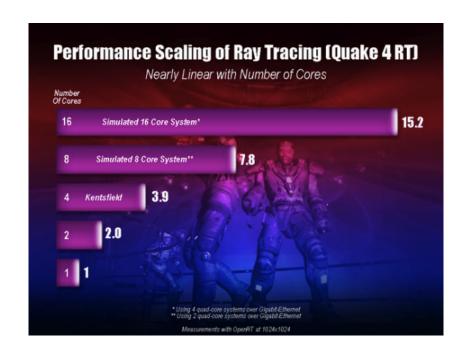
Plusieurs possibilités :

- distribution image
- distribution scène
- distribution rayon / fonctionnelle

Dépend de l'architecture de la machine,

souvent combinaison des 3!

Exemple (quake4 RT, distribution image)



Cohérence + Parallélisation

Exemple:

Intel Embree [Wald et al. Siggraph 2014]

Kernels bas-niveaux optimisés + API

Lancer de rayon temps réel

Exploitation des GPU

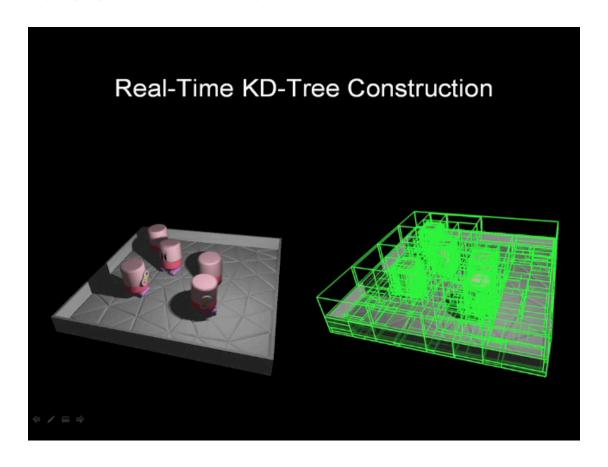
Structures de données sophistiquées

- Peu adaptées aux GPU des générations précédentes
- OK pour les GPU les plus récents, et futures

KD-tree GPU

Scènes animées :

Real-Time KD-Tree Construction on Graphics Hardware Zhou et al. SIGGRAPH 2008



BVH GPU

Fast BVH Construction on GPUs, Lauterbach et al., Eurographics 2009

Lancer de rayon sur GPU

Nvidia OptiX [Parker et al. Siggraph 2010]

bibliothèque bas-niveau destinée aux développeurs

- structure de données : *BVH
- génération des rayons
- · entièrement configurable

Autres

- Lightworks : basé sur OptiX
- Arion : GPU(CUDA)/CPU
- OctaneRender (CUDA)
- V-Ray RT (OpenCL)
- ...

