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1. INTRODUCTION

We consider 2-dimensional lattice weighted walks confined to the quadrant N? as illustrated
in Figure 1.1. In recent years, the enumeration of such walks has attracted a lot of attention
involving many new methods and tools. This question is ubiquitous since lattice walks encode
several classes of mathematical objects in discrete mathematics (permutations, trees, planar
maps, ... ), in statistical physics (magnetism, polymers, ... ), in probability theory (branching
processes, games of chance ... ), in operations research (birth-death processes, queueing theory).

FiGURE 1.1. The weighted model Q;‘ # along with an example of a walk of size
8, total weight p*\? and ending at (3,0)

Given a finite set S of allowed steps in Z? and a family of W = (w;)ses of non-zero weights,
the question consists in enumerating the weighted lattice walks in N? with steps in S. To this
end, we study the generating function

QX,Y,t) =Y ¢ XYt
i7j7n
where qg’j ) is the sum of the weights of all walks in N? of n steps taken in S that start at (0,0)
and end at (7,7). One natural question for this class of walks is to decide where Q(X,Y,t) fits

in the classical hierarchy of power series:
algebraic C D-finite C D-algebraic.

Here, one says that the series Q(X,Y,t) is D-finite if it satisfies a linear differential equation in
each variable X,Y ,t, and D-algebraic if it satisfies a polynomial differential equation in each of
the variables X, Y t.

Walks with small steps. For unweighted small steps walks (that is S € {—1,0,1}? and
weights all equal to 1), the algebraic classification is now complete. It required almost ten
1



2 PIERRE BONNET AND CHARLOTTE HARDOUIN

years of research and the contribution of many mathematicians, combining a large variety
of tools: elementary power series algebra [BMM10], computer algebra [BvHK10], probability
theory ([DW15]), complex uniformization ([KR12]), Tutte invariants [BBMR21] as well as dif-
ferential Galois theory ([DHRS18]).

A certain group G of birational transformations introduced in [BMM10] associated with
the model W plays a crucial role in the nature of Q(X,Y,t). Indeed, the series Q(X,Y,t)
is D-finite if and only if G, called here the classical group of the walk, is a finite group (see
[BMM10, BvHK10, KR12, MR09, DHRS20]).

When the group G is finite, the algebraic nature of the generating function is intrinsically re-
lated to the existence of certain rational functions in X, Y, ¢ called in this paper Galois invariants
and Galois decoupling pairs. These notions were introduced in [BBMR21] where the authors
proved that the finiteness of the group G is equivalent to the existence of non-trivial Galois
invariants (see [BBMR21, Theorem 4.6]) and that the algebraicity of the model is equivalent
to the existence of Galois invariants and decoupling pairs for the fraction XY (see [BBMR21,

§4.5)).

(A) Small steps models (B) Large steps models with (c) Large steps model with
small forward steps small backward steps

FIGURE 1.2. Models of walks

Walks with arbitrary steps. Contrasting with the precision of the classification for small
steps walks, the study of walks with large steps is still at its infancy. In [BBMM21], Bostan,
Bousquet-Mélou and Melczer lay the foundation of the study of large steps walks. To this
purpose, they attach to any model with large steps, a graph called the orbit of the walk whose
edges are pairs of algebraic elements over Q(x,y). When all the steps of the walk are small, the
orbit of the walk coincides with the orbit of (z,y) under the action of the group G of birational
transformations introduced in [BMM10].

Bostan, Bousquet-Mélou and Melczer started a thorough classification of the associated 13110
nonequivalent models whose steps have coordinates in {1,0, —1, —2} (which are instances of walk
with small forward steps, see Figure 1.2b). They ended up with a partial classification of the
algebraic nature of the associated generating functions (see [BBMM21, Figure 7]). Among the
240 models with finite orbit, they were able to prove that all but 9 were D-finite via orbit
sums constructions or Hadamard products. For the 12870 models with an infinite orbit, they
proved that all but 16 were non-D-finite by exhibiting some wild asymptotics for the associated
generating functions.

Content of the paper. When the steps set contains at least one large step, the authors of
[BBMM21] deplored that, within their study, the group of the walk “ is lost, but the associated
orbit survives”. In this paper, we show that one can generalize the notion of group of the
walk to models with large steps as well as many objects and results related to the small steps
framework. The novelty of our approach lies in the use of tools from graph theory, in particular
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graph homology and their combination with a Galois theoretic approach. We list below our
contributions.

e We attach to any model W a group G, which we call the group of the walk. This
group generalizes the classical group of the walk in many ways. First, G is the group
of automorphisms of a certain field extension. It is generated by Galois automorphisms
and extends thereby the definition of the classical group of the walk as in [FIM99, §2.4]
(see Theorem 3.8 below). Moreover, we also prove that the orbit of the walk is the orbit
of (x,y) under the faithful action of G viewed as group of graph automorphisms (see
Theorem 3.13). Finally, Appendix A studies the geometric interpretation of the group
G as group of birational transformations of a certain algebraic curve.

e The Galoisian structure of the group of the walk enables us to characterize algebraically
the existence of Galois invariants. To any model W, one can attach a kernel poly-
nomial K(X,Y) in C[X,Y,t]. Galois invariants consist in a pair of rational fractions
(F(X),G(Y) in C(X,t) x C(Y,t) such that

K(X,)Y)R(X,Y)=F(X)—-G(Y),

where R is a rational fraction in C(X,Y,t) whose denominator is not divisible by K. We
prove that the existence of non-trivial Galois invariants is equivalent to the finiteness of
the group G, itself equivalent to the finiteness of the orbit. This extends to any model
of walk the result of [BBMR21] for small steps walks (see Theorem 4.3). Finally, we
give an explicit way of obtaining the Galois invariants out of the data of a finite orbit
(see §4.3).

e This Galoisian setting also sheds a new light on the existence of Galois decoupling
pairs. Given a rational fraction H(X,Y') in C(X,Y,t), we say that H admits a Galois
decoupling pair if and only if there exists a pair (H(X),G(Y)) in C(X,t) x C(Y,t) such
that

K(X,Y)R(X,Y) = H(X,Y) - F(X) — G(Y),

where R is a rational fraction in C(X,Y,t) whose denominator is not divisible by K.

When the group of the walk of the model W is finite, we give a general criterion
for the Galois decoupling of a rational fraction H, which amounts to evaluate H on
some well chosen linear combination of pairs of the orbit (from Theorem 5.10). Our
procedure is entirely effective, and admits an efficient implementation under a small
assumption depending only on the graph structure of the orbit (see §5.5). This result
generalizes [BBMR21, Theorem 4.11] to the large steps framework and proposes some
algorithmic answer to the more general question of separating variables in principal
bivariate polynomial ideals, as studied in [BKP20].

As an application, we study the existence of Galois decoupling pairs of the function
XY for weighted models with steps in {—1,0,1,2}2. The finite orbit-types, that is,
the graph structure of the orbit of the walk of these models, have been classified in
[BBMM21]. We compute the decoupling of (z,y) for weighted models having an orbit-

type Oi1s, O12, Hadamard or Fan. We prove that, for an unweighted model with steps
in {—1,0,1,2} with orbit-type .O1g and any model with orbit-type Hadamard or fan,
the function XY had no decoupling pair. Finally, we show that XY decouples for any
choice of weights on the model Q;““, of orbit type O12 (see Figure 1.1).
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e Generating functions associated to models with small backward steps (see Figure 1.2c)
satisfy a functional equation in two catalytic variables of the form

K(X,Y)Q(X,Y,t) = XY + F(X) + G(Y),
where F'(X) (resp. G(Y)) involves only the section Q(X,0,t) (resp. Q(0,Y,¢)) of the
generating function. In [BBMR21] for small steps walks and [BM21] for walks confined
in the three-quadrant, the authors develop a strategy to prove the algebraicity of the
generating function. When XY admits a decoupling pair and when there exist nontrivial
Galoisian invariants, they were able to obtain from the functional equation above two
functional equations in one catalytic variable each, whose solutions are known to be
algebraic by [BMJ06]. Thanks to our systematic approach to Galoisian invariants and
decoupling, we apply their strategy to prove the algebraicity of the excursion series of
two Gessel models G3 and G2 with small forward steps ([BBMM21, Table 4, second and
third row]). These models were conjectured algebraic by Bostan, Bousquet-Mélou and
Melczer on [BBMM21, Page 57]. In particular, we prove that the excursion generating

function Q(0,0,t) of Q;"“ is algebraic of degree 32 over Q(\, u)(¢).

The paper is organized as follows. In Section 2, we prove the algebraicity of the model gé‘ o,
In Section 3, we recall the construction of the orbit of the walk and define the group of the walk
as a group of field automorphisms. Section 4 is concerned with the notion of Galois invariants
and their properties. In Section 5, we define the notion of Galois decoupling of the pair (z,y)
in the orbit and prove the unconditional existence of such a decoupling when the orbit is finite.
This yields a criterion to test the decoupling of any rational fraction including XY . We also
study its expression via the notion of level lines of the graph of the orbit, allowing a more
effective computation. Appendix A is for the geometry inclined reader since it presents the
Riemannian geometry behind the large steps models. Appendix B studies the algebraicity of
the excursion series of the model gg #. Appendix C completes the discussion on the algorithmic
aspects of our decoupling procedure. Appendix D studies the decoupling of (z,y) for some
important orbit-types. Appendix E gives an explicit description a the group of the walk for a
subclass of Hadamard models.

Note that, in this paper, we consider a weighted model VW which is entirely determined by a set
of directions S together with a set of weights (ws)ses. The weights are always non-zero and they
belong to a certain field extension of Q which is not necessarily algebraic, allowing the choice of
indeterminate weights. Without loss of generality, one can assume that Q (ws, s € §) C C. For
ease of presentation, we consider polynomials, rational fractions with coefficients in C. However,
the reader must keep in mind that our results are valid if one replace C by the algebraic closure
of Q(ws,s € S)

2. A STEP BY STEP PROOF OF ALGEBRAICITY

In this section, we fix a weighted model W with small backward steps. We explain how one can
combine the approach of Bousquet-Mélou and Jehanne on equations with one catalytic variables
[BMJ06] and the notion of decoupling and invariants of a model to address the question of
algebraicity for models with small backwards steps. This strategy is not yet entirely algorithmic
and follows the one developed in the small steps case in [BBMR21, Section 5| and in [BM21]
for walks in the three-quadrant. We summarize its main steps in Figure 2.1. In subsection 2.2,
we apply this strategy to prove that the generating function of the weighted model gé\ # defined
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in Example 2.1 is algebraic. Therefore, the same holds for its excursion series. Since excursion
series are preserved under central symmetry, the excursion series of the reversed model of Qé‘ &
is also algebraic. Thereby, we prove two of the four conjectures of Bostan, Bousquet-Mélou and
Melczer on [BBMM21, Section 8.4.2]. More precisely, the authors of [BBMR21] consider the
models G3 and Gy which are obtained by reversing the step sets of g§ 1 and gg’l. As a corollary
of the algebraicity of the model Qé\ # we find that the generating functions for excursions of Gs
and G are algebraic.

2.1. Walks and functional equation in two catalytic variables. Recall that we do not
only study the number of walks of size n that corresponds to the series Q(1,1). We record
in the enumeration the coordinates where they end, encoded in the generating function as the
exponents associated with the variables X and Y. The variables X and Y in Q(X,Y,t) are
called catalytic, as they provide an easy way to write a functional equation for Q(X,Y,t) from
the recursive description of walks: either a walk is the trivial walk (with no steps), either one
adds a step to an existing walk, provided the new walk does not leave the quarter plane. This is
that boundary constraint which forces to consider the final coordinates (i, j) of the walk to form
a functional equation. This inductive description yields a functional equation for the generating
function Q(X,Y,t).

Thereby, we encode the model in two Laurent polynomials which are the step polynomial of
the model S(X,Y) =3 e w; jX'Y7 and the kernel polynomial K(X,Y,t) =1—tS(X,Y).
This Laurent polynomial can be normalized into a polynomial K (X,Y,t) = X" Y™ K(X,Y,t)
where —m,, —m,, are the smallest moves of the walk in the X and Y-direction. By an abuse of
terminology, we also call K the kernel polynomial. We shall sometimes write QX,Y), K(X,Y)
and K(X,Y) instead of Q(X,Y,t), K(X,Y,t), K(X,Y,t) in order to lighten the notation. We
now illustrate the construction of the functional equation for the model Q;‘ a8

Example 2.1. Consider the weighted model

gg\# = {((_17 _1)>M)7 ((Oa 1)7“)7 (17 _1)7 (2a 1)7 ((L 0)7 )‘)}

together with its step polynomial S(X,Y) = < +uY + % + X2Y + \X, and kernel polynomial
K(X,Y,t) = XY —t(u+ pXY?2 + X2 + X3Y2 4+ AX?Y). The weights p and X are non-zero
complex numbers.

Now, to form a functional equation, observe that the steps (1,0), (0,1) and (2,1) can be
concatenated to any existing walk, whereas the step (1, —1) can only be concatenated to a walk
that does not terminate on the X-axis, and the step (—1,—1) can only be concatenated to a
walk that does not terminate on the X-axis or the Y-axis. These conditions translate directly
into the following functional equation:

QIX,Y) =1+ tuwyQ(X,Y) +tX*YQ(X,Y) + MXQ(X,Y)
+13 (Q(X,Y) — Q(X,0))
(2.1) +ixy (QX,Y) — Q(X,0) — Q(0,Y) + Q(0,0)) .

Note that we can express the generating function for walks ending on the X-axis, the Y-
axis or at (0,0) as specializations of the generating function Q(X,Y’). For instance, the series
Q(X,Y) — Q(X,0) counts the walks that do not end on the X-axis.



6 PIERRE BONNET AND CHARLOTTE HARDOUIN

Grouping terms in Q(X,Y") to the left-hand side and multiplying by XY to have polynomial
coefficients, we finally obtain the following equation for Q(X,Y):

K(X,Y)Q(X,Y) = XY — (X2 4+ n)Q(X,0) — tuQ(0,Y) + tuQ(0,0).

The general form of the functional equation satisfied by the generating function of a weighted
model might be quite complicated [BBMM21, Equation (11)]. For models with small backward
steps, the functional equation satisfied by Q(X,Y") simplifies as follows:

(2.2) KX, Y)Q(X,Y)= XY + A(X) + B(Y),

where A(X) = K(X,0)Q(X,0) + teQ(0,0) and B(Y) = K(0,Y)Q(0,Y) where € is one if
(=1,—1) € S and 0 otherwise. Thus, (2.2) only involves the sections Q(X,0) and Q(0,Y)
which makes it easier to study.

Remark 2.2. Consider a lattice walk on gg"“ taking a times the step (0,1), b times the step
(2,1), c times the step (1,0), d times the step (1, —1) and e times the step (—1, —1). This lattice
path contributes to the generatung function Q(X,Y,¢) via the monomial

2\¢ Ma—&-e X2b+c+d—e Ya+b—d—e ta+b+c+d+e

One then remarks that the knowledge of the exponents of A, X, Y and ¢ completely determines
the exponent of u, for

ate=—tc—1(2b+ct+d—e)+i(a+tb—d—e)+3(a+b+ct+d+e).

1 13
Thus, the series Q(X,Y,t) for g§’“ can be expressed as Q' (Xpu~ 2,Ypu4, tpd), where Q' is
1
the generating function for walks using the steps {(—1,—1),(0,1), (1,—1),(2,1), ((1,0), \u" 4)}.

Thus, the weight p is combinatorially redundant when considering the full generating series
Q(X,Y) or the excursion generating series (0,0). Note however that the exponent of the
weight A cannot be deduced from the exponents of X, Y and ¢ alone. We still keep the weight
1 as a demonstration of the robustness of our methods, and because the redundancy doesn’t
affect the generating function Q(1,1) counting walks regardless of their ending point.

2.2. Algebraicity strategy. We recall some results on equations with one catalytic variable.
In [BMJO06], Bousquet-Mélou and Jehanne proved the algebraicity of power series solution of
well founded polynomial equations in one catalytic variable. Their method has been further
extended recently to the case of systems of discrete differential equations by Notarantonio
and Yurkevich in [NY23]. These algebraicity results are in fact particular cases of an older
result in commutative algebra of Popescu [Pop86] but the strength of the strategy developed in
[BMJ06, NY23] lies in the efficiency of their approach.

We now recall the results of [BMJO06, Section 4]. Let L be a field of characteristic zero. For an
unknown bivariate function F'(u,t) denoted for short F'(u), we consider the functional equation

(2.3) F(u) = Fo(u) +tQ (F(u), AF(w), ADF (), ..., AP F(u),t, u) ,

where Fy(u) € Llu] is given explicitly and A is the discrete derivative: AF(u) = M.
One can easily show that the equation (2.3) has a unique solution F'(u, t) in L[u][[¢]], the ring of
formal power series in ¢ with coefficients in the ring Lu]. Such an equation is called well-founded.

Here is one of the main result of [BMJO0G].

Theorem 2.3 (Theorem 3 in [BMJ06]). The formal power series F(u,t) defined by (2.3) is
algebraic over L(u,t).
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We shall use Theorem 2.3 as a black box in order to establish the algebraicity of power series
solutions of a polynomial equation in one catalytic variable.

In order to eliminate directly trivial algebraic models, we make the following assumption on
the step sets. Write —myg, M, (resp. —my, M,) for the smallest and largest move in the x
direction (resp. y direction) of the model W (the mg, M, m, and M, are non-negative). Now,
consider the class of models where one of these quantities is zero. All the models in this class are
algebraic. Indeed, the corresponding models are essentially one dimensional. More precisely,
if M; = 0, an easy induction shows that a walk based upon such a model is included in the
half-line = 0. Similarly, if m, = 0, then the walks on this model have only the y constraint.
Reasoning analogously to [BMM10, Section 2.1] or [BBMM21, Section 6], one proves that the
series is algebraic. Thus, we may assume from now on that none of these parameters are zero.

This assumption being made, the series Q(X,Y’) satisfies naturally an equation with two
catalytic variables, and therefore does not fall directly into the conditions of Theorem 2.3.
However, the functional equation (2.2) implies that the generating function Q(X,Y") is algebraic
over C(X,Y,t) if and only if the series A(X) and B(Y) are algebraic over C(X,t) and C(Y,?)
respectively. Therefore, we set ourselves to find two well founded polynomial equations with
one catalytic variable: one for A(X) and the other for B(Y).

In order to produce these two equations from the functional equation (2.2), we now present
a method which goes back to Tutte [Tut95] and was further adapted by Bernardi, Bousquet-
Mélou and Raschel in the context of small steps walks ([BBMR21]) and by Bousquet-Mélou in
the context of three quadrant walks [BM21]. We reproduce here the method of [BM21] which
relies on suitable notion of ¢t-invariants and an invariant lemma for multivariate power series.
The strategy developed in [BM21] adapts the approach already introduced in Section 4.3 in
[BBMR21].

Definition 2.4. We denote by C(X,Y)((¢)) the field of Laurent series in ¢ with coefficients in
the field C(X,Y’). The subring of C(X,Y)((t)) formed by the series of the form

where p,(X,Y) € C[X,Y], a,(X) € C[X] and b,(Y) € C[Y] is denoted by Cpu(X,Y)((¢)).

Definition 2.5 (Definition 2.4 in [BM21]). Let H(X, Y, t) be a Laurent series in Cp,1 (X, Y)((%)).
The series H is said to have poles of bounded order at 0 if the collection of its coefficients (in
the t-expansion) have poles of bounded order at X =0 and Y = 0. In other words, this means
that, for some natural numbers m and n, the coefficients in ¢ of the series X™Y"H (X,Y’) have
no pole at X =0 nor at Y = 0.

Given a model W, one can use the notion of poles of bounded order at zero to construct an
equivalence relation in the ring Cy,,;1(X,Y)((¢)). To this purpose, we slightly adapt Definition
2.5 in [BM21] to encompass the large step case. Moreover, in the following definition, we
consider division by K and not by K as in [BM21] but one easily checks that Definition 2.8
below and Definition 2.3 in [BM21] coincide.

Definition 2.6 (t-equivalence). Let F'(X,Y) and G(X,Y) be two Laurent series in Cyy1 (X, Y)((2)).
We say that these series are t-equivalent, and we write F(X,Y) = G(X,Y) if the series
F(X,Y)-G(X,Y)
K(X,Y)
The t-equivalence is compatible with the ring operations on Laurent series applied pairwise
as stated below.

has poles of bounded order at 0.
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Proposition 2.7 (Lemma 2.5 in [BM21]). If A(X,Y) = B(X,Y) and A(X,Y) = B'(X,Y),
then A(X,Y) + B(X,Y) = A'(X,Y) + B'(X,Y) and A(X,Y)B(X,Y) = A'(X,Y)B/(X,Y).

The notion of t-equivalence allows us to define the notion of ¢-invariants as follows.

Definition 2.8 (Invariants (Definition 2.3 in [BM21])). Let I(X) and J(Y') be two Laurent
series in ¢ with coefficients lying respectively in C(X) and C(Y'). If I(X) = J(Y), then the pair
(I(X),J(Y)) is said to be a pair of t-invariants (with respect to the model W).

By Proposition 2.7, pairs of t-invariants are also preserved under sum and product applied
pairwise. We now state the main result on ¢-invariants (Lemma 2.6 in [BM21]*):

Lemma 2.9 (Invariant Lemma). Let (I(X), J(Y)) be a pair of t-invariants. If the coefficients

in the t-expansion of % have no pole at X = 0 nor'Y = 0, then there exists a Laurent

series A(t) with coefficients in C such that I(X) = J(Y') = A(t).

Note that the equations I(X) = A(t) and J(Y) = A(t) involve only one catalytic variable. In
other words, the invariant lemma allows us to produce nontrivial equations with one catalytic
variable from one pair of t-invariants satisfying a certain analytic regularity.

Still assuming that the negative steps are small, we now combine the notions of t-invariants
and the invariant lemma with the functional equation satisfied by Q(X,Y’) in order to obtain
two equations in one catalytic variable.

First, we find a pair of ¢-invariants which involves the specializations of Q(X,Y’). Thus,
Lemma 2.9 provide the desired equations for Q(X,0) and Q(0,Y’). One way to obtain such a
pair of invariants is by looking at the functional equation (2.2), namely:

KX, Y)Q(X,Y)=XY + A(X) + B(Y).
Assume that there exist some fractions F(X) in C(X,t), G(Y) in C(Y,t), and H(X,Y) in
C(X,Y,t) having poles of bounded order at 0 such that that XY can be written as

XY = F(X)+G(Y) + K(X,Y)H(X,Y).

We call such a relation a t-decoupling of XY. Combining the above expression for XY with
the functional equation for Q(X,Y), one obtains the following rewriting

KX, Y)(Q(X,Y) - H(X,Y)) = (F(X) + A(X)) + (G(Y) + B(Y)) .
Note now that the right-hand side has separated variables from the ¢-decoupling of XY'.

Since Q(X,Y) is a generating function for walks in the quarter plane, the coefficients of its
t-expansion are polynomials in C[X, Y] (the coefficient of t" is >, .~ qq(f 9 Xy ), so the power
series Q(X,Y) has poles of bounded order at 0. By assumption on H(X,Y), this is also the case
for the series Q(X,Y) — H(X,Y). Therefore, (I1(X), J1(Y)) = (F(X)+A(X),-G(Y)-B(Y))
is a pair of t-invariants. It is noteworthy that this pair of ¢-invariants involve the sections
Q(X,0) and Q(0,Y).

We must note that the writing of XY as the sum of two univariate fractions modulo K was
the only condition to the existence of the above pair.

In Section 5, we introduce the notion of Galois decoupling of XY which is a weaker though
easier to test than the notion of t-decoupling. The existence and computation of a Galois
decoupling for XY or, more generally, for any rational fraction in Q(X,Y’) is one of the main

I(X)=J()

RXY) vanish at X = 0 and

*In [BM21], Lemma 2.6 requires that the coefficients in the t-expansion of

Y = 0. This is equivalent to the condition stated in Lemma 2.9.
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results of this paper, and is covered in full generality in Section 5. Provided the orbit of the
walk defined in Section 3 is finite, our Galois decoupling procedure is entirely algorithmic. Thus,
one can search for a t-decoupling of XY by first looking for a Galois decoupling and then by
checking if this Galois decoupling is a t-decoupling.

We now illustrate this step on the model g§ an

Example 2.1 (continued). Recall that the functional equation obtained for gg His:
K(X,Y)Q(X,Y) = XY = #(X* + 1)Q(X, 0) = tnQ(0,Y) + t4Q(0,0),
with A(X) = —t(X? 4+ p)Q(X,0) +tuQ(0,0) and B(Y) = —tuQ(0,Y). One can check that XY

admits a ¢-decoupling of the following form:

vy — APt — pat —4X LAY -4 K(X,Y)
B 44(X2 + p) 4Y (X2 + )Yt
Combining this identity with the functional equation, one obtains the following pair of t-
invariants:

(1(X), Ju(¥)) = (

In general, the pair of ¢t-invariants (I1(X),Ji(Y)) that can be obtained through the com-
bination of the functional equation and a decoupling equation does not satisfy the conditions

of Lemma 2.9, as the coefficients of the series in t of L(X)=(Y)
K(X,Y)

order to remove these poles, we want to combine the pair (I;(X), J1(Y")) with another pair of
t-invariants (I2(X), J2(Y')) by means of Proposition 2.7, where I5(X) and J2(Y') will be assumed
to be respectively in C(X,¢) and C(Y,1).

Currently, this pole elimination process requires a case by case treatment. We detail it for

3AM X2 — \ut —4X
—4t X2 — 4put

=t (X7 + 1) Q(X, 0) + t1Q(0,0), 1Q(0,Y) + —

might have poles at 0. In

. A
our running example G3":

Example 2.1 (continued). The pair (/2(X), J2(Y')) below is a pair of t-invariant for gé\’“:

)\Y+4)

(“M2p X3 — p X = X0+ 2 X2 4+ 1) 2 — XPAN (X2 —p) t+ X2 —put YA+ MY + V3 ¢

I, Jo) =
(27 2) ( t2X(X2—|—,u)2 ’ Y2t

Analogously to the t-decoupling, we first search for a pair of Galois invariants, which amounts
to use the semi-algorithm presented in Section 4, and then check that this pair is a pair of ¢-
invariants.

As we now have two pairs of t-invariants Py = ([;(X), J1(Y)) and Py = (I2(X), J2(Y)), we
perform some algebraic combinations between them in order to eliminate their poles. To lighten
notation, we write the component-wise operations on the pairs P; of t-invariants. Computations
can be checked in the joint Maple worksheet [Wora].

Consider the Taylor expansions of the first coordinates:

L(X) :2+O(X),

L(X)=pX '+ 0(X).

Out of these two pairs of t-invariants, we first produce a pair of ¢t-invariants without a pole at
X =0 as follows:

A
P3 = (13, J3) = P2 <P1 - 4> .

) |
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The first coordinate of the pairs P, and P53 do not have a pole at X = 0. The Taylor expansion
of their second coordinates J;(Y) and J3(Y) at Y = 0 is as follows:
0%Q

J3(Y) =Y 73 4+ (tuQ(0,0) + \) Y =2 + put (Q(O, 0) A+ 5575 (0, o)> Y1+ 0(Y?),

JL(Y)=Y"1+0(Y?).

In order to produce a pair of ¢t-invariants satisfying the assumption of Lemma 2.9, we need to
combine P; and Ps in order to eliminate the pole at Y = 0. Note that, since the first coordinate
of P; and P5 have no pole at zero, the first coordinate of any sum or product between these two
pairs have no pole at X = 0.
Using the simple pole at Y = 0 of J3, we produce a new pair Py whose coordinates have no
pole at X and Y equal zero by setting
9°Q 5\

A
B o _ 3 A 2 _ 2 2 2 -
Py=(Iy, Js) == Py — P} + <2tuQ(0,0) 4) PP+ <2Mtayz (0,0) = #57°Q(0,0)" + = > -

In order to use the Invariants Lemma, it remains to check that %

X =0and Y = 0. This is done in the Maple Worksheet [Wora|. Therefore, the invariant lemma
2.9 yields the existence of a series C'(t) in C((t)) such that I,(X) = C(t) and J4(Y) = C(t).

has no poles at

Once we have found a pair of ¢-invariants satisfying the conditions of Lemma 2.9, we end
up with two nontrivial equations of one catalytic variable involving the sections Q(X,0) and
Q(0,Y). If these equations are well-founded, then Theorem 2.3 allows us to conclude that the
series Q(X,0) and Q(0,Y) are algebraic over C(X,¢) and C(Y,t) respectively, and therefore
that Q(X,Y) is algebraic over C(X,Y,t).

Example 2.1 (continued). The value of C(¢) can be deduced from the values of Q(0,Y) and
its derivatives at (0,0) by looking at the Taylor expansion of J4(Y) in Y. The verification
that the polynomial equations I4(X) = C(t) and Js4(Y) = C(t) are well-founded is done in

the Maple worksheet [Wora]. We only give here the form of the well-founded equation for
F(Y,t) = Q(0,Y):

Fly) =1+t (WyF(y) (AWF@)) + Mt () AV F@) + pt (AVF())’
+2utF(y) AP F(y) + pyF(y) + MO F(y) + 280 F(y) )

Theorem 2.3 with L. = Q(A, ) implies that the generating function of the weighted model gg &
is algebraic over Q(A, 1)(X,Y,t). Moreover, one can show that, at any step of our reasoning, one
may have taken the weight A\ to be zero. In particular, the generating functions of the reversed
models of Go (1 =1,A=0) and of G3 (u = 1, A = 1) are algebraic. Thus, their excursion series
are algebraic. In Appendix B, we apply the method of Bousquet-Mélou and Jehanne to the
catalytic equation for F(y), giving an explicit minimal polynomial for the series @Q(0,0) (with
A and p). This proves a conjecture of Bostan, Bousquet-Mélou and Melczer ([BBMM21, Table

4)).

In the small steps case, one can show that the generating function is algebraic in the variables
X and Y if and only if the model admits some non-trivial Galois invariants and XY has a Galois
decoupling (see discussion in Section 4.2). We conjecture that this equivalence is still valid in
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Functional equation for Q(z,y) Pair of invariants involving the functions A(z) and B(y) Pair of invariants without poles

Decoupling of xy Pair of rational invariants ‘ Algebraic equations for A(z) and B(y) ‘

‘ Algebraic equation for Q(z,y) ‘

FI1GURE 2.1. Summary of the strategy for proving algebraicity

the large steps case. The general strategy we used in this section is summarized in Figure 2.1
and motivates the above conjecture. It is the first attempt at finding uniform proofs for the
algebraicity of generating functions of large steps models. Our strategy is entirely algorithmic,
except for the poles elimination process detailed above on one example. Nonetheless, we think
that this last step could be made constructive via for instance the generalization of the notion
of weak invariants ([BBMR21, Section 5.2]) to the large steps framework. The rest of the
paper is devoted to the systematic and algorithmic study of the notions of Galois invariants and
decoupling.

3. THE ORBIT OF THE WALK AND ITS (GALOISIAN STRUCTURE

In the context of small steps models, the group of the walk (which we qualify classic in this
paper for disambiguation) has been initially introduced in [BMM10, Section 3]. It is the group
generated by two birational involutions ® and ¥ of C x C defined as follows. Assuming that
the model has at least a negative and a positive X and Y-steps, one writes its step polynomial
S(X, Y) = Z(i,j)GS w(ivj)XZYJ as

1 1
S(X,Y) = A1(X) 5 + Ao(X) + A(X)Y = B (V) + Bo(X) + Bi(Y) X,

where the A; and B;’s are Laurent polynomials. The birational transformations ® and ¥ are

then defined as
b (z,y) — <fBiEz§,y> and ¥ : (z,y) — (x, 5A12i3> .

When the classic group of the walk is infinite, its action on the variables X and Y produces
an infinite amount of singularities for the generating function Q(X,Y’) proving that the series
is not D-finite (see [MM14] or [KR12] for instance). When the group of the walk is finite, one
can describe in certain cases the generating function as a diagonal of a rational function, called
the (alternating) orbit sum. To such a group, one can attach a graph, called the orbit, whose
vertices are the orbit in C(z,y)? of the pair (z,y) under the action of ® and ¥ and whose edges
correspond to the action of ® and ¥ (see [BMM10, §3]).

In [BBMM21], the authors generalized the notion of the orbit of the walk to arbitrary large
steps models but did not attempt to find a group of transformations which generates this
orbit. In this section, we show how one can associate to a weighted model WW a group, called
in this paper the group of the walk, which is generated by Galois automorphisms of two field
extensions. In this section, we prove that the group of the walk acts faithfully and transitively
on the orbit analogously to the classic group. When the orbit is finite, this group is itself
presented as a Galois group. We interpret in the next two sections the notions of invariants
and decoupling in this Galoisian framework. Moreover, for finite orbits, one can interpret the
group of the walk as a group of automorphisms of an algebraic curve (see Appendix A). This
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point of view generalizes the notion of the classic group of the walk in the small step case used
in [KR12, DHRS18, DHRS20].

From now on, we fix W a weighted model, and we assume that the step polynomial S(X,Y) is
not univariate, which is the case when considering models with both positive and negative steps
in each direction as in Section 2.1. In order to distinguish the coordinates of the orbit from the
coordinates of X, Yt of the functional equation in Section 2.1, we introduce two new variables x
and y that are taken algebraically independent over C. We also denote by k the field C(S(z,y)).
As z, y and S(z,y) satisfy by definition the polynomial relation K(z,y,1/S(z,y)) = 0, the
condition that S is not univariate implies the following lemma.

Lemma 3.1. The variables x, y and the polynomial S(x,y) satisfy the following relations:

(1) = and S(z,y) are algebraically independent over C, and so are y and S(x,y),
(2) x is algebraic over k(y) and y is algebraic over k(x)

The orbit as well as the associated group, invariants and Galois decoupling pairs are con-
structed for S(X,Y) arising from a model of walk. These constructions should pass directly
to the case where S(X,Y) is an arbitrary bivariate rational fraction by letting K (X,Y,t) be
(1-tS(X,Y))Q(X,Y) with S = g for P, (@ two relatively prime polynomial in C[X,Y].

In Section 3.1, we recall the definition of the orbit of a model W with large steps. We give it
a Galois structure in Section 3.2. In Section 3.3, we define the group of the walk and prove that
it acts faithfully and transitively by graph automorphisms on the orbit. Finally, we investigate
the evaluation of fractions in C(X,Y,¢) on the orbit.

3.1. The orbit. We recall below the definition of the orbit introduced in [BBMM21, Section
3], and we also fix once and for all an algebraic closure K of C(z,y).

Definition 3.2 (Definition 3.1 in [BBMM21]). Let (u,v) and (u/,v") be in K x K.

If u =" and S(u,v) = S(v/,v"), then the pairs (u,v) and (u/,v") are called x-adjacent, and
write (u,v) ~* (u/,v’). Similarly, if v = v and S(u,v) = S(«/,v’), then the pairs (u,v) and
(u',v") are called y-adjacent, and write (u,v) ~¥ (u/,v"). Both relations are equivalence relations
on K x K.

If the pairs (u,v) and (u/,v’) are either x-adjacent or y-adjacent, they are called adjacent,
and we write (u,v) ~ (v/,v’). Finally, denoting by ~* the reflexive transitive closure of ~, the
orbit of the walk, denoted by O, is the equivalence class of the pair (x,y) under the relation ~*.

The orbit O has a graph structure: the vertices are the elements of the orbit and the edges
are adjacencies, colored here by their adjacency type. In the figures, the z-adjacencies are rep-
resented in red and the y-adjacencies in blue. As the z and y adjacencies come from equivalence
relations, the monochromatic connected components of O are cliques (any two vertices of such
a component are connected by an edge). Moreover, by definition of the transitive closure, the
graph O is connected, that is, every two vertices of the graph are connected by a path. In the
sequel, we denote by O either the set of pairs in the orbit or the induced graph. The structure
considered should be clear from the context. For a model W, its orbit type corresponds to the
class of its orbit modulo graph isomorphisms.

Example 3.3. For small steps models, the orbit when finite is always isomorphic to a cycle
whose vertices all belong to C(x,%)?. Example Cg in Figure 3.1 is for instance the unlabelled
orbit of the unweighted small steps model S = {(—1,0),(0,1),1,—1)} ([BMM10, Example 2]).



GALOIS GROUP, DECOUPLING AND INVARIANTS FOR LARGE STEPS WALKS IN THE FIRST QUADRANB

(wy?z, L) — (—&, 1) VAN

Ty

(z,y)

(z,y) — (=)
Y

/\
\/
(o522, 1) o) e e \

(-4.3) (-2~ %)

F1GURE 3.1. A sample of finite orbits

The orbit type being preserved when one reverses the model, Section 10 in [BBMM21] lists
the distinct orbit types for models with steps in {—1,0, 1,2}? with at least one large step. For

these models, the finite orbit types are exactly O3, O12 and O1g in Figure 3.1 and the so-called
Hadamard models whose orbit type is finite and a cartesian product (see [BBMM21, Section 6]
or Section 5.6.3).

Example 2.1 (continued). For the model gg . an element (z,y) € K2 distinct from (z,y) is
y-adjacent to (z,y) if S(z,y) = S(x,y). Then, z is a root of K(Z,y,1/S(z,y)) € k(y)[Z]. The
polynomial K(Z,y,1/S(z,y)) is reducible over k(z,y)[Z] and factors as

(Z — 2)y(zy? 2% + (2%y® + Moy + 2)Z — p)

z3y? + (A\y + 122 + py?z + p

The polynomial z y?Z2 + (2?y? + Azy + ) Z — p € C(z,y)[Z] is irreducible (see Example 2.1 for
more details). Its roots are taken in a quadratic field extension of C(z,y) and do not belong to
C(x,y). They are of the form z, —4 by the relation between the roots and the coefficients of a

Ty2z

degree two polynomial. One can then show that the orbit Q12 in Figure 3.1 is the orbit of the

model gg #. Since none of the vertices depend from ), the graph ;s is also the orbit of the
reversed model of Gs.

Example 2.1 shows that, unlike the small steps case, one has to go to a finite non-trivial field
extension of C(z,y) in order to build the orbit of a large steps model.

Finally, we would like to discuss the finiteness of the orbit. For small steps walks, the finiteness
of the orbit depends only on the order of ® o ¥. Some number theoretic considerations on the
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torsion subgroup of the Mordell-Weil group of a rational elliptic surface prove that this order,
when finite, is bounded by 6, which provides a very easy algorithm to test the finiteness of the
group of the walk. This bound is valid for any choice of weights contained in an algebraically
closed field of characteristic zero (see [HS08, Remark 5.1] and [SS19, Corollary 8.21]). For
models with arbitrarily large steps, there does not exist currently a general criterion to determine
whether the orbit is finite or not, but only a semi-algorithm [BBMM21, Section 3.2]. We hope
that analogously to the small steps case a geometric interpretation of the notion of orbit will
provide some bounds on the potential order of the orbit.

3.2. The Galois extension of the orbit. In the remaining of the article, we denote by k(O)
the subfield of K generated over kK = C(S(x,y)) by all coordinates of the orbit O. Note that
k(O) coincides with C(O) since z,y belong to the orbit.

We start this subsection with some terminology on field extensions. Our main reference is
[Sza09] which is a concise exposition of the Galois theory of field extensions of finite and infinite
degree. A field extension M C L is denoted by L|M. The degree of the field extension L|M
is the dimension of L as M-vector space. When this degree is finite, we denote it [L : M].
For L|M and L'|M two field extensions, an M-algebra homomorphism of L into L’ is a ring
homomorphism from L to L’ that is the identity on M. An algebraic closure of a field M is an
algebraic extension of M that is algebraically closed. Let us recall some of its properties.

Proposition 3.4 (Proposition 1.1.3 in [Sza09]). Let M be a field.

(1) There exists an algebraic closure M of M. It is unique up to isomorphism.

(2) For an algebraic estension L of M, there exists an embedding from L to M leaving
M elementwise fized. Moreover, any M-algebra homomorphism from L into M can be
extended to an M -algebra isomorphism of L to M

The field K introduced in Section 3.1 is an algebraic closure of C(z,y). By definition of the
orbit, k£(O) = C(O) is an algebraic field extension of C(z,y). Moreover, since y is algebraic over
k(x) and x is algebraic over k(y) by Lemma 3.1, then C(z,y) is an algebraic field extension of
k(x) and k(y). Therefore, k(O) is algebraic over k(x) and k(y). Proposition 3.4 implies that K
is an algebraic closure of k(z), k(y) and k(O).

Let L|M be a field extension. Any M-algebra endomorphism of L is an automorphism and
we denote by Aut(L|M) the set of M-algebra endomorphisms of L. An algebraic field extension
L|M is said to be Galois if the set LALIM) of elements of L that remain fixed under the
action of Aut(L|M) coincides with M (see [Sza09, Definition 1.2.1]). In this case, Aut(L|M) is
denoted by Gal(L|M). By [Sza09, Proposition 1.2.4], an algebraic field extension L|M is Galois
if and only if, fixing an algebraic closure M of M, we have o(L) C L for any automorphism ¢ in
Aut(M|M) T. The Galois group Gal(L|M) of a finite Galois extension L|M has order [L : M|
([Sza09, Corollary 1.2.7]). It is clear that any sub-extension L|M’ of a Galois extension L|M*
Finally, we recall the following result.

Lemma 3.5 (Lemma 1.22 in [Sza09]). Let L|M be a Galois extension and p € M[X] an
irreducible polynomial with some root o in L. Then p splits in L, and the group Gal(L|M) acts
transitively on its roots.

fSince we are in characteristic zero, the separable closure of M coincides with the algebraic closure of M (see
[Sza09, page 12]).
iBy subextension, we mean that M C M’ C L is Galois.
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We let any C-algebra endomorphism ¢ of K act on K x K coordinate-wise by

o - (u,0) < (o (u),0(v)).
The following lemma establishes the compatibility of the equivalence relation ~* with the action
of C-algebra endomorphisms of K.

Lemma 3.6. Let (u,v) and (u/,v") be two pairs in K x K and 0: K — K be a C-algebra
endomorphism. Then (u,v) ~* (u',v") (resp. (u,v) ~Y (u',v")) implies that o-(u,v) ~* o-(u',v")
(resp. o(u,v) ~Y o(u',v")). The same holds therefore for ~*.

Proof. Since o is a C-algebra endomorphism, we have 0S(u,v) = S(ou,ov) for any u,v in K.
Therefore, if (u,v) ~* (u,v') then S(o(u),0(v)) = o(S(u,v)) = o(S(u,v")) = S(o(u),o(v')),
so o - (u,v) ~* o - (u,v'). The same argument applies if (u v) ~Y (u’,v) The general case of

(u,v) ~* (v, ") follows by induction. O

As a direct corollary, we find the following lemma which ensures the setwise stability of the
orbit under certain endomorphisms of K.

Lemma 3.7. Let 0,: K — K be a k(z)-algebra endomorphism. Then, for all (u,v) in the orbit,

oz - (u,v) is in the orbit. Similarly, the orbit is also stable under k(y)-algebra endomorphisms
of K.

Proof. Let (u,v) be in the orbit, i.e. (u,v) ~* (z,y). By Lemma 3.6, we find that

2 (u, v) ~ g (3,y) = (2, 02(y))-
By transitivity, we only need to prove that (z,0.(y)) is in the orbit. This is true because
S(x,04(y)) = 02S(z,y) = S(z,y) since o, fixes C(z, S(z,y)) so (z,04(y)) ~* (z,y). O

The above two lemmas imply that any k(x) or k(y)-algebra automorphism of K induces a
permutation of the vertices of O which preserves the colored adjacencies, and is therefore a
graph automorphism of O.

The stability result of Lemma 3.7 translates as a field theoretic statement.

Theorem 3.8. The extensions k(O)|k(z), k(O)|k(y) and k(O)|k(x,y) are Galois.

Proof. We first prove that k(O)|k(x) is a Galois extension. Recall that the field extension
k(O)|k(x) is algebraic and K is an algebraic closure of k£(Q) and k(x). Thus, we only need to
prove that o(k(Q)) C k(O) for every automorphism o in Aut(K|k(x)). This follows directly from
Lemma 3.7. The proof for k(O)|k(y) is entirely symmetric and the field extension k(O)|k(x,y)
is Galois as subextension of k(O)|k(x). O

Theorem 3.8 gives a Galoisian framework to the orbit, which will be central in our study of
invariants and decoupling. Remark that the algebraic extension k(O)|k(z,y) may be of infinite
degree. In Figure 3.2, we represent the different Galois extensions involved in Theorem 3.8
and we denote their Galois groups G, = Gal(k(O)|k(z)), G, = Gal(k(O)|k(y)) and G,y =
Gal(k(O)|k(z,y)). Note that Gy = G, N G,.

Example 3.9. For small steps models, we have k(O) = k(x,y) = C(x,y). Moreover, the field
extensions k(O)|k(z) and k(O)|k(y) are both of degree 2 so that G, and G, are groups of order
2 and thereby isomorphic to Z/27Z. In the notation of the beginning of Section 3, consider the
endomorphisms ¢, ¢ of C(x,y) defined as follows: for f(z,y) € C(z,y), we set ¢(f) = f(P(z,y))
and ¥(f) = f(¥(x,y)). It is easily seen that ¢ € G, and that ¢ € G, and that they both are
non-trivial involutions. Thus, we have Gy =1, G, = (V) ~ Z/2Z and G, = (¢) ~ Z/2Z.
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FIGURE 3.2. The field extensions attached to the orbit

Example 2.1 (continued). In the case of gg*‘, we have k(O) = C(z, y, z) where z is a root of
the polynomial P(Z) = zy?Z? + (z?y? + Axy + x)Z — p. The polynomial P(Z) is irreducible in
C(x,y)[Z] since its discriminant is

x (x3y4 + 22223 + N2z y? 4 22292 + 20wy + duy® + 93) .

Because of the irreducible factor z, this discriminant cannot be a square in k(z,y) = C(z,y).
Therefore, z ¢ k(z,y) and the extension k(O)|k(x,y) is of degree 2. As above, we find that
Gy ~ 727

The field extension k(O)|k(y) is of degree 6 so that its Galois group is either S35 or Z/6Z. In
this last case, the group G, would be a normal subgroup of G,. As k(z,y) = k(O)%v, the
extension k(z,y)|k(y) would be Galois by [Sza09, Theorem 1.2.5]. This is impossible since the
root z of K(Z,y,1/8(z,y)) is not in k(z,y). Hence, we find that Gy ~ Ss.

The extension k(O)|k(x) is of degree 4. Its Galois group is of order four and therefore either
isomorphic to Z/27 x Z/27Z or to Z/AZ. If G, were Z/AZ then there would exist a k(x)-algebra
endomorphism o of k(O) of order 4. Since G, is of order 2, the automorphism o can not fix y

and we must have o(y) = x—ly, which is the other root of K (x,Y,1/5(z,y)) € k(z)[Y]. Since the

orbit is setwise invariant by o and (z,y) is in the orbit, the same holds for o(z,y) = (o(2), %)
From the description of the orbit of gQ’“ in Figure 3.1, we find that o(2) € {£,2y*2}. In both
cases, we find that 0%(z) = z which implies that ¢ is the identity on k(Q). A contradiction.

Hence, we conclude that the group G, is isomorphic to Z/27Z x Z/2Z.

3.3. The group of the walk. In this section, we prove that the orbit O is the orbit of the
pair (z,y) under the action of a certain group which generalizes the one introduced in the small
steps case by Bousquet-Mélou and Mishna ([BMM10, §3]).

For this group, we take G = (G, Gy), that is, the subgroup of Aut(k(O)|k) generated by G
and G, and we call it the group of the walk.

Recall the discussion on small steps models. By definition and Example 3.9, the group G is
generated by the automorphisms 1, ¢, as they generate G, and G. Thereby, G is isomorphic
to the classic group of the walk (@, U).

As explained in Section 3.2, every element of G induces a graph automorphism of O, that is,
a permutation of the vertices of O which preserves the colored adjacencies on the orbit O. In
Theorem 3.13 below, we prove that there exists a finitely generated subgroup of G whose action
on O is faithful and transitive, which is a notable property of the classic group of the walk.

It is clear that the group G acts faithfully on the orbit O. Indeed, if an element o of G is
the identity on any element of the orbit then o is the identity on k(Q). Therefore, o is the
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identity. The construction of a finitely generated subgroup of G with a transitive action on the
orbit requires a bit more work. N
We first prove two lemmas on the polynomial K(X,Y,t).

Lemma 3.10. The kernel polynomial f((X,Y,t) is irreducible in C[X,Y,t]. Therefore, it is
irreducible as a polynomial in C(X,t)[Y],C(Y,t)[X] and C(¢)[X,Y].

Proof. The kernel polynomial is a degree 1 polynomial in ¢, therefore it is irreducible in C(X, Y)[t].
Moreover, its content is one by construction. Therefore, by Gauss Lemma ([Lan02, chap. V par.
6 Theorem 10]), the kernel polynomial is irreducible in C[X,Y][t] = C[X,Y,¢]. Since S(X,Y)
is not univariate, the polynomial K does not belong to C[X,t], Gauss Lemma asserts that K
being irreducible in C[X,t][Y] is also irreducible in C(X,#)[Y]. The same reasoning holds for

the irreducibility of K in C(Y,#)[X]. It is clear that since K is irreducible in C[X,Y,#] and not
in C(t), it is irreducible in C(¢)[X,Y]. O

Lemma 3.11. The specializations of the kernel polynomial K (z,Y,1/5(z,v)) and K (X,y,1/5(z,y))
are respectively irreducible as polynomials in k(x)[Y] and in k(y)[X].

Proof. We only prove the first assertion by symmetry of the roles of x and y. Consider the
C-algebra homomorphism ¢ : C[X,t] — k(z) defined by ¢(X) = x and ¢(¢t) = 1/S(z,y). Since
S(X,Y) is not univariate, the fractions x and 1/S(z,y) are algebraically independent over C.
Therefore the morphism ¢ is one-to-one, so it extends to a field isomorphism ¢ : C(X,t) — k(x)
(onto by definition of k(x)), which extends to a C-algebra isomorphism ¢ from C(X,¢)[Y] to
k(z)[Y]. Moreover, by Lemma 3.10, K(X,Y,t) is irreducible as a polynomial in C(X,#)[Y].
Therefore, since K (z,Y,1/S(z,y)) = ¢(K(X,Y,t)) and ¢(C(X,t)) = k(z), we conclude that
the polynomial K (z,Y,1/8(z,y)) is irreducible over k(z). O

For large steps models, the extensions k(O)|k(z) and k(O)|k(y) might be of infinite degree,
hence the groups G, and G, might not be finite, not even finitely generated (unlike the small
steps case where they are always cyclic of order 2). However, note that G, is the stabilizer of
the pair (z,y) in the orbit. Therefore, the action of G on (z,y) factors through the left quotients
G2 /Gy and Gy /Gy which are proved to be finite in the following lemma.

Lemma 3.12. The group Gy is of finite index in G, and in Gy with Gy : Gy = my + M,
and [Gy : Ggy| = my + M.

Proof. The orbit © of y under the action of GG, is a subset of the roots of the polynomial
K(z,7,1/S(z,y)) € k(z)[Z]. This polynomial is irreducible by Lemma 3.10, so G, acts transi-
tively on its roots by Lemma 3.5, hence € coincides with the set of roots of K (z, Z,1/5(z,y))
which is a finite set of cardinal degy- K = M, +m,. Moreover, the stabilizer of y for this action
is precisely the group Gg,. Therefore, the quotient G,/G, can be identified with €2, wich
proves that Gy, is of finite index in G, with [G; : G4y] = M, +m,,. The proof for the subgroup

G is analogous. O
Therefore, we fix once and for all a set I, = {id,7,.. .,Lfny n My} of representatives of the
left cosets of Gy /Gay, and a set I, = {id, /¥, ... ,LZ% 4, + of representatives of the left cosets of

GYy/Gyy. By construction,
Gy = (I, Gyy) , Gy = Iy, Gay) , and G = (I, 1y, Gyy) -



18 PIERRE BONNET AND CHARLOTTE HARDOUIN

We now have all the ingredients to prove the transitivity of the action of a finitely generated
subgroup of G on O. We only recall that the distance between two vertices of a graph is the
number of edges in a shortest path connecting them.

Theorem 3.13 (Transitivity of the action). The subgroup of G generated by I, and I, acts
transitively on the orbit O.

Proof. We show that for all pairs (u,v) of O there exists an element o in (I, ,) such that
o-(x,y) = (u,v). As the graph of the orbit is connected, the proof is done by induction on the
distance between (z,y) and (u,v). If (u,v) is at distance zero to (x,y) then (u,v) = (z,y) and
we set o = id.

Let (u,v) be in O of positive distance d to (x,y). Then there exists a pair (u/,v’) at distance
d — 1 to (x,y) that is adjacent to (u,v). Without loss of generality, one can assume that
(u',v") is z-adjacent to (u,v), that is, v = «’. By induction hypothesis, there exists o in
(I, I,) such that o - (z,y) = (u,v'). Therefore, since (u,v’) ~® (u,v), the application of o~
implies by Lemma 3.6 that (z,y) ~® (2,07 !(v)). Thus, y and o~ !(v) satisfy the equation
S(z,y) — S(z,Y), so they are roots of the polynomial K (z,Y,1/S(z,y)) which is an irreducible
polynomial over k(x) by Lemma 3.11. Therefore, by Lemma 3.5, there is an element o, in G,
such that o,(y) = o~!(v). Let ¥ in I, be the representative of the left coset ,Gy,. Then,

(0tz1) (x,y) =0+ (0z- (2,9)) =0 (x,07(v)) = (u,v). This concludes the proof. O

This result shows that the orbit O is actually the orbit of the pair (z,y) under the action of
a finitely generated subgroup of G. As a direct corollary, one finds that the extensions k(z,y)|k
and k(u,v)|k are isomorphic for any pair (u,v) in the orbit. Indeed, let o in G such that
o (z,y) = (u,v) then o induces a k-algebra isomorphism between k(z,y) and k(u,v).

For large steps models with an infinite orbit, it might be quite difficult to give a precise
description of the automorphisms in I, and I,. Indeed, they act as a permutation on the
infinite orbit @ and their action on z or y is not in general a rational fraction in z and y as in
the small steps case. When the steps are small or when the orbit is finite, one is able to give a
more precise description of these generators.

Example 3.14. In the small steps case and in the notation of Example 3.9, one can choose

I, = {id, ¢} and I, = {id, ¢}.

Example 2.1 (continued). For gQ*“, the group G, is isomorphic to S3, Gy to Z/27Z and G,
to Z/2Z. We give below the expression of automorphisms %, ¥ and 7 such that

I, = {id, "}, I, = {id, Y}, Gy = (7).

They satisfy the relations (:%)* = (:¥)® = 72 = id. We represent below their action on the orbit.
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FIGURE 3.3. The elements of I, and I,,.

Note that an z-adjacency in the orbit corresponds to the action of an element of G that
is conjugate to an element of G,. Indeed, for (u,v) in the orbit, Theorem 3.13 yields the
existence of ¢ € G such that o(u,v) = (x,y). Then, if (u,v) ~* (u,v’), Lemma 3.6 proves
that o(u,v") ~* (x,y). As explained above, any z-adjacency to (z,y) corresponds to the action

of an automorphism in G, so that there exists o, in G, such that o(u,v’) = o,(z,y). We

conclude that (u,v’) = 0~ to,0(u,v). In the above example for the model g;"“, one sees that

(z,y) ~* (2, ) and that :*(:¥)~! - (2,y) = (2, %). The automorphism :* belong to G, but it
is not the case of Y17 (¢¥)~! since V1= (V)1 (z) = zy?2.

Moreover, the transitivity of the action of G on the orbit also implies the following minimality
result for the extension k(O).

Proposition 3.15. The field k(O) is the smallest field in K that is a Galois extension of k(x)
and a Galois extension of k(y).

Proof. Let M C K be a Galois extension of k(x) and a Galois extension of k(y). Proposition
3.4 shows that K is an algebraic closure for M. Let (u,v) be an element of @. To prove that
k(O) C M, we only need to show that v and v belong to M. By Theorem 3.13, there exists o in
G such that o (z,y) = (u,v). Let us first assume that o belongs to G,. Since K is an algebraic
closure for k(x), Proposition 3.4 shows that o extends as a k(x)-algebra endomorphism of K
still denoted o. The field extension M|k(x) is Galois and K is an algebraic closure of M so that
o(M) C M. Since x and y belong to M, the same holds for (u,v). The proof is analogous if o
belong to G. Since G is generated by G, and G, an easy induction concludes that v = o(z)
and v = o(y) both belong to M for any ¢ in G. O

3.4. Orbit sums. One of the purposes of the orbit is to provide a nice family of changes of
variables, in the sense that the kernel polynomial K (X, Y, ) is constant on the orbit: for all pairs
(u,v) of the orbit, K(u,v,t) = K(z,y,t) (because S(z,y) = S(u,v)) This polynomial being a
factor of the left-hand side of the functional equation satisfied by the generating function, one
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can evaluate the variables (X,Y) at any pair (u,v) of the orbit and obtain what is called an
orbit equation. Indeed, the generating function Q(X,Y’) and its sections Q(X,0) and Q(0,Y)
belong to the ring of formal power series in ¢ with coefficients in C[X, Y] so that their evaluation
at (u,v) belong to the ring C[O][[t]]. Note that such an evaluation leaves the variable ¢ fixed.
The strategy developed in [BBMM21, Section 4] for models with small forward steps consists
in forming linear combinations of these orbit equations so that the resulting equation is free
from sections. From the section-free equation, Bostan, Bousquet-Mélou and Melczer sometimes
succeed in isolating the generating function Q(X,Y") and expressing it as a diagonal of algebraic
fractions which leads to its D-finitness by [Lip88]. For models with small backward steps, it
is quite easy to produce a section-free equation from (2.2) when the orbit contains a cycle.
However, it is very unlikely that, for models with small backward steps and at least one large
step, such a section free equation suffices to characterize the generating function.

In this paper, we want to evaluate the variables X, Y.t at (u,v,1/S(z,y)) for (u,v) an element
of the orbit. Since K (u,v,1/S(z,y)) = 0 for any element (u, v) of the orbit @, such an evaluation
is similar to the kernel method used in [KR12] for models with small steps. More precisely,
let us define a 0-chain as a formal C-linear combination of elements of the orbit O. This
terminology is borrowed from graph homology (see Section 5 for some basic introduction). Let
v = Z(u,v)e@ Clu,v) (u,v) be a zero chain. Since the coefficients C(u,p) are complex and almost
all zero, the evaluation P, of a polynomial P(X,Y,t) € C[X,Y,t] at 7 is defined as

P, = Z Cluw) P(u,v),

(u,v)€eO

and belongs to C[O]. The evaluation of K(X,Y,t) at any O-chain vanishes so that one can not
evaluate a rational fraction in C(X,Y,t) whose denominator is divisible by K. This motivate
the following definition.
Definition 3.16. Let H(X,Y,t) = gg{’g be a rational fraction in C(X,Y,t) where A(X,Y,t)
and B(X,Y,t) are relatively prime polynomials in C[X, Y, ¢].

We say that H(X,Y,t) is a regular fraction if B(X,Y,t) is not divisible by the kernel poly-
nomial K(X,Y,t) in C[X,Y, 1.

Example 3.17. Since S(X,Y) is not univariate, the kernel polynomial involves all three vari-
ables XY and ¢, so does a multiple of K(X,Y,t) (by a simple degree argument). Therefore,
any fraction in C(X,t) or C(Y,t) is regular.

We endow the set of regular fractions in C(X,Y,t) with the following equivalence relation:
two regular fractions H, G are equivalent if there exists a regular fraction R such that H —G =
K(X,Y,t)R. We denote by C the set of equivalence classes. Since the equivalence relation is
compatible with the addition and multiplication of fractions, one easily notes that C can be
endowed with a ring structure. Moreover, since K (X,Y,) is irreducible in C[X,Y, ], any non-
zero class is invertible proving that C is a field. Indeed, if H is a regular fraction that is not

equivalent to zero, then one can write H = g with P,@ € C[X,Y,t] relatively prime and K
does not divide P. Thus, the fraction % is regular and its class in C is an inverse of the class of
g. Moreover, since K is not univariate, any non-zero element in C(X,t) or C(Y,t) is a regular

fraction which is not equivalent to zero. Therefore, the fields C(X,¢) and C(Y,t) embed into C.
By an abuse of notation, we denote by C(X,¢) and C(Y,t) their image in C.
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Proposition 3.18. For a fraction H in C(X,Y,t) and (u,v) in O, the evaluation H(,,) =
H(u,v,1/S5(x,y)) is a well defined element of K if and only if H is a regular fraction.

The C-algebra homomorphism ¢ : C — k(z,y), P(X,Y,t) — P(z,y,1/S(x,y)) is well defined
and is a field isomorphism which maps isomorphically C(t) onto k = C(S(x,y)), C(X,t) onto
k(x) and C(Y,t) onto k(y).

Proof. Recall that by Theorem 3.13, given a pair (u,v) € O, there exists 0 € G such that
o (z,y) = (u,v). The automorphism o induces a k-algebra isomorphism between k(z,y)
and k(u,v) so that the evaluation at (z,y,1/S(z,y)) composed by o is the evaluation at
(u,v,1/S(x,y)). Thereby, we only need to prove the first part of the proposition for the evalu-
ation at (x,y,1/S(x,y)).

Since K (z,y,1/S(z,y)) = 0, it is clear that one can not evaluate a fraction that is not regular.
Thus, we only need to show that the evaluation of a regular fraction at (z,y,1/S(z,y)) is well

defined. Let us write H(X,Y,t) = gg};g where A(X,Y,t) and B(X,Y,t) are relatively prime

in C[X,Y,t], and the kernel polynomial K(X,Y,t) does not divide B(X,Y,t). There exist two
polynomials U,V € C[X,Y,t] such that

B(X,Y,H)U(X,Y,t) + K(X,Y,t)V(X,Y,t) = R(X,Y)

with R(X,Y) € C[X,Y] the resultant of K(X,Y,t) and B(X,Y,t) for the variable ¢. Since
K (X,Y,t) is an irreducible polynomial that does not divide B(X,Y,t), the resultant R(X,Y) is
a nonzero polynomial. Since z,y are algebraically independent over C, one finds that R(z,y) # 0
and K(z,y,1/S(z,y)) = 0 which implies that B (z,y,1/S(x,y)) # 0, so H (z,y,1/S(z,y)) is
well defined. _

By Lemma 3.10, the kernel polynomial K (X,Y,t) is irreducible as a polynomial in C(¢)[X, Y].
The ring R = C(t)[X,Y]/(K(X,Y,t)) is therefore an integral domain. By [Mat80, page 9, (1K)],
its fraction field is precisely C. Now, the evaluation map from C(¢)[X, Y]/(I?(X, Y,t)) to k[z,y]
is a ring isomorphism which maps isomorphically C(¢) onto k. The latter ring isomorphism

extends to an isomorphism between the fraction fields C of C(¢)[X,Y]/(K(X,Y,t)) and the
fraction field k(z,y) of k[z,y] which concludes the proof. O

If H is a regular fraction, we denote H,, its evaluation at an element (u,v) of the orbit
and we can extend this evaluation by C-linearity to any O-chain . We denote by H, the
corresponding element in k(O). Such an evaluation is called an orbit sum. We let the group G

act on O-chains by C-linearity, that is, o (Z(uw)eo Cluw) (u,v)) = 2 (u,0)€0 Cuw)0 * (4, v). The
following lemma shows that the evaluation morphism is compatible with the action of G on
k(O) and on 0-chains.

Lemma 3.19. Let o be an element of G, v be a 0-chain, and H(X,Y,t) be a regular fraction
in C(X,Y,t). Then o(Hy) = Hy.y.

Proof. Let (u,v) be an element in the orbit. Since o fixes k = C(S(z,y)), we have

O'(H(u’v)) =0 (H(u,v,1/S(z,y)) = H (o(u),o(v),1/S(z,y)) = Hy. (u0)-
The general case follows by C-linearity. (]
Two equivalent regular fractions have the same evaluation in k(Q). Thereby, certain class of

regular fractions can be characterized by the Galoisian properties of their evaluation in k(O).
This idea underlies the Galoisian study of invariants and decoupling in Sections 4 and 5. To
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conclude, we want to compare the equivalence relation among regular fractions that are elements
of Cruu1(X,Y)((¢)) and the t-equivalence (see Section 2.2 for notation).

Proposition 3.20. Let F € C,,y(X,Y)((t)) that is also a regular fraction in C(X,Y,t). If F
is t-equivalent to 0, that is, the t-expansion of F'/K has poles of bounded order, then the fraction
F/K is regular so that the regular fraction F is equivalent to zero by definition.

Proof. Our proof starts by following the lines of the proof of Lemma 2.6 in [BM21]. Assume that
F is t-equivalent to 0, so that there exists H(X,Y,t) € Cyu(X,Y)((¢)) with poles of bounded
order at 0 such that

(3.1) F(X,Y)=K(X,Y,H)H(X,Y,1).

Analogous arguments to Lemma 2.6 in [BM21] show that there exists a root X of K(.,Y,¢) =0
that is a formal power series in ¢ with coefficients in an algebraic closure of C(Y') and with
constant term 0. Since H and F have poles of bounded order at 0, one can specialize (3.1)

at X = X and find F(X,Y,t) = 0. Writing F' = g where P,Q € C[X,Y,t] are relatively

prime, one finds that P(X,Y,t) = 0. Since K(.,Y,t) is an irreducible polynomial over C(Y, )
by Lemma 3.10, we conclude that K divides P. Because P and () are relatively prime, we find
that K doesn’t divide () which concludes the proof. O

Clearly, the regular fraction % is equivalent to zero but not t-equivalent to zero, so

the converse of Proposition 3.20 is false. With the strategy presented in Section 2 in mind, we
will use in the next sections the notion of equivalence on regular fractions and its Galoisian
interpretation to produce Galois invariants and Galois decoupling pairs. For each Galois
invariants and decoupling functions constructed in Section 5.6, it happens that any equivalence
relation among these regular fractions is actually a t-equivalence. Unfortunately, we do not
have any theoretical arguments yet to explain this phenomenon.

The rest of the paper is devoted to the Galoisian interpretation of the notions of invariants
and decoupling. Their construction relies on the evaluation of regular fractions on suitable
0-chains.

4. GALOIS INVARIANTS

In this section, we prove that the finiteness of the orbit is equivalent to the existence of non-
constant Galois invariants (see Theorem 4.3 below). This result generalizes [BBMR21, Theorem
7] in the small steps case and was proved in the more general context of finite algebraic corre-
spondences in [Fri78, Theorem 1]. Fried’s framework is geometric, but his proof is essentially
Galois theoretic. We give here an alternative presentation which does not require any algebraic
geometrical background. Moreover, we show in this section that if the orbit is finite, the field
of Galois invariants is of the form k(c) for some element ¢ transcendental over k. In addition,
we give an algorithmic procedure to effectively construct c.

4.1. Galois invariants. In §2, we aimed at constructing invariants that were rational frac-
tions, that is, pairs (I(X,t),J(Y,t)) satisfying an equation of the form I(X,t) — J(Y,t) =
K(X,Y,t)R(X,Y,t) with R having poles of bounded order at zero (I and .J are t-equivalent).
With the philosophy of §3.4, we introduce the weaker notion of Galois invariants based on
rational equivalence. Our definition extends Definition 4.3 in [BBMR21] to the large steps

context.
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Definition 4.1. Let (I(X,t), J(Y,t)) be a pair of rational fractions in C(X,¢) x C(Y,t) (hence
regular, as they are univariate). Then this pair is a pair of Galois invariants if there exists a
regular fraction R(X,Y,t) such that I(X,t)—J(Y,t) = K(X,Y,t)R(X,Y,t), that is, the regular
fractions I(X,t) and J(Y,t) are equivalent.

From Proposition 3.20, a pair of rational invariants is pair of Galois invariants. Therefore,
it is justified to look for a pair of Galois invariants first, and then to check by hand if their
difference is t-equivalent to 0. Moreover, the notion of Galois invariant is purely algebraic while
the notion of invariants involves some analytic considerations which might be difficult to handle.
Using Lemma 3.18, the set of Galois invariants corresponds to a subfield of k(Q) which can be
easily described.

Proposition 4.2. Let P = (I(X,t),J(Y,t)) be a pair of fractions in C(X,t) x C(Y,t). Then P
is a pair of Galois invariants if and only if the evaluations I,y and Ji, ) are equal, and thus
belongs to k(x) Nk(y) C k(O). Moreover, the pair P is a pair of constant invariants if and only
if Lizy) = J(ay) 15 0 k.

Therefore we denote the field k(z) N k(y) as ki and, by an abuse of terminology, call its
elements Galois invariants. The definition of the group G and the Galois correspondence applied
to k(O)|k(z) and k(O)|k(y) show that f in k(QO) is a Galois invariant if and only if f is fixed
by GG. Moreover, Proposition 4.2 reduces the question of the existence of a pair of nonconstant
Galois invariants to the question of deciding whether ki,, = k or not.

4.2. Existence of nontrivial invariants and finiteness of the orbit. The existence of
non-constant Galois invariants is equivalent to the finiteness of the orbit as proved in Theorem
1 and Lemma p 470 in [Fri78] which holds also in positive characteristic and in a higher dimen-
sional context. Theorem 4.3 below is a rephrasing of Fried’s Theorem in pure Galois theoretic
arguments, so that our proof simplifies slightly Fried’s proof.

Theorem 4.3. The following are equivalent:
(1) The orbit O is finite.
(2) There exists a finite Galois extension M of k(z) and k(y) such that Gal(M |k(z)) and
Gal(M|k(y)) generate a finite group (Gal(M |k(z)), Gal(M|k(y))) of automorphisms of
M.
(3) There exists nontrivial Galois invariants, that is, k C Kipy.

Proof. (1) = (2): Set M = k(O). The group G = (G, Gy) acts faithfully on the orbit, so it
embeds as a subgroup of S(O), of permutations of the pairs of the orbit @. The orbit is finite,
therefore G is finite.

(2) = (3): Write H = (Gal(M|k(z)),Gal(M|k(y))). By the same argument as in the begin-
ning of §3.3, the field M is the field kj,, of Galois invariants. Since H is finite, the extension
M |kiny is finite of degree |H|, hence the subextension k(x)|kiny is also finite. Since the extension
k(x)|k is transcendental by hypothesis on W, we conclude that k C ki,y. Proposition 4.2 yields
the existence of a pair of nontrivial Galois invariants.

(3) = (1): Let (I(X,t),J(Y,t)) be a pair of nontrivial Galois invariants. By the assump-
tion on the model, S(z,y) and x are algebraically independent over C. Since I(z,1/S(z,y))
is not in C(1/S(x,y)) by Lemma 3.18, this implies that the extension k(I(x,1/S(x,y)))|k is
transcendental. As the transcendence degree of k(z) over k is 1, this implies that the extension
k(x)|k(I(z,1/S(z,y))) is algebraic, hence z is algebraic over kiny, with minimal polynomial
P(X).



24 PIERRE BONNET AND CHARLOTTE HARDOUIN

The group G leaves ki,, fixed. Thus the orbit of z in K under the action of G is a subset
of the roots of P(X). By Theorem 3.13, the action of G is transitive on the orbit, hence the
set G-z ={ueK|3o e G,u=o0z} ={uecK|IekK, (u,v) € O} is finite. As there are
degy K(X,Y,t) pairs of the orbit with first coordinate u for each u in G -z, we conclude that
O is finite. ]

In the rest of the paper, we assume that the orbit is finite. Theorem 4.3 implies that the
extension k(O)|kiny is finite and Galoisian with Galois group G' = (G, Gy).

4.3. Effective construction. In order to apply the algebraic strategy presented in §2, we
want to find explicit nonconstant rational invariants. As already mentioned, we shall first
construct explicitly the field of Galois invariant and then search among these Galois invariants
the potential rational invariants.

In the small steps case, an orbit sum argument was used to construct a pair of rational
invariants ([BBMR21, Theorem 4.6]). This construction generalizes mutatis mutandis to the
large steps case, and is reproduced here to show one way to exploit the group of the walk.

Lemma 4.4. Let w be the 0-chain ﬁ Y aco @ Then, for any regular fraction H € Q(X,Y,t)
the element H,, is a rational invariant.

Proof. Let H(X,Y,t) be a regular fraction. Since, by Theorem 3.13, the group G acts faithfully
on O, the 0-chain w is invariant by the action of G. Thus, by Lemma 3.19, for all ¢ in G,
o(H,) = Hy.., = H,,. Therefore, by the Galois correspondence, H,, is a rational invariant. [

Unfortunately, a non-constant regular fraction H might have a constant evaluation, that is,
H,, might belong to k. Thus, one has to choose carefully H in order to avoid this situation which
is precisely the strategy used in [BBMR21, Theorem 4.6]. Below, we describe an alternative
construction which is easier to compute effectively and yields a complete description of the field
kinv-

Consider first this simple observation. Since z is algebraic over kj,,, we can consider its
minimal polynomial p,(Z) in kiny[Z]. One of its coefficients must be in ki, \ k& because x is
transcendental over k. Thus, such a coeflicient is a non-trivial rational invariant.

A more sophisticated argument using a constructive version of Liiroth’s Theorem says actually
much more about such a coefficient.

Theorem 4.5 (Liiroth’s Theorem ([Rot15], Th. 6.66)). Let k(x) be a field with x transcendental
overk and k C K C k(z) a subfield. If x is algebraic over K, then any coefficient ¢ of its minimal
polynomial p,(Z) over K that is not in k is such that K = k(c).

Applying this result to the tower k C kiny C k(z), not only can we find nontrivial Galois
invariants among the coefficients of u,, but any one of them generates the field of Galois
invariants. In one sense, these coefficients contain all the information on the Galois invariants
attached to the model. Therefore, all that remains is to compute effectively the polynomial
pia(Z).

By irreducibility of the polynomial p;(Z) in kiny[Z], the Galois group G = Gal(k(O)|kiny)
acts transitively on its roots. By Theorem 3.13, the orbit of x under the action of G is the
set of left coordinates of the orbit. Therefore, pu,(Z) is precisely the vanishing polynomial of
the left coordinates of the orbit, which is exactly computed in the construction of the orbit in
[BBMM21, Section 3.2]. We detail this construction in Appendix C.

In order to find an explicit pair of non-constant Galois invariant (1(X,t), J(Y,t)), we only
need to apply Proposition 3.18 to lift to C(X,t) and to C(Y,t¢) any non-constant coefficient
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of the polynomial p,(Z) € kiny[Z]. The lifts of the polynomial p,[Z] to C(X,t)[Z] and to
C(Y,t)[Z] can be computed directly when constructing the orbit, see C.1.

Example 4.6. Consider the model Qg\’“. Its orbit type is O12. We compute the lift of p,(2)
in C(X,t)[Z] as

76 7(/\2,uX3—|—X6—|—,uX4—,u2X2—,u3)t2—i—X2)\ (XQ—u)t—XB‘ 75 ,ut—|—)\Z4
12X (X2 4 p)? t
2 )\2 2 X
2X6t2u+(—v2’”2+5> X%+ tp (ut 4+ X) X4+ (2 3—Au2t)X2—“(”2tl)—t2,u423
£2X (X2 + p)?
B ,U(MH')\)ZQ B ((>‘2NX3+X6+NX4_/'L2X2_)u3)t2+X2)‘(X2_M)t_X3)M2Z_M3

t 12X (X2 4 p)?

and in C(Y,t)[Z] as

2
P —/utY4+/\tY+Y3+tZ5+ut+>\Z4_2u(Y4u—%Y2)\2—Y/\—1)t2—utY3+YTZg
tY?2 t 12y2
t+ A 2(—pt YA+ XY + Y3 ¢t
ot ) i (o )Z—/ﬁ.

t tY?

The coefficient of Z° is nonconstant, hence we have the following pair of non-trivial Galois
invariants (I(X,t), J(Y,t))

(WMuX3+ X0+ p Xt — p2X2 — (B) 2+ XN (X2 — )t — X3 —pt YA+ MY + Y3 ¢
£2X (X2 + p)? ’ tY?2 ‘

We check that % has poles of bounded order at 0, hence it is a pair of invariants.

Moreover, Theorem 4.5 says that kiny = k (I(z,1/5(z,y))), so any pair of Galois invariants for
Qé\’“ is a fraction in the pair (I(X,t), J(Y,t)).

Example 4.7. The orbit type of the model with step polynomial S(X,Y) = X + % + % + %
is O1g (see Figure 3.1). With our method, we find the following pair of Galois invariants

(X% =3X3+ 1) + (X8 + X5 —2X?)t + X! (Y34+3Y +1) (Y +1)° 3+ Y*
X6¢2 ’ Y23 (Y + 1)3 ’

One can also check by looking at the t-expansions that it is a pair of invariants.

5. DECOUPLING

In this section, we study the Galoisian formulation of the notion of decoupling introduced
in Section 2.2. In particular, assuming the finiteness of the orbit, we show how the Galois
decoupling of a rational fraction H(X,Y,t) can be, analogously to the small steps case, tested
and constructed if it exists via the evaluation on certain 0-chains on the orbit.
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5.1. Galois formulation of decoupling. As in the previous section, we adapt the notion of
decoupling introduced in Section 2.2 to our Galoisian framework. The definition below is the
straightforward analogue of Definition 4.7 in [BBMR21] in the large steps framework.

Definition 5.1 (Galois decoupling of a fraction). Let H(X,Y,t) be a regular fraction in
C(X,Y,t). A pair of fractions (F(X,t), G(Y,t)) in C(X,t) x C(Y,t) is called a Galois decoupling
pair for the fraction H if there exists a regular fraction R(X,Y,t) satisfying

H(X,Y,t)= F(X,t)+ GY,t) + K(X,Y,t)R(X,Y,1).
We call such an identity a Galois decoupling of the fraction H.

Thanks to Proposition 3.20, if a regular fraction admits a decoupling with respect to the
t-equivalence then it admits a Galois decoupling. Analogously to the notion of Galois invariants
and as a corollary of Proposition 3.18, one can interpret the Galois decoupling as an identity in
the extension k(O).

Proposition 5.2. Let H be a regular fraction in C(X,Y,t). Then H admits a Galois decoupling
if and only if H,, can be written as f + g with f in k(x) and g in k(y).

By an abuse of terminology, we call any identity H(,,) = f + g with f in k(z) and g in
k(y) a Galois decoupling of H. Furthermore, these last two conditions can be reformulated
algebraically via the Galois correspondence applied to the extensions k(O)|k(z) and k(O)|k(y):
Hy) = f + g with f fixed by G, and g fixed by G.

Given a regular fraction H, one could try to use the normal basis theorem (see [Lan02, chapter
6, § 13]) to test the existence of a Galois decoupling for H. The normal basis theorem shows
that there exists a kiny-basis of k(O) of the form (o())seq for some a € k(O). The action
of G, and Gy on this basis is given by permutation matrices, and thus the linear constraints
for the Galois decoupling of H, ) is equivalent to a system of linear equations. Unfortunately
the computation of a normal basis requires a priori a complete knowledge of the Galois group
G, whose computation is a difficult problem. Therefore, we present in the rest of the section
a construction of a Galois decoupling test which relies entirely on the orbit and its Galoisian
structure.

5.2. The decoupling of (z,y) in the orbit.

Definition 5.3. Let o be a 0-chain of the orbit. We say that « cancels decoupled fractions if
H, = 0 for any regular fraction H(X,Y,t) of C(X,t) + C(Y,1).

(u1,v2)
A
(ul,vl) (UQ,UQ) o= (ul,vg) — (ul,vl) + (UQ,Ug) — (u2, Uz) + (U3,1)1) — (U3,213)
a l F(X)o=F(u1) — F(u1) + F(u2) — F(ug2) + F(ug) — F(ug) =0
(us, vl?\ (u2,v3)  G(Y)q = G(v2) — G(v1) + G(vs) — G(va) + G(v1) — G(vs) = 0
(us, v3)

F1GURE 5.1. The 0-chain induced by a bicolored loop cancels decoupled fractions
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We recall that a path in the graph of the orbit is a sequence of vertices (ay,asg, ..., an4+1) such
that a; ~ a;4q for all 0 < ¢ < n. The length of (aj,as,...,a,+1) is the number of adjacencies
(that is n). A path is called a loop ¥ if a,1 = a1. A loop is called simple if only its first and
last vertices are equal.

Example 5.4. A bicolored loop is a loop (a1, az,...,a2,+1) of even length such that for all 7,
ag; ~* agi—1 and ag;+1 ~Y ag;. One associates to (ai,ag,...,asy+1) the O-chain
2n n n
o= Z(—l)laz‘ = Z(am‘ —agi—1) = Z(a% — a2i41)-
=1 i=1 i=1

Taking F'(X,t) a regular fraction in C(X,t), one observes that for all i, Fy,,, — F,, , = 0,
as vertices ag; and ag;—; share their first coordinate. Symmetrically, taking G(Y,t) a regular
fraction in C(Y,t), G,y — Gay, = 0. Therefore, F, = G, = 0. Hence, the 0-chains induced by
bicolored loops cancel decoupled fractions. Figure 5.1 illustrates this observation.

Example 5.4 is fundamental for picturing the 0-chains that cancel decoupled fractions because
of the following stronger result:

Proposition 5.5. A 0-chain cancels decoupled fractions if and only if it can be decomposed as
a C-linearl combination of 0-chains induced by bicolored loops.

There exists an elementary graph theoretic proof of this fact. However, we choose to postpone
the proof of Proposition 5.5 after the proof of Theorem 5.24, which is an algebraic reformulation
of the condition for a 0-chain to cancel decoupled fractions.

Example 5.6. A straightforward application of this observation, is the following obstruction
for the existence of a Galois decoupling of XY. Consider an orbit whose graph contains a
bicolored square (bicolored loop of length 4), with associated 0-chain o = (u1,v1) — (u1,v2) +
(u2,v2) — (ug,v1) (thus with u; # ug and vy # v2). The evaluation of XY on this 0-chain factors
as (XY)a = (u1 — ug)(v1 — v2), which is always nonzero. Therefore, if the orbit of a model
W contains such a cycle, then XY never admits a Galois decoupling and thereby a decoupling
in the sense of the t-equivalence. Thus, we can conclude that for models with orbit Q15 (see
Figure 3.1) or Hadamard (see § 5.6.3), or the “Fan model” (see § D.0.3), the fraction XY never
admits a decoupling.

For now, we only saw that the canceling of a regular fraction on 0-chains that cancel decoupled
fraction is just a necessary condition for the Galois decoupling of this fraction. We prove in this
section that this condition is sufficient and that one only needs to consider the evaluation on a
precise 0-chain.

For small steps walks with finite orbit, there is only one bicolored loop and thereby only
one 0-chain « induced by a bicolored loop. Theorem 4.11 in [BBMR21] shows that a regular
fraction admits a Galois decoupling if and only its evaluation on « is zero. More precisely,
Bernardi, Bousquet-Mélou and Raschel proved an explicit identity in the algebra of the group
of the walk. Rephrasing their equality in terms of 0-chains in the orbit, we introduce the notion
of decoupling of the pair (z,y) in the orbit as follows:

§We know that the terminology loop is unorthodox, however we follow [Gib81, Definition 1.8].

INote that if the 0-chain is with integer coefficients, one can choose the combination with integer coefficients
as well.
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Definition 5.7 (Decoupling of (x,y)). We say that (z,y) admits a decoupling in the orbit if
there exist O-chains vz, 7y, o such that

hd (.T,y) ::7\;+%+a

® 0, Yy =7z forall o, € Gy

® 0y ="y forall o, € Gy

e the 0-chain « cancels decoupled fractions

In that case, we call the identity (z,y) = 7z + 7y + a a decoupling of (x,y).

Note that if (7, ¥y, ) is a decoupling of (x,y) then the 0-chain « is equal to (x,y) — vz —y.
Hence, when giving such a decoupling, we will often state explicitly only v, and 7,.

Example 5.8. For the orbit of the model gé‘ # a decoupling equation is as follow, as constructed
in Subsection 5.6.2: (z,y) =7, + 7, + a with

Vo = <1 ((z,y) + (=,77)) — L ((z,y) + (—pxy?z,y) + (vy°2,77) + (—u?,:Ty))

> 8
b5 (@2,72) + (5. 72) + (~oge, ~iry2) + (~4i7 —MxyZ))>
and 7, = <i ((w,y) +(2,9) + (—pay’z, y)) - % ((w,@) +(2,77) + (—uzyz, —ua?yZ))> :

The 0-chain « is represented in Figure 5.2. It is the sum of the two 0-chains «; and a9 induced
by the two bicolored loops where the weights of the O-chains o and a9 are written in grey next
to their corresponding vertex.

(z3,91) — (za,51)

(x,y1)

oo

(x1,y) - (z2,9)

/

(73,92) (0102) (r2:30) (24,y3)

(75,92) (25, 93)
v

FIGURE 5.2. A 0-chain of Q15 characterizing decoupled fractions for the model
g§ # where the weights are written in grey next to their corresponding vertex.

The relation between the notion of decoupling of (x,y) in the orbit and the notion of Galois
decoupling is the detailed in the following proposition.
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Proposition 5.9. Assume that (x,y) = vz + 7y + o is a decoupling of (x,y), and let H(X,Y,t)
be a regular fraction. Then the following assertions are equivalent:

(1) H admits a Galois decoupling
(2) H,=0
(3) Hzy) = Hy; + Hy; is a Galois decoupling of H.

Proof. (1) = (2): By definition of a Galois decoupling of (z,y), a cancels decoupled fractions.
(2) = (3): Evaluating H on the decoupling of (z,y) yields the identity H(, ) = Hy; + Hx,.
Moreover, since 7, (resp. 7,) is fixed by G, (resp. Gy), then Lemma 3.19 and the Galois
correspondence in the extensions k(O)|k(z) and k(O)|k(y) ensure that Hy; and Hs. belong
respectively to k(x) and k(y), hence Hy; + Hy; is a Galois decoupling of H.
(3) = (1) is obvious. O

Therefore, if we solve the decoupling problem of (x,y) in the orbit, we also solve the Galois
decoupling problem for rational fractions: an explicit decoupling of (z,y) will grant us with a
simple test to check whether a regular fraction admits a Galois decoupling (some orbit sum is
zero), and an effective way to construct the associated Galois decoupling based on orbit sum
computations.

We now state the main result of this section, whose proof will follow from Theorem 5.25:

Theorem 5.10 (Decoupling). If the orbit O is finite, then (z,y) always admits a decoupling
in the orbit.

Note that the construction of the decoupling in the next sections gives a decoupling whose
0-chains have rational coefficients.

The rest of this section is dedicated to the proof of Theorem 5.10 and to the effective con-
struction of the decoupling of (x,y) in the orbit.

5.3. Pseudo-decoupling. We define here a more flexible notion of decoupling in the orbit
called pseudo-decoupling, mainly used in the proof of the main theorem.

Definition 5.11 (Pseudo-decoupling). Let 7, and 7, be two 0-chains. We call the pair (v, vy)
a pseudo-decoupling of (z,y) if for every regular fraction H(X,Y,t) that admits a Galois de-
coupling, the equation H H,, + H,, is a Galois decoupling of H, that is, H,, € k(x) and

zy) =

For instance, if (z,y) = 7z + 7y + « is a decoupling of (z,y), then the pair (7;,7,) is a
pseudo-decoupling of (z,y) by Proposition 5.9.

The following theorem shows how a pseudo-decoupling yields a decoupling.

Let G’ be a subgroup of G. We denote by [G'] the formal sum ﬁ Y wecy 0. From a Galois
theoretic point of view, if G’ is the Galois group of some subextension k(O)|M, then [G'] is the
trace of the field extension k(O)|M.

Theorem 5.12. If a pair (vz,7y) is a pseudo-decoupling of (xz,y), then (x,y) admits a decou-
pling of the form

(z,y) =72+ Y +
where v = [Gg) - 72 and Y, = [Gy] - vy
Proof. By construction, the 0-chains v, and 7, are fixed under the respective actions of G, and
Gy. Therefore, we only need to prove that a cancels decoupled fractions, for which purpose we
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rewrite it as the sum of three terms

a=((2,y) =% — W)+ (O = [Ga] %) + (3 = [Gy] - ).
Let H be a regular fraction that admits a Galois decoupling. Then

e H,) — H,, — H,, =0 by definition of the pseudo-decoupling (7z,yy)-

e For 0, in G, we compute Hy, _,, .4, = Hy, —0,(H,,) thanks to Lemma 3.19. As H,_ is
in k(x), it turns out that H,, _, ., is zero. Since |G711\ Yoooeq, Ve—0e V) = Ve —[Ga] Ve,
we obtain that v, — [G3] - 75 cancels H.

e The argument for v, — [G,]v, is similar.

Thus H, = 0, which concludes the proof. O

We finish this subsection with two important lemmas.

Lemma 5.13. If the pair (Vz,7vy) is a pseudo-decoupling of (x,y), and a and o/ are 0-chains
that cancel decoupled fractions, then (v; + o,y + ') is also a pseudo-decoupling of (z,y).

Proof. Let H(X,Y,t) be a regular fraction that admits a Galois decoupling. By definition of «
and o/, we have H, = H, = 0, which by linearity proves that H,, 1, = H,, and Hy ror = Hy,.
Since (7x,7y) is a pseudo-decoupling of (x, y), the equation H(, ) = H,, +H,, = Hy, 1o+ Hy, o
is a Galois decoupling of H proving that (7, +a, v, +¢’) is also a pseudo-decoupling of (z,y). O

Lemma 5.14. If two 0-chains vy, and vy, satisfy the following conditions
° (z,y) =72+
o for all o, € G, the 0-chain oy - vz — Y2 cancels decoupled fractions
e for all oy € Gy, the 0-chain o, - v, — vy cancels decoupled fractions

then (vz,7vy) is a pseudo-decoupling of (x,y).

Proof. Let H be a regular fraction which admits a Galois decoupling. As H(,,y = H,, + H,,
from the first point, one only needs to show that H,, is in k(z) and that H,, is in k(y). Let
oy be in Gy, then 0,(H,,) = Hy,ny, = Higyyy—yp)4ye = Hy, because (og - v, — 72) cancels
decoupled fractions. Therefore, the Galois correspondence proves that H., is in k(z). The
same argument proves that M, is in k(y). (]

5.4. Graph homology and construction of the decoupling. Our construction of a decou-
pling relies on the graph structure of the orbit O, and in particular on the formalism of graph
homology.

5.4.1. Basic graph homology. We recall here the basic definitions of graph homology and the
properties that will be used in the construction of the decoupling (see [Gib81] for a comprehen-
sive introduction to graph homology).

Definition 5.15. A graph (undirected) is a pair I' = (V, E') where V' is the set of vertices and
E Cc {{a,d'}|a,d € V,a # a'} is the set of edges. A subgraph of T is a graph I" = (V’, E’) such
that V/' C V and E' C E.
An oriented graph is a pair I' = (V, E1) where V is the set of vertices and Et* C {(a,d') |a,d’ € V,a # d'}
the set of arcs (oriented edges) such that if (a,a’) € E* then (a’,a) ¢ ET. An orientation of
a graph I' = (V, E) is an oriented graph I'' = (V, E™) such that the map ET — E which maps
(a,a’) to {a,a’} is a bijection.
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Note that every graph can be given an orientation by freely choosing an origin for each edge.
Conversely, given an oriented graph I' = (V, ET), one can consider the associated undirected
graph (V, E) where E = {{a,d’} such that (a,a’) € ET or (a’,a) € ET}. In what follows,
the notions of graph homomorphism, path, connected components concern the structure of
undirected graph.

Example 5.16. The graphs considered here are the graph induced by the orbit (O, ~) still
denoted O, and the two subgraphs of the orbit restricted to each individual type of adjacency,
which are 0% = (O, ~%) and OY = (O, ~Y).

We now introduce the chain complex attached to an oriented graph.

Definition 5.17. Let I' = (V, E") be an oriented graph and K a field. The space Co(T) of
O-chains of T is the free K-vector space spanned by the vertices of V. Similarly, the space C1(T")
of 1-chains of T is the free K-vector space spanned by the arcs of ET. We turn C,(T) into a
chain complex by defining the boundary homomorphism, which is the K-linear map defined by
0: 4 (F) — (F)
(a,d') e EY +— d —a

As the reader notices, the chain complex has only been defined for an oriented graph.
Nonetheless, if (V, E{") and (V, Ey) are two orientations of a graph T, it is easy to see that
the associated chain complexes are isomorphic [Gib81, 1.21 (3)]. When the context is clear, we
shall abuse notation and define a chain complex C,(I") of a graph I" as the chain complex of the
oriented graph (V, ET) where ET is an arbitrary orientation of T'.

We make the following convention. Let a and a’ be two adjacent vertices of I'. Given an
orientation ET of T', we abuse notation and denote by (a,a’) the 1-chain

n_ | (a,d) if (a,d’)isin ET
(a,0) = { —(d',a) otherwise

This notation is extremely convenient, because for two adjacent vertices of I', the boundary
homomorphism always satisfies 9((a,a’)) = @’ — a and (a,d’) = —(d/, a).

Definition 5.18. Let I' = (V, E™) be an oriented graph. A 1-chain ¢ which satisfies d(c) = 0
is called a 1-cycle.

Example 5.19 (1-chain induced by a path). Let I" = (V| E') be a graph and let (a1, a2, ..., an+1)
be a path in ', that is, a sequence of vertices such that a; is adjacent to a;41 for i = 1,...,n.
Given an arbitrary orientation E1 of I', we define the 1-chain p = " ; (a;, ai4+1), and we call it
the 1-chain induced by the path (a1, az,...,an+1). By telescoping, O(p) = an+1 — a1, therefore if
the path is a loop of I" then p is a 1-cycle, hence the name. Every 1-cycle is a linear combination
of 1-cycles induced by the simple loops of the graph, that is, loops with no repeated vertex (see
[Gib81, Theorem 1.20]).

We recall that a graph is called connected if any two vertices are joined by a path. The
reader should note that the notion of path does not take into account a potential orientation
of the edges. Every finite graph is the disjoint union of finitely many connected components
which are maximal connected subgraphs. Any orientation of a graph induces by restriction an
orientation on its subgraphs and thereby on its connected components. With this convention,
it turns out that the chain complex of a finite oriented graph is isomorphic to the direct sum
of the chain complexes of its connected components. Hence, it is harmless to extend Theorem
1.23 in [Gib81] to the case of a non-connected graph.
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Proposition 5.20. Let I' = (V, E) be a graph, and let (I'; = (Vi, E;))i=1,.., be its connected
components. Define the augmentation map : Co(I') — K" by (D ey Aa@t) = (Zaew Aa)i=1,...r-
Then, Kere = Im 0.

Let I' = (V, E) be a graph and let o be a graph endomorphism of I'. Fixing an orientation
ET on T, we let o act on the space of 0 and 1-chains by K-linearity via:

o-a=0c(a) for any a in V and o - (a,d’) = (0(a),c(a’)) for any (a,a’) in E7.

The reader should note that the action on the space of 1-chains uses the convention on the
arc notation introduced at the beginning of the section. It is easily seen that the action of a
graph endomorphism of I" is compatible with the boundary homomorphism of the chain complex
Ci(T).

Proposition 5.21. Let I' = (V, E) be a graph and o be a graph endomorphism of I'. Then o
induces a chain map on Cy(T'), which means that the following diagram of K-linear maps is
commutative.

C1(1) —2— Co(I)

C1(1) —2— Co(I)

5.4.2. The chain complex of the orbit and algebraic description of bicolored loops. We now
apply the homological formalism to the graphs associated with the orbit O with base field C
(see Example 5.16). We fix once for all an orientation on O which induces an orientation on the
subgraphs OF and OY. Quoting [Gib81, Remark 1.21],* the choice of this orientation is just a
technical device introduced to enable the computation of the boundary homomorphisms”. We
denote by 0 (resp. 0%, 9¥) the boundary homomorphism on the connected graph O (resp. the
non-connected graphs O, OY). Moreover, we denote by ¢ (resp. €%, €¥) the augmentation map
defined in Proposition 5.20 for O (resp. O%, OY).

Lemma 5.22. The C-vector space C1(O) is equal to C1(O%) & C1(0Y) and the boundary ho-
momorphism O coincides with 0 + 0Y where one has extended 0% (resp. 9Y) by zero on C1(OY)
(resp. C1(O%)).

Proof. Every edge {a,a’} of O is either an z-adjacency or an y-adjacency, and not both. There-
fore, the set of arcs of an orientation of O is the disjoint union of the arcs of the orientations
of 0% and 0¥, which thus induces a direct sum decomposition on the free vector space C1(0O).
The decomposition of the homomorphism 0 follows directly. (]

The action of the Galois group G on the vertices of O preserves the adjacency types of the
edges (see Lemma 3.6). Therefore G acts by graph automorphisms on O% and OY. Thus,
Proposition 5.21 allows us to define the action of G' on the chains of O% and (¥ in a compatible
way with the decomposition of Lemma 5.22.

Proposition 5.23. Let o be in G. Then o induces automorphisms of the chain complexes

C(0),C(O0%) and C(OY) such that 0 0 0* =0 oo and 00 0Y =0Y o 0.

The boundary homomorphisms 9%, 3¥ allow us to rewrite the 0-chains induced by bicolored
loops as boundaries. If « is the 0-chain associated to a bicolored loop as in Example 5.4, then
it is easily seen that a = 9% (p) = 0Y(—p) with p the 1-chain as in Example 5.19. The homology
formalism generalizes the above description to any 0-chain that cancels decoupled fractions.
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Theorem 5.24. Let o be a 0-chain. Then the following statements are equivalent:

(1) « cancels decoupled fractions.

(2) €*(a) = 0 and ¥(a) = 0.

(3) There ezists a 1-cycle ¢ of O such that a = 0% (c).
") There ezists a 1-cycle ¢ of O such that o = 9Y(c).

3

Proof. (1) = (2): Let a be a 0-chain that cancels decoupled fractions. The connected compo-
nents of the graph O% are of the form OF = {(v/,v’) € O |u' = u} for the distinct left coordinates
u of O. Therefore, we decompose av = Y v, where a, = >, A% (u,v) is a 0-chain with ver-
tices in OF. Now, we consider the family of monomials (X*); which are obviously decoupled.
Since « cancels decoupled fractions, the following holds for all ¢:

0= (X=X = 3 ME Y =S 3 | =3 )

U u v/ (u)EOT u v/ (u')eOz

Because the elements u are distinct, this is a Vandermonde system, in which the unknowns
are the (), therefore we deduce that they are all equal to 0. Thus, ¢¥(a) = 0. The same
argument yields e¥(a) = 0.

(2) = (3) and (3’): Assume that ¢¥(a) = 0 and €¥(a) = 0. By Proposition 5.20, there exist
¢ in C1(O%) and ¢, in C1(OY) such that 0%(c;) = @ and 0¥(cy) = a. Moreover,

Iex = ¢y) = 9(ex) = Aey) = 0%(ez) = 0¥(¢y) = v == 0.

0
Therefore, ¢ = ¢, — ¢, is a 1-cycle of O which satisfies 0%(c) = a and 9Y(—c) = a.

(3) (3 ): Let ¢ be a 1-cycle of O, then 9%(c) = 9(c) — 9Y(c) = 9Y(—c). This proves the
equivalence.

(3) = (1): Assume that o = 9*(c) = 9Y(—c) for c a cycle of O. Now, let e = ((u,v), (u,v)) be
an arc of O and take F'(X,t) € C(X,t). Then Fye(ey = F'(u,1/S(x,y)) — F(u, 1/S(x, y)) =
Therefore, by C-linearity, this implies that F, = Fye() = 0. Symmetrically, if G(Y,t) € C(Y, )
then we deduce that G, = Ggy(—.) = 0, which concludes the proof. O

We now apply this pleasant characterization to prove our earlier claim that 0-chains that
cancel decoupled fractions are induced by C-linear combinations of 1-cycles induced by bicolored
loops.

Proof of Proposition 5.5. Let a be a 0-chain which cancels decoupled fractions, then by (3) of
Theorem 5.24, we can write it « = 9%(¢) = —0Y(¢) with ¢ a 1-cycle of O.

Since the 1-cycles induced by the simple loops of O generate the 1-cycles of O (see [Gib81,
Theorem 1.20]), we can assume without loss of generality that ¢ is induced by a simple loop
p = (ay,as,...,a,) of O.

Moreover, if consecutive arcs €;,...,€415-1 = (i, @i11), (@it1, @itr2)s -« (Qjsk—1,ai4k) Of p
are of the same adjacency type (say x), then since the monochromatic components of O are
cliques, (a;,a;1x) is an arc of O. Therefore, 0%(e; + -+ + €;4p—1) = O%(€; + -+ + €j4p—1 +
(@itk,ai)) + 0% ((ai, ai1)), the first term being zero because it is the boundary of a monochro-
matic cycle. The exact same reasoning can be done for consecutive y-adjacencies. Thus, replac-
ing consecutive arcs of the same adjacency type by one single arc of the same adjacency type,
we can assume without loss of generality that c is the 1-chain induced by a simple bicolored
loop. This proves that « is the 0-chain induced by a bicolored loop, finishing the proof. (]
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5.4.3. Construction of the decoupling. We now use the results of the previous subsections to
construct a pseudo-decoupling of (x,y) on a finite orbit O.
For p = (pa)aco a family of 1-chains, we consider the 0-chains

'Yx(p) = ’O| Zay pa and ’)/y = ’O’ Zax pa

where all sums run over 0. The C-linearity of the boundary homomorphisms implies that
7, and 7y, are C-linear morphisms from C1(0)° to Cp(0). We recall that w is the 0-chain
|—(19‘ Y aco a defined in Lemma 4.4.

Theorem 5.25 (Decoupling theorem). Let p* = (p%)aco and p¥ = (p4)aco be two families of
1-chains, that are such that for all a € O one has

e®(0pE) + (z,y) —a) =0 and Y(0(p) + (x,y) —a) = 0.
Then, the pair (w + vz(p"), vy (pY)) is a pseudo-decoupling of (z,y).

Proof. Let (p%)aco and (pa)aco be two families that satisfy the conditions of the theorem. For
all a in O, we have *(9(p%)+(z,y)—a) = 0. By Proposition 5.20 applied to I' = O%, there exists
ck e C’l((’)x) such that 9(c%) = 0(pk) — a+ (x,y), which rewrites as d(p~ — ) = a — (z,y). We
denote by ¢* the family of 1-chains (¢} ),. Note that 8?‘/( 7) = 0 for all a in O so that v;(c¢*) = 0.
Similarly, there exists a family ¢ = (c)sco in C1(O¥)C such that we have d(ph—cl) = a—(x, )
for all @ in O and ~,(c¥) = 0. Therefore, using the linearity of v, and ~,, we find

(W +7(p), 7 (") = (@ + 7" = ), 2 (" =) + 9 (07 =) = (0" = ))).

By construction of ¢ and ¢, the 1-chain (p) — ci) — (p% — fj) is a 1-cycle for all a. Hence,
by linearity of the boundary homomorphlm 0, the 1-chain — i 0| S ((ph—ch)— (pE—ct))is a
1-cycle. Hence, by (3) of Theorem 5.24, the O-chain v, ((p¥ — ¢¥) — (p* — ¢*)) cancels decoupled
fractions.

Therefore, by Lemma 5.13, it only remains to show that the pair (w -+, (p* —c*), v, (p* — %))

is a pseudo-decoupling of (z,y). Denote by ¢ = (¢q)aco the family of 1-chains p* — ¢*. Then,

— (z,y) = 0(p; — ¢z) = 0(4a) = 0”(¢a) + 9" (a)-

Summing this identity over the orbit yields

Za_|0|$y ZayQa +Za$Qa

acO acO aceO

which can be rewritten as

(z,9) = (W +72(q)) +7y(q).

In order to conclude that the pair (w + v(q),7y(¢)) is a pseudo-decoupling, we just need to
check that, for all o, in G, the 0-chain o, - (w+7.(¢)) — (W+72(q)) cancels decoupled fractions,
and that, for all o, in Gy, the O-chain oy - v,(q) — v,(¢q) cancels decoupled fractions and apply
Lemma 5.14.
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Let 0, be in G,. Then by compatibility of G with the boundaries (Proposition 5.23), we
compute

1 Yy
oz Y2(q) = _@ Z 9Y(0z - qa)

acO
1 1
= ~10] 2 lea) ~ 15 2 0"(0n o~ o)
ac® acO

The homomorphism ¢, is a bijection on the vertices of O, so the first sum on the right
hand-side is equal to v;(g) so that

1
(5.1) o 2(q) — Y2(q) = 0" (_IO\ Y (00— qaz~a)> :
acO
Now, that since o, fixes z, we have o, - (x,y) = (x,v) for some v. Thus there exists ¢ in
C1(O%) such that o, - (z,y) — (z,y) = d(c). Then, for all a € O, we have

0z Ga — Go,at¢)=(0z-a—0z (2,y) — (0 -a—(2,y)) + (0z - (z,y) — (z,y)) = 0.
Therefore, the 1-chain o, - ¢4 — ¢y,.o + ¢ is a 1-cycle for all a so that —ﬁ Y0200 — oy + )

is also a 1-cycle by linearity of the boundary homorphism 9. Moreover, since ¢ is in Cy(O%), we
have 0Y(0y - ¢a — Qop-a) = 0Y(0z - Ga — Qop-a + ) for all a in O, so from (5.1), we conclude that

02Yz(q)—z(q) = 0Y (—ﬁ Y al0zGa—Gopa + c)) Theorem 5.24 implies that 0,7z (q) —7z(q)
cancels decoupled fractions. Finally, as w is fixed by 0., we deduce that o, - (w +7.(q)) — (w +
Y2(q)) = 02-72(q)—7z(q) cancels decoupled fractions. The proof for oy, (q) —7,(¢) is completely
analogous. U

We can now prove the existence of a decoupling of (z,y) for any finite orbit.

Proof of Theorem 5.10. The graph O is connected. Hence, for every a € O, there exists a path
from (x,y) to a. Denoting by p¥ = py the associated 1-chain, we have 9(p%) = a — (x,y) (see
Example 5.19). Therefore, the families (p),co and (pi)qco satisfy the assumptions of Theorem
5.25 leading to the existence of a pseudo-decoupling. Theorem 5.12 establishes the existence of
a decoupling obtained from a pseudo-decoupling concluding the proof of Theorem 5.10: if the
orbit is finite, the pair (z,y) always admits a decoupling in the orbit. O

In [BMPF*22, Definition 6.1], the authors introduce a notion of a multiplicative decoupling
of a regular fraction. In our context, we say that a regular fraction H(X,Y’) has a multiplicative
Galois decoupling if and only if there exists a positive integer m such that

H(X,Y)" = F(X,t)G(Y,t) + K(X,Y,t)P(X,Y, t),

for some rational fractions F'(X,t), G(Y,t) and a regular fraction P(X,Y,t).

Theorem 5.10 yields a decoupling of (z,y) with O-chains 7,7, and « having rational coeffi-
cients. Let d be the common denominator of the rational coefficients of 7,7, and o which is
easily seen to divide the size of the orbit in the proof of Theorem 5.25 when the input 1-chains in
p® and pY all have integer coefficients. Then, the O-chains dv,, d7yy, da have integer coefficients.
For such chains, one can define a multiplicative evaluation:

For a 0-chain ¢ =}_  cyo(u,v) with integer coefficients, define

Hm = HH(u,v, 1/8(z, ).

u,v
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As a direct corollary of the existence of a decoupling in the orbit, the following lemma gives
an explicit procedure to test and construct, when it exists, the multiplicative Galois decoupling
of a regular fraction H.

Lemma 5.26. The following statements are equivalent:

e H(X,Y,t) has a multiplicative Galois decoupling.
e There exists a a positive integer m such that (HZZ&“Z)m =1.

Proof. From Proposition 3.18, the regular fraction H(X,Y,t) admits a multiplicative Galois
decoupling if and only if there exist a positive integer m, f(z) € k(x) and g(y) € k(y) such that
HP = f(@)g(y).

Let us assume that H admits a multiplicative Galois decoupling and let m be a positive integer
such that H(X,Y)" = F(X)G(Y) + K(X,Y,t)P(X,Y,t) for some rationals fractions F, G and
a regular fraction P. By multiplicative evaluation of the previous identity on da, we find that
(Hg&“l)m = (F(X)glctﬂ)m(G(Y)ggﬂ)m. It is clear that da is a 0-chain with integer coefficients
that cancels decoupled fractions. By Proposition 5.5, the chain d« is a Z-linear combination of 0-
chains induced by bicolored loops. One proves easily by a multiplicative analogue of Example 5.4
that if § is a 0-chain induced by a bicolored loop then F(X )gml = G(Y)glul = 1 which concludes
the proof of the first implication.

Conversely, if there exists a positive integer m such that (Hcrlnam)m = 1, the decoupling d- (z,y) =
dvz + dyy + da yields by multiplicative evaluation

mul m dm mul\" mul\ "
(Hd(z,y)> = Hy) " = (de) (dey;)
By definition of the decoupling of (z,y) = 7z + 7y + «, we find that o - dvy, = do - v, = dv, for
all 0 € G;. A multiplicative analogue of Lemma 3.19 implies easily that H(Iir%l is left fixed by

G, so that Hg%l belongs to k(x). A similar argument shows that Hg}ylj;l belong to k(y) which
concludes the proof. O

5.5. Effective construction. The evaluation of a regular fraction at a vertex of the orbit, that
is, at a pair of algebraic elements in K might be difficult from an algorithmic point of view since
this requires to compute in an algebraic extension of Q(x,y). This is however the cost we may
have to pay in our decoupling procedure if we choose random families of 1-chains satisfying the
assumptions of Theorem 5.25.

In this section, we show how, under mild assumption on the distance transitivity of the graph
of the orbit, one can construct a decoupling in the orbit expressed in terms of specific 0-chains
that we call level lines. These level lines regroup vertices of the orbit that satisfy the same
polynomial relations. Therefore, one can use symmetric functions and efficient methods from
computer algebra to evaluate regular fractions on these level lines (see Appendix C).

Definition 5.27. Let a be a vertex of O. We define the z-distance of a to be dg(a) =
inf{d(a,d’)|a’ ~* (z,y)}, that is, the length of a shortest path in O from a to the clique
(aj, )

Such a shortest path (go, g1, ...,9r), that is, g, = a, go ~* (z,y) and d;(a) = r, is called an
x-geodesic for a. Note that we have d,;(g;) =i for all i = 0,...,r. We denote by P¥ the set of
1-chains associated with z-geodesics for a as in Example 5.19.

The z-level lines Xp, X1, ... are defined by X; = {a € O|dz(a) =i}, and we associate to the
level line A; the O-chain X; = 4, a.



GALOIS GROUP, DECOUPLING AND INVARIANTS FOR LARGE STEPS WALKS IN THE FIRST QUADRANT

Analogously, we define the y-distance dy, the set Py of y-geodesics for a, the y-level lines
Yo, V1, ..., and denote by Y; the 0-chain associated with the y-level line ).

FIGURE 5.3. The level lines for the orbit Oq2

The level lines can be represented graphically, as in Figure 5.3, or in §5.6 or in Appendix D.
The level lines and geodesics are our key tools to construct relevant collections of 1-chains
satisfying the conditions of Theorem 5.25. First, the boundaries of a geodesic are easy to
express.

Lemma 5.28. Let a be a vertex of O and (go, 91, ---,9r) an x-geodesic for a. Then g; ~Y g;—1
if and only if i is odd. Similarly, for (go,q1,--.,9r) an y-geodesic for a, then g; ~* g;—1 if and
only if 1 is odd.

Proof. Let g = (90,91, --,9r) be an z-geodesic of length r. Assume that there exists i such
that g; ~* gix1 ~" gi+2. By transitivity of ~%, this implies that g; ~* g;+2, contradicting the
minimality of the geodesic g. Similarly, if there exists ¢ such that g; ~Y ¢;+1 ~Y ¢i+2 then
gi ~Y gi12, also contradicting the minimality of the geodesic. Therefore, the adjacency types of
the edges of the geodesic alternate.

Finally, if gg ~* g1, then this also contradicts the minimality of the geodesic because then
(z,y) ~* g1. This fixes the starting parity of the alternating adjacency types of edges of the
geodesic, and thus g; ~¥ g;_1 if and only if i is odd. The case of an y-geodesic is symmetric. [J

Corollary 5.29. Let a be a vertex of O, (g0, 91,---,9r) an x-geodesic for a and g its associated
1-chain, then 3Y(g) = Z 9i — gi—1. Analogously, for (go,q1,--.,9r) a y-geodesic for a then

1<i<r
i odd
9*(g) = Z 9i — 9i-1-
1<i<r
i odd

Recall from Section 5.4.1 that any graph automorphism 7 of O act on the vertex a of O
coordinate-wise and that we denote this action 7 -a. We extend the action of 7 to any path
(a1y...,an+1) as follows

T(a1, .. ap+1) = (T a1, .., T Apt1)-
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Note that this action is compatible with the action of graph automorphisms on 1-chains defined
in Section 5.4.1. Indeed, if p is the 1-chain associated with the path (a1, ..., a,+1) as in Example
5.19 then 7 - p is the 1-chain associated with the path 7 - (a1,...,ans1).

The following lemma shows that the geodesics and level lines satisfy some stability properties
with respect to the action of elements of G, and G, viewed as subgroups of the group of graph
automorphisms of O via their faithful action on the orbit.

Lemma 5.30. Let o, be in G, and a in O. Then d, (o, - a) = dy(a). Moreover, if (go, ..., gr)
is an x-geodesic for a, then o, - (go, ..., gr) an x-geodesic for o, - a. Analogously, if oy is in Gy
and a in O, then dy(oy -a) = dy(a), and if (go, - .., gr) an y-geodesic for a, so is oy - (go,-- -, 9r)
for oy -a.

Proof. Assume that d,(a) = r. Then there exists an x-geodesic for a that is (go,91,-..,9r)
with ¢, = a. Apply the graph automorphism o, to each of the vertices of this path. Then
(290,02 G1,..,05gr) With 0, - g, = 04 - a is a path of the orbit. By definition, g9 ~* (z,y),
thus o, - go ~* (z,y) since z is fixed by G,. Therefore, d;(o; - a) < r = dg(a). Since o, is an
automorphism, we conclude that d, (o, - a) = dy(a). We finally deduce that o, - (go,...,gr) is
a z-geodesic for o - a. O

This observation leads us to define two subgroups of automorphisms of the graph O. We
denote by Aut,(O) (resp. Aut,(O)) the subgroup of graph automorphisms of O that preserve
the x (resp. y)-distance and the adjacency types I.

By definition, any element 7 in Aut,(O) maps an z-geodesic for a onto an x-geodesic for 7-a.
Moreover, a graph automorphism preserve the z-distance if and only if it induces a bijective
map from X; to itself for each i. Analogous results hold for Aut,(O).

Lemma 5.30 imply that G, (resp. Gy) is isomorphic to a subgroup of Aut,(O) (resp.
Aut,(O)). The benefit of the groups Aut,(O) and Aut,(O) is that, unlike G, and G, they only
depend on the graph structure of the orbit, and thus are more easily computable. Note however
that not all such graph automorphisms come from a Galois automorphism (see for instance the
Hadamard example in §5.6.3). We now state an assumption on the distance transitivity of the
graph of the orbit.

Assumption 5.31. Let a and o’ be two pairs of O. If d,(a) = dy(a’), then there exists a o,
in Aut,(O) such that o, -a = &. Similarly, if d,(a) = dy(a’), then there exists a o, in Aut,(O)
such that o,(a) = a’. In other words, Aut,(O) (resp. Aut,(O)) acts transitively on X; (resp.
;) for all i.

This assumption has been checked for all the finite orbit types appearing for models with steps
in {—1,0,1,2}? as well as Hadamard and Fan-models (see the examples in §5.6 or Appendix D).
However, Assumption 5.31 does not always hold as illustrated in the following example.

Example 5.32. Consider the weighted model described by the Laurent polynomial S(X,Y) =

(X + % +Y + %)2 The kernel polynomial K is an irreducible polynomial of degree 4 in X
and in Y. Therefore, the cardinal of )} is 4 and the only right coordinate of the elements in )
is y. Moreover, each element of ) is x-adjacent to three distinct elements in ) so the cardi-
nality of )y is 12. Now, it is easill seen that the rigllt coordinates of vertices in Yy U Y are

the roots of the polynomial Res(K (X, y,1/S(x,y)), K(X,Y,1/S(x,y)),X). Since z and y are
algebraically independent over Q, its irreducible factors in C(z,y)[Y] are (Yy —1), (-y+Y),

|One can show that this last condition is redundant with the condition on the distance preservation.
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(Yzzz:y +2¥ 22y +Yay? + Yo +2Yy + :L‘y) and (YQI'y —2Y 2%y —3Yxy? —3Yx —2Yy + my)
This proves that the cardinality of the set V of right-coordinates of elements in ) is 5.

If Assumption 5.31 were true for this model then the transitive action of Aut,(O) on ),
implies that the sets K, = {(u,w)| w =v and (u,w) € Y1} C Y for v in V are all isomorphic.
Indeed, for v and v’ two distinct right coordinates in ), Assumption 5.31 provides oy, in Aut, (O)
such that oy - (u,v) C (uv/,v’) because it preserves the y-adjacencies. Its restriction to K, gives
an embedding to K, because it preserves the y-distance. This proves that K, and K, are
isomorphic. Since these sets form a partition of ), this would imply that the cardinality of V
divides the cardinality of );. A contradiction.

We now show that Assumption 5.31 is sufficient for (z,y) to admit a decoupling in terms of
level lines.

Lemma 5.33 (Under Assumption 5.31). Let a and o’ to be two vertices with d,(a) = dy(a’).
Then there is a bijection between PT and PZ,. Analogously, if a and o' satisfy dy(a) = d
then there is a bijection between Py and 773/.

Proof. Use Assumption 5.31 to produce o, in Aut,(O) such that o,(a) = a’. This o, induces a
bijection between Py and Pg_ ., = Py, by Lemma 5.30 and the compatibility between the action
of 0, on x-geodesics and its action on the associated 1-chains. O

The following theorem gives a decoupling of (z,y) in terms of level lines.
Theorem 5.34 (Under Assumption 5.31). Define the following 0-chains:

_ J 1 _ 1 J 1
RIS <\Xr po n) and =51 2 il 3 (m e 1|>

i>1 1<]<Z 1>1 1<]<’L
j odd j odd

Then (z,y) = (w+ Vz) + 1y + « is a decoupling of (x,y) in the orbit (with w = ﬁ Y aco @)

Proof. Consider the two families of 1-chains (pf).co and (pg)aeo defined for a in O as

s = |pm| > g and pY= U,y| > g

gePg gEPY

For all g = (go,...,gr) in P7, we have 0(g9) = a — go with go ~* (x,y). Then, ¢*(d(g) — a +
(z,y)) = 0. Thus, we find by linearity that ¢*(9(p%) — a + (x,y)) = 0. The same argument
shows that €¥(9(p4) — a + (x,y)) = 0. Therefore, both families of 1-chains (pZ)asco and (pd)aco
satisfy the conditions of Theorem 5.25, which thus states that if we take

Vg = — |O|Zaypa and 7y = |O|Zaxpa

aceO acO

then the pair (w + 7;,7y) is a pseudo decoupling. As the geodesics are stable under the action
of their respective Galois groups by Lemma 5.30, it is also a decoupling.

Therefore, we are left to prove that v, and 7, admit the announced (pleasant) expressions.
We only treat the case of 7., the case of y being totally symmetric.

First, note that, by Lemma 5.33, the cardinality of P¥ (resp. Py) depend only on the z-
distance (resp. y-distance) of a. For i a non-negative integer, we denote by m¥ (resp. m) the
cardinality of PZ (resp. Pg) for any a such that dy(a) =i (resp. dy(a) =1).



40 PIERRE BONNET AND CHARLOTTE HARDOUIN

The expression of the boundary of a geodesic (Lemma 5.29) combined with the partition of
O into z-level lines yields

Zzaypa: \O]Z ZZZ — gj-1)

1>0 acX; Z a€X; gePT j odd
71<i
If we denote )
Sj=oz 2 D 9
v aeX,; gePz
then v, rewrites as
i Z
e Y s
i>1 j odd
1<t
First, observe that, for any z-geodesic (go, ..., gi), the j-th component g; has z-distance j,

so the vertices appearing in S]i- with nonzero coefficients are in X;. Thus, we can write
_ 2
= E Ay b.
bEXj

Let 0, be in Aut,(O). Remind that o, induces a bijection on each z-level line and maps
bijectively Py and P7 ., for all a. Thus, we find

; 1 1 1 .
o Si= D Y gi= D D (megi= — > D g= 5

v a€X; gePE v aeX; gePE v a€X; gePE, .,

Under Assumption 5.31, the group Aut,(O) acts transitively on X;. Since S; is fixed by the

action of Aut,;(O), one concludes easily that all the coefficients )\Z’j are equal to some scalar )\;'-
and that S7 = A X;  (%).

To compute the value of A}, we recall the existence of the augmentation morphism e : Co(0) = C
which associates to a 0-chain the sum of its coefficients. We apply ¢ to each side of (x). On the
one hand, 5(5;-) =D uex |7’L$\ > gepr 1 =2 4ex, 1 = |Xi|l. On the other hand, E(A;Xj) = A§-|Xj|.

Therefore, we deduce )\é = ‘ljﬂ and the announced expression for the decoupling follows. O
J

To conclude, we have defined in this section a distance-transitivity property that is only
graph-theoretic. When this property is satisfied by the orbit-type, it leads to a decoupling
expressed in terms of level lines. As described in Appendix C, the evaluation of a regular
fraction on a level line is efficient from an algorithmic point of view and so is our procedure
for the Galois decoupling of a regular fraction. In the following section and in Appendix D,
we easily check Assumption C on various orbit-types and produce the associated decoupling in
terms of level-lines.

5.6. Examples. In this last subsection and Appendix D, we check Assumption 5.31 and unroll
the construction of the decoupling of the previous section for all the finite orbit-types of models
with steps in {—1,0,1,2}2, namely with orbits O, O13, O12 as well as for the cyclic models,
the Hadamard models and the fan models.

We summarize the results of this section and Appendix D on the decoupling of XY in the
following proposition.
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Proposition 5.35. The reqular fraction XY does not decouple for any weighted models with
orbit-types Hadamard (see below) and for the family of the fan-models (see Appendiz D).

The regular fraction XY does not decouple for unweighted models with steps in {—1,0,1,2}2
with orbit-types O1g, (/9\1/2

The fraction XY decouples for the model Q;"“ with (A, p) € {(0,1),(1,1)} with orbit-type O12.

5.6.1. Cyclic orbit. Assume that the orbit is a cycle of size 2n, which is the orbit-type of any
small-steps model with finite orbit. The graph of the orbit looks as follows, where we have
labeled vertices from 0 to 2n — 1. We represent both z-level lines and y-level lines.

Xo X1 Xn2 Xn—1 Yo Y1 Y, o Y. 1
13t o —312n—1 ot 4| f--- -~ on 212 -1
Ot 27-----1 2n—4+2n—2 OFt+—1 [------ —2n—51¢2n—-3

Each of the z-level lines has 2 elements, so does any y-level line. The reader can check that the
permutation

o®=(0,1)(2,3)...(2¢,2i+1)...(2n — 1,2n — 2) which corresponds to a horizontal reflection

on the figure on the left-hand side, induces a graph automorphism of Aut,(O), that is preserving
the z-distance and the type adjacencies. Moreover, % acts transitively on each x-level line. As
the situation is completely symmetric for y-level lines, this proves Assumption 5.31 for cyclic
orbits.

According to Theorem 5.34, we find:

@)= w0 S -DG-X0) | = |52 S -V | +a

j odd 7 odd

In the above equation and in the rest of the section, we only give the explicit expressions
of 7z,7, and we write them between parenthesis according to their order in the expression
(Z‘,y) :%—i_’?y—i_a

The above decoupling equation corresponds to the decoupling construction obtained for small
steps walks in [BBMR21, Theorem 4.11].

5.6.2. The case of O12. Below are the x and y-level lines for the orbit type Ois:
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Consider the following permutations of the vertices of the orbit. In this section, we take the
convention that the exponents indicate which type of level lines these automorphisms stabilize:

7Y = (12)(45)(67)(910)(811)  the vertical reflection on both sides,
7 =(03)(16)(27)(411)(58)  the horizontal reflection on the left-hand side,
7Y =(012)(345)(6108)(7119) the 2?” rotation on the right -hand side,

The reader can check that these automorphisms are elements of Aut,(O) or Aut,(O) according
to their exponents and that their action on the corresponding level lines is transitive. Therefore
Assumption 5.31 holds for the orbit type O12. The cardinality of O is 12 and one can write
w = 1—12 (Xo+ X1 + X2+ X3). Thus, according to Theorem 5.34, the decoupling equation is

2<Xg A%>+4+4+2<X0 X&) 3+6<K) Y

o =nla " 2) e 2 1) e 3‘3>+w+0‘

(X0 X1 Xo Yo Y
_<2__8+8>+<4_4 e

5.6.3. Hadamard models. The notion of Hadamard models has been introduced by Bostan,
Bousquet-Mélou and Melczer who proved that these models are always D-finite ([BBMM21,
Proposition 21]). Hadamard models are characterized by the shape of their Laurent polynomial:
S(X,Y) = P(X)Q(Y) + R(X) for P, Q and R three Laurent polynomials. The Hadamard
models form an interesting class because their orbit is always finite and in the form of a cartesian
product.

Indeed,[BBMM21, Proposition 22] yields the existence of distinct elements xy, ..., x,—1 and
Yo, - -+, Ym—1 in K with 29 = = and yp = y such that O = {z; |1 <0< n -1} x{y;|0<j <
m — 1}. As a consequence, the orbits of the Hadamard models, even though their size might
be arbitrarily large, are always of diameter two. This means that the distance between any two
vertices is at most two as illustrated below:
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These orbit-types are very symmetric. The z-level lines Xp is {(z,y;) |0 < j < m — 1} while
X1 ={(zi,y;)|0<j<m—1and 1 <i<n—1}. Thus, |X)| =m and |X;| = (n — 1)m. It is
easy to prove that any element of Aut,(Q) is of the form
o (i y5) = (o(i), 7(y;5)),
for 7 a permutation of the set {y;|0 < j < m — 1} and o a permutation of {z; |0 < i <
n — 1} such that o(z) = x. An analogous description holds for the y-level lines and Aut,(O)
proving that the Hadamard models satisfy Assumption 5.31 and that Aut,(O) ~ S,_1 X Sp,
and Auty(O) ~ S, X Sp—1.

Theorem 5.34 gives the following decoupling:

1 —1 1 1 1
() ("t DY s ()« (D) v
m nm nm m n

with w = —=(Yp + 7). Note that any Hadamard model where degy K > 1 and degy K > 1
always contains a bicolored square, so the fraction XY never admits a decoupling (see Exam-
ple 5.6).

The complete description of the groups Aut,(O) and Aut,(O) obtained above is particularly
useful to construct examples of orbits whose graph automorphisms are not necessarily Galois
automorphisms as illustrated below.

Example 5.36. Consider the nontrivial unweighted model defined by the S(X,Y) = (X + %) (Y™ + ¢ ).
Then by Proposition 22 in [BBMM21], the orbit has the form

1 ;a1
— 'y, ' fori=0,...,n—1
(o )y ¢ for i =0, = 1)

where ( is a primitive n-th root of unit.

Hence, the extension k(Q) equals C(z,y) = k(z,y). Consider the tower of field extension
k(x) C k(xz,y™) C k(z,y). Since k(x) coincides with C(x, y™ + yin) and k(x,y™), the multiplica-
tivity of the degree of a field extension yields

k(O) : k()] = [C(z,y) : Cla,y™)] % [Cla,y™) : Clar, 4™ + ;n)] —nx2.

Indeed, since z and y are algebraically independent over C, the element y” is not a m-th
power in C(z,y") for m dividing n. Thus, the minimal polynomial of y over the field C(z,y") is
Y —y™ so that [C(z,y) : C(z, y™)] equals n. Moreover, since y™ does not belong to C(z, y”—i—yin),

its minimal polynomial over the later field is Y2 — (y" + ﬁ)Y + 1.
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Thus, G, € Aut,(O) because G is a dihedral group of size 2n and Aut,(QO) is So, by the

=

above description.

Acknowledgements We thank Andrea Sportiello for suggesting the addition of weights to
the models gg’l and gh! (of which the model gg # of Example 2.1 is a generalization), Alin
Bostan for his advice on formal computation over the orbit, and Mireille Bousquet-Mélou for
her inspiring guidance, suggestions and review of preliminary versions.

APPENDIX A. THE ALGEBRAIC KERNEL CURVE AND ITS COVERING

In this section, we present an informal discussion on the geometric framework for walks
confined in a quadrant. For small steps walks, this approach was developed in [KR12, DHRS1S,
DHRS20] and allowed these authors to construct analytic weak invariants ([Ras12, BBMR21]),
difference equations ([KR12, DHRS20]) as well as efficient algorithms to compute the order
of the group or some decoupling in the infinite group case ([HS21]). For small steps models,
this geometric framework amounts to interpret the symmetries of the polynomial K (X,Y,1)
as automorphisms of a certain algebraic curve. For large steps models, we shall see that this
geometric framework holds in a certain sense if and only if the orbit is finite. Our intention in
this section is to introduce a geometric framework and not to give a complete and systematic
study of this geometric setting for large steps walks which is a whole subject in its own right.

Though the kernel polynomial K (X,Y,t) is irreducible over Q(¢)[X, Y], it might be reducible
over Q(t). For small steps walks, Proposition 1.2 in [DHRS21] characterizes the models, called
degenerate, whose associated kernel polynomial is reducible over Q(¢). These small steps models
correspond to the small steps univariate cases described in §2.2 plus the two cases where the step
polynomial S(X,Y’) is either a Laurent polynomial in XY or in X/Y. The generating function
Q(X,Y,t) of a degenerate model with small steps is always algebraic over Q(X,Y,t). One could
wonder if the degenerate models in the large steps situation still coincide with the univariate
ones and are therefore algebraic. The question of the reducibility of the kernel polynomial over
Q(t) requires some substantial work and we leave it for further articles and assume from now
on that the kernel polynomial is irreducible of degree d, = m, + M, (resp. dy = my + My) in
X (resp. in Y) in the notation of Section 2.2.

Let us fix once for all a complex transcendental value of ¢ so that Q(¢) embeds into C. We
denote by P!(C) the complex projective line, that is, the set of equivalence classes [ag : a1] of
elements (g, a1) € C? up to multiplication by a non-zero scalar. The projective line P*(C) can
be identified to C U {oo} where C = {[ay : 1] with ag € C} and oo is the point [1 : 0].

We define the kernel curve E; as follows

E; = {([xo : 21, [yo : y1]) € PY(C) x P(C) | K (w0, 1,50, 51,t) = 0},

where K (o, 1,%0,%1,t) is the homogeneous polynomial defined by :cilzyilyf? (i—?, z%’t) (see
[DHRS21, §2] for the small steps case).

The kernel curve E; C P(C) x P!(C) is a projective algebraic curve. It is naturally equipped
with two projections 7, : By — PL ([zo : #1], [yo : 1]) = [x0 : 71] and 7, : By — P;,([xg :
z1],[yo : 1)) = [yo : y1] where the notation P;,PP, emphasizes the variable on which one
projects. The curve E; is irreducible by our assumption on K. If we denote by Sing its singular
locus, that is, the set of points of F; at which the tangent is not defined, its genus is given by
the formula



GALOIS GROUP, DECOUPLING AND INVARIANTS FOR LARGE STEPS WALKS IN THE FIRST QUADRANIB

mi(P)(mi(P) — 1)
(A1) 9(Ey) =1+ dydy — dy — dy — Z Z : 2 ,
PeSing ¢
where m;(P) is a positive integer standing for the multiplicity of a point P, that is, for every
¢ < m;(P), the partial derivatives of K of order ¢ vanish at P (see [Har77, Exercise 5.6, Page
231-232 and Example 3.9.2, Page 393]).

Example A.1. The kernel polynomial associated to the model g?f’“ is K(X,Y,t) = XY —t(1+
XY? + X2 + X3Y? + AX?%Y) One can easily check that the algebraic curve F; corresponding
to the model gg*‘ is smooth*™*, so that its genus equals 2=1+3.2 —3 — 2.

If the curve E; is smooth, it can be endowed with a structure of compact Riemann surface
(see [GGD12, Example 1.46]). We recall that the function field of an irreducible projective
curve E defined by some bivariate polynomial F(X,Y) is the fraction field of the C-algebra
C[X,Y]/(F) where (F) is the polynomial ideal generated by F. The following categories are
equivalent

e the category of smooth projective curves over C and non-constant morphisms,

e the category of finitely generated field extensions of C of transcendence degree one and
morphisms of field extensions,

e the category of compact Riemann surfaces and their morphisms (see [GGD12, Remark
1.94 and Proposition 1.95]).

When the projective curve F is singular, any automorphism of its function field corresponds
to a birational transformation of the curve E but, for simplicity of presentation, we shall only
focus on the case where E; is smooth. Its function field C(E}) is the fraction field of the ring
C[X,Y]/(K). Tt is a field extension of C(z) = C(PL) and C(y) = C(Py).

When the model is with small steps, the curve Ej is of genus one if it is smooth (see [DHRS21,
Proposition 2.1]). In that case, the field C(E};) is a Galois extension of degree 2 of the fields
C(x) and C(y). The Galois groups Gal(C(E;)|C(z)) (resp. Gal(C(E;)|C(y))) are cyclic of
order two. Their generators correspond via the aforementioned equivalence of categories to two
automorphisms ®, ¥ of E; which are respectively the deck transformations of the projections
from E; to PL and to ]P’le. These two automorphisms coincide on a Zariski open set of E; N C?
with the two birational involutions defined in §3.

When the model has at least one large step and the curve E; is irreducible and smooth, (A.1)
yields that the genus of E; is strictly greater than one. Hurwitz’s Theorem ([GGD12, Theorem
2.41]) implies that the group of automorphisms of F;, as the group of automorphism of any
algebraic curve of genus strictly greater than one, is of finite order bounded by 84(g(FE;) — 1).
The function field C(E}) is in general not a Galois extension of C(x) and of C(y).

Example A.2. In the notation of Example 2.1, the field C(E;) = C(z,y) associated to the
model g?f # is not Galois and is a proper subextension of the Galois extension C(O) = C(z,y, 2).

If the genus of the curve FE; is strictly greater than one, the same holds for any any covering M
of E so that the group of automorphisms of M is finite (see [GGD12, Theorem 1.76]). Therefore
if the curve F; is smooth, irreducible and the model has at least one large step, Theorem 4.31t
shows that the existence of a Galois extension M of C(x) and C(y) is equivalent to the finiteness

**This means that E; has no singular point. Otherwise, one says that the curve is singular.
which still holds if one replaces k by C.
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of the orbit of the model. Indeed, the condition that Gal(M|C(x)) and Gal(M|C(y)) generate
a finite group of Aut(M) is automatic since Aut(M) which is isomorphic to Aut(M) is finite.
One can thus rewrite Theorem 4.3 in geometric terms as follows.

Theorem A.3. Assume that the model has at least one large step and that the curve Ey is
irreducible and smooth. The following statements are equivalent:

e the orbit of the walk is finite,
e there exists a covering M of Ey which is a Galois cover of P. and IP’le.

Under the assumption of Theorem A.3, one can generalize the notion of group of the walk
defined by the two birational involutions ®, ¥ for small steps models (see §3 ) to the large step
framework if and only if the orbit of the walk is finite. If the orbit is finite, the group of the
walk is generated by the deck transformations of the two projections of M onto PL, ]P’;. It is in
general no longer a group of automorphisms of the kernel curve E, unless F; equals M, which
happens only in very restricted situations. If the orbit is infinite, there is no hope to realize the
symmetries of K(X,Y,t) as a finite set of birational transformations.

APPENDIX B. SOLVING THE MODEL QQ’“

In Section 2.2, we illustrate how the construction of Galois invariants and decoupling pairs
for the model gé‘ # allows us to construct explicit equations in one catalytic variable satisfied
by the sections Q(0,Y) and Q(X,0). Theorem 3 in [BMJ06] implies that these sections are
algebraic which yields the algebraicity of the generating function Q(X,Y’). However,[BMJ0G]
actually gives a general method to obtain explicit polynomial equations for the solutions of
equations in one catalytic variable.

In this section, we follow this method to provide an explicit polynomial equation for the
excursion generating function Q(0,0) attached to the model gg #. All the computations can be
found in the Maple worksheet [Worb] and we give here their guidelines.

We start from the functional equation obtained for Q(0,Y"), because it is the simplest of the
two and we recall below its canonical form, with F(Y') = Q(0,Y):

F(Y)=1+ t(thQYF(Y) <A(1)F(Y)>2 FAFY) AVF(Y) + ut (A<1>F(Y))2

+ 2t F(Y)APF(Y) + pY F(Y) + MA@ F(Y) + 200 F(Y) )

where A is the discrete derivative: AG(Y) = w.
Besides F(Y), there are three unknown functions: F(0) (the excursions series), F’(0) and

F”(0). The above equation can hence be rewritten as
(B.1) P(F(Y), F(0),F'(0), F"(0),t,Y) =0,
with P(xg, 21,22, 23,t,Y) a polynomial with coefficients in Q(A, p).
The method of Bousquet-Mélou and Jehanne consists in constructing more equations from

(B.1). For that purpose, we search for fractional power series ¥ Y;’s that are solutions of (B.1)
and of the following equation

(B.2) (0no P) (F(Y;), F(0), F'(0), F"(0),£,Y;) = 0.

A fractional power series is an element of C[[t*/4] for some positive integer d.
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Then the paper [BMJ06] points out that any such solution is also a solution of the following
equation

(B.3) (0y P) (F(Y;), F(0), F'(0), F"(0),t,Y;) = 0.

Moreover, these solutions are double roots of D(F(0), EF’(0), F"(0),t,Y) the discriminant of
P with respect to xp (see Theorem 14 in [BMJ06]). If there are enough of fractional power
series Y;’s (at least the number of unknown functions), then the result of [BMJ06] provides
“enough” independant polynomial equations relating the unknown functions (here F'(0), £”(0)
and F”(0)). Where “enough” means that the theory of elimination among these equations yield
a polynomial equation for each of the unknown series. In this section, we focus only on the
excursion generating function @Q(0,0).

Eliminating F”(0) between (B.1) and (B.3), one finds a first equation between Y; and F(Y;):

—2F(Y)ut Yi* + F(0)*ut?Y; — 4F(0)F (V) u t*Y; + 3Yiput*F(Yi)” — F(0) ALY

B.4
(B4) + F(Y;)AtY; + F(Y;) Y33 — 2F'(0)tY; — Yi® — 4tF(0) + 4F (Y;)t = 0.

Now, eliminating F(Y;) between (B.4) and (B.1), and removing the trivially nonzero factors,
we obtain the following polynomial equation for the Y;’s:

(B.5) 2ut Yit + \tY; — i3 + 2t = 0.

Using Newton polygon’s method, we find that, among the four roots of the irreducible polyno-
mial above, exactly three are fractional power series Y7, Y5 and Y3 that are not Laurent series
and the last one, denoted Y, is a Laurent series with a simple pole at ¢ = 0. Moreover, (B.5)
yields
y Yo
2uYpt + Ay + 2

so that Q(A, u, t) C Q(A, p, Yp). Therefore, we obtain the minimal polynomial M (Yy, Y') satisfied
by the series Y1, Ya, Y3 over Q(A, p, Yp) as:

(B.6) M(Yy,Y) = 2Yg3 Y3 — Yo2AY — YoAY? — 2Y(? — 2Y,Y — 2Y2,

This polynomial of degree 3 is irreducible over the field Q(\, i, Yo) € Q(A, 1)((¢)) because
otherwise one of the series Y;’s would belong to Q(A, p, Yp) which is impossible since the Y;’s are
not Laurent series in ¢. Since Q(A, u, Yy, F'(0), F'(0), F”(0)) C Q(X, u)((t)), the same argument
shows that M (Yp,Y") remains irreducible over Q(\, u, Yy, F'(0), F'(0), F"(0)).

Now, since the Y;’s are double roots of D(F(0), F(0), F"(0),t(Yp),Y), the polynomial M (Yy, Y)?
must divide D(F(0), F'(0), F”(0),t(Yp),Y) so that the remainder R(Y) in the euclidian divi-
sion of D(F(0), F'(0), F"(0),t(Yy),Y) by M(Yp,Y)? should be identically zero. The polynomial
R(Y) has degree at most 6 (the discriminant has degree 12 and M? has degree 6), and we write
it as

R(Y)=eg+e1Y +eaY2+e3V3 + e,V +e5Y° 4 e6YS

with e; a polynomial in Yp,F(0),F’(0) and F”(0). Hence, each of its coefficient gives an equation
e; = 0 on the unknown functions in terms of Y. We first eliminate F”(0) between ey and e;
which yields an equation eg between Yy, F(0), F'(0). We get another such equation e; by
eliminating F”(0) between ey and eg. Finally, eliminating F’(0) between eg and e7 yields an
equation ey over Q(\, 1) between Yy and F'(0). The polynomial defining the equation e; factors
into two nontrivial irreducible factors. To decide which of these factors is a polynomial equation
for Q(0,0,t), we compute the first terms of (0,0, ¢) (which is easy from the functional equation
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for Q(x,y)) and of Yy(t) (thanks to the Newton method) and we plug these approximations in
the two factors of e7. This gives the following result:

Proposition B.1. The series Q(0,0) is algebraic of degree 8 over Q(X, u)(Yo) (for any (A,u)
with pw # 0. Hence, as Yy is of degree 4 over Q(\, u)(t), we conclude that Q(0,0) is an algebraic
series of degree 32 over Q(A, p)(t).

We note that any step of our procedure remains valid if one specializes (A, p) to (0,1) and
(1,1) so that the excursion series Q(0,0) of the models G, and G3 remains algebraic of degree
32 over Q(A, u)(Yo). This proves the conjecture on the algebraicity degree of the excursion
generating functions of the models Gy and Gs in [BBMM21].

APPENDIX C. FORMAL COMPUTATION OF DECOUPLING WITH LEVEL LINES

As explained in Section 5.5, the evaluation of a regular fraction at an arbitrary pair of elements
in the orbit is expensive from a computer algebra point of view. We describe below a family
of O-chains called symmetric chains which are easy to evaluate on. We will then show that the
level lines introduced in §5.5 can be described explicitely in terms of these symmetric chains.
Thus, under Assumption 5.31, Theorem 5.34 yields an expression of the decoupling in the orbit
in terms of symmetric chains which provides a powerful implementation of the computation of
the Galois decoupling of a fraction.

C.1. Symmetric chains on the orbit.

Definition C.1. Let P(X) be a square-free polynomial in C(z,y)[Z]. We define two finite
subsets of K x K to be V}(P) = {(u,v) € Kx K| P(u) = 0A S(x,y) = S(u,v)} and VZ(P) =
{(u,v) e KxK|P(v) =0AS(z,y) = S(u,v)}.

We recall here a well known corollary of the theory of symmetric polynomials (see [Lan02,
Theorem 6.1]). Let P(X) be a polynomial with coefficients in a field L and let xy, ..., z, be its
roots taken with multiplicity in some algebraic closure of L. If H(X) is a rational fraction over
L with denominator relatively prime to P(X), then the sum ), H(z;) is a well defined element
of L. There are numerous effective algorithms to compute such a sum based on resultants, trace
of a companion matrix, Newton formula. .. (see for example [BFSS06]).

We extend these methods to the computation of s =3, yey1(py H(u,v,1/S(,y)) for P a

square-free polynomial such that V}(P) C O and H(X,Y,t) a regular fraction as follows.
By definition of V1(P), we can rewrite s as the double sum

S = Z Z H(u,v,l/S(a:,y)).

u/Pu)=0 v/ K(u,v,1/5(z,y))=0

Consider the sum ZU/K (0,18 (@.))= o H(w,v,1/S(z,y)). Tt is a well-defined element of
k(xz) which can be computed efficiently since it is a symmetric function on the roots of the
square-free polynomial K (x,Y,1/S(x,y)). Let ¥(X) be fraction in k(X) such that ¥(z) equals
Zv/f{(:m 1/5(2,3))=0 H(x,v,1/S(z,y)). Since the group of the orbit G acts transitively on the
orbit and preserves the adjacencies, it is easily seen that, for any right coordinate of the orbit w,
the sum ZU/K (w0,1/8(2,5))=0 o H(u,v,1/5(z,y)) coincides with ¥(u). Then, s = 3°, / p(,)=o Z(u)
is of the desired form and can also be computed efficiently since it is a symmetric function on

the roots of the square-free polynomial P. The process is symmetric for V2(P).
These observations motivate the following definition.
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Definition C.2. A symmetric chain is a C-linear combination of 0-chains of the form > acvi(p) @
with P a square-free polynomial such that V¢(P) C O.

From the above discussion, any regular fraction H(X,Y,t) can be evaluated on a symmetric
chain in an efficient way.

C.2. Level lines as symmetric chains. We now motivate the choice of level lines introduced
in §5.5, by showing they are symmetric chains which one can construct efficiently.

We recall that the square-free part of a polynomial P in K[Z] is the product of its distinct
irreducible factors and can be computed as P/ ged(P, P’).

Now, let P be a polynomial in C(z,y)[Z]. Then we denote by RE,X(P) the square-free

part of Res(K (X, Z,1/5(z,y)), P(X), X) in C(z,y)[Z]. Similarly, we define Rz, (P) to be the

square-free part of Res(K(Z,Y,1/S(x,y)),P(Y),Y) in C(z,y)[Z]. The following lemmas are
straightforward so that we omit their proofs.

Lemma C.3. Let P(Z) be a polynomial in C(x,y)[Z]. Then,
VAR «(P)) ={a € KxK|3d € V!(P), a~¥ a'}

and

VIR y(P) ={a € KxK|3d € VZ(P), a~*d'}.

Lemma C.4. Let i be a positive integer. Any element a of X; is adjacent to some element a’
of X;_1. Moreover, if i is odd then a ~Y a’' and if i is even then a ~* a’.

Now, we construct by induction a sequence of square-free polynomials (P§(Z)); € C(z,y)[Z]
which satisfy the equations

VH(PE) = Xo; U X1 and V(P 1) = Xai1 U Ao for all 4.
We set P¥(Z) = Z — x so that VI(P¥) = X, C O.
Now, assume that we have constructed the polynomials P} (Z)forj =0,...2i. By Lemma C.3
and the induction hypothesis, V(R . (P5;)) is composed of all the vertices that are y-adjacent

to some vertex in Xp; U Xo;_1. Moreover, by the induction hypothesis, VQ(szi_l) = Xy;_1 U Xy;.
Hence, by Lemma C.4 we find that

VZ(R;?,X(P%)) \ V(P35 ) = Xoiy1 U Xoy.
Hence, if we define Py, | to be Rf(, X(szi) divided by its greatest common divisor with PJ,_;,
then Pg; , is square-free, and the above equation ensures that V2(Ps, 41) = Aoip U Xy, We
construct Py, , using similar arguments.

Analogously, one can construct a sequence of square-free polynomials (P/(2)); € C(,y)[Z]
which satisfy

VI(PY) = Yoi U Voi—1 and VZ(Py,_ 1) = Vaip1 U Vs for all i.

starting from P (Z) = Z —y.

As the z-level lines are disjoint sets of vertices, the 0-chain associated with X;11 U X is just
the sum X;;; + X;. Hence, as Xy and all X;;1 + X; are symmetric chains, all the X; are
symmetric chains as well. The same argument holds for y-level lines. Note that, as expected,
the coefficients of the P? are actually in k(z) and the coefficients of the P! are in k(y) (easy
from their construction). Hence, when computing the decoupling, the different components are

already lifted.
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APPENDIX D. SOME MORE DECOUPLING OF ORBIT TYPES

D.0.1. The case of (/9\1; We represent below the x and y-level lines for the orbit type (/9\1;:

We find the following elements in Aut,(O):

7o = (12)(38)(47)(56)(911)
™ =(012)(357)(468)(91011)

vertical reflection

2% rotation

One can check that their action is transitive on the z-level lines. As the situation is completely
symmetric for y-level lines, Assumption 5.31 holds for this orbit type. Thus, according to
Theorem 5.34 and taking w = % (X0 + X2 + X3), the decoupling equation is

6+3<X0 X1> 6+3<1/0_Y1

@ =" \3 % )" 12 \3 6)+“+“

_ XO Xl X2 Y() Y1
_<3 _24+12)+<4_8 o

D.0.2. The case of O15. We represent below the x and y-level lines for the orbit type Ossg.
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We present some elements belonging to the groups Aut,(O) and Aut,(O):

=(12)(611)(45)(710)(89)(1315)(1417)(1216) | vertical reflection
Ty =(012)(345)(679)(81011)(121314)(151617) 2= rotation for dy(v) < 2 + rotating each ”ear”
7 = (03)(16)(211)(412)(516)(713)(8 14)(9 17)(10 15) | horizontal reflection
5 = (1517)(810)(45)(79)(1314)(12) pinching the upper ”arms”

The reader can check that these elements act transitively on their respective level lines
which proves Assumption 5.31 for Og. Thus, according to Theorem 5.34 and taking w =
%8 (Xo + X1+ X2+ X3), the decoupling equation is

8 X2 X3 44+4+8 ([ Xo X1 6 (Ys Y3 3+46+6 (Y, Y,
(oy) = o (22 A3 AEAES (X0 X Yo Y, 34040

18 8 18 > 1) 7"18\6 6 18 _>+w+a

3 3
(X X1 X 5Y, 5Yi Y Y
_(2 6+6)+<18 8 o)

D.0.3. Fan models. We study a class of models derived from the ones arising in the enumeration
of plane bipolar orientations (see [BMFR20]). The fan models are derived from those introduced
in [BMFR20, Equation (7)] by a horizontal reflection.

Definition D.1. For i > 0, define V;(z,y) = Zogjgi Iy If z1,..., 2, are complex weights,
with z, being nonzero, we define the p-fan to be the model with step polynomial

S(x ——l—Zzl (z,y).

i<p

By [BBMM21, Proposition 3, p.9], the orbits of models related to one another by a reflec-
tion are isomorphic so that one can directly use the orbit computations of Proposition 4.4 in
[BMFR20] to compute the orbit of a p-fan.

Proposition D.2. Let xq,...,x, be defined as the roots of the equation S(X,y) = S(z,y) with
zo =2 and xpy1 = y. Moreover, for 0 < i < p+1, denote y; = x;.

In particular, y,+1 =y. Then the pairs (x;,y;) with i # j form the orbit of the walk for the
p-fan.

Note that these models all small backwards steps and that they all have an x/y symmetry.

As a result, the orbit is of size (p + 2)(p + 1), and the cardinalities of the level lines are
|Xo| =p+1, || =p+1and |[X;| = p(p+1). The y-level lines are symmetric.

Below is a depiction of this orbit type, with the indices ¢ and j satisfy 0 < i # j <p+ 1.
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Xo X1 Xo

Yo (%0, Yp+1) (T4, Ypr1)

|
| \

Vi (w0, ;) (74, 95) — (24,%0)

Vo (p11,Y5) — (Tps1,%0)

Unfortunately, the orbit of the p-fan contains a bicolored square, hence no decoupling of XY
is possible (see Example 5.6).

Like the orbit of the Hadamard model, the groups Aut,(O) and Aut,(O) contain in particular
the following family of automorphisms

o and T are permutations, with o(zg) = zo
o and 7 are permutations, with 7(yp11) = yp+1.

ot (@i yy) = ((22), 7(y;))
Go.r: (wiyy;) = (o(xi), 7(y;))

This family of automorphisms acts transitively on the level lines proving Assumption 5.31.
Thus using Theorem 5.34 we obtain the decoupling equation of (z,y) as

(p+1)+p(p+1)<Xo X >+(p+1)+p(p+1)<Yo o n
p+DpP+2) \p+1 pp+1) (p+1D(+2) \p+1 pp+1)

(l’,y) =

>+w+a

< Xo Xy n Xa > n < Yo Y1 ) n

= — — a

p+1l pp+1l)(p+2) @+1)(p@+2) p+2 pp+2)
APPENDIX E. COMPUTATION OF A GALOIS GROUP : HADAMARD MODELS

Consider S(X,Y) = P(X)Q(Y) + R(X) a Hadamard model, with PR and ) nonconstant

Laurent polynomials over C. We first note that the pair (t;}(z)(())() ,Q(Y)) is a pair of nontrivial

Galois invariants, hence the orbit of a Hadamard model is always finite by Theorem 4.3. Propo-
sition 3.22 in [BBMM21] gives a description of the orbit of these models. Its left coordinates
are X = xo, ..., Tm—1 the m distinct solutions z; of P(z)Q(y) + R(z) = P(z;)Q(y) + R(x;). Its
right coordinates are y = yo, ..., yn—1 the n distinct solutions y; of Q(y) = Q(y;). Hence, the
field k£(O) is equal to C(x,y).

We now compute the field of Galois invariants, by showing that kin, = k(Q(y)). Writing
QYY) =A(Y)/B(Y) with A and B relatively prime, we know that the right coordinates of the
orbit are the roots of the polynomial 11,,(Y) = B(Y) —A(Y)Q(y) € k(Q(v))[Y] C kiny[Y]. Thus,
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by 8§4.3, the coefficients of this polynomial generate the field of rational invariants, implying
that k(Q(y)) C kinv C k(Q(y)), which shows the claim.

Our goal in the rest of this section is to give an explicit description of the finite group of a
Hadamard model in the case where either R is equal to 0 or P(X) is equal to one. In these
cases, the field kiny is equal to C(P(x),Q(y)) (resp. C(R(x),Q(y)) in the second case) and the
x;,yi satisfy P(x) = P(x;) and Q(y) = Q(v;). The extensions C(x)|C(P(z)) and C(y)|C(Q(y))
are both Galois and we denote their respective Galois groups by H, and H,. We shall prove
that the group of the walk G = Gal(k(O)|kiny) is isomorphic to H, x H,. We prove this for
S(X,Y) = P(X)Q(Y) but the proof is entirely similar for S = Q(Y) + R(X).

First, we recall some terminology. We say that two field extensions L|K and M|K, subfields
of a common field €2, are algebraically independent if any finite set of elements of L, that are
algebraically independent over K, remains algebraically independent over M. We say that
L|K and M|K are linearly disjoint over K if any finite set of elements of L, that are K-linearly
independent, are linearly independent over M. The field compositum of L and M is the smallest
subfield of €2 that contains L and M. Finally, we say that L|K is a regular field extension if
K is relatively algebraically closed in L and L|K is separable. We recall that K is relatively
algebraically closed in L if any element of L that is algebraic over K belongs to K. Note that
in our setting, all fields are in characteristic zero so L|K is always separable.

First, let us prove that C(x,Q(y))|C(P(z),Q(y)) is Galois with Galois group isomorphic to
H,. We remark that since x and y are algebraically independent over C, the field extension
C(P(x),Q(y))|C(P(x)) is purely transcendental of transcendence degree one, hence regular.
Since C(x)|C(P(x)) is an algebraic extension, the element Q)(y) remains transcendental over
C(x). Thus, the field extensions C(x) and C(P(z),Q(y)) are algebraically independent over
C(Q(y)). Thus, by Lemma 2.6.7 in [FJ23], the fields C(x) and C(P(x), Q(y)) are linearly disjoint
over C(P(z). Then, the field C(x,Q(y)) that is the compositum of C(x) and C(P(z),Q(y)), is
Galois with Galois group isomorphic to H; (see page 35 in [FJ23]). Analogously, one can prove
that C(y, P(z))|C(P(z)) is Galois with Galois group H,,.

To conclude, we note that the field extension C(x)|C is regular of transcendence degree 1.
Since z is transcendental over C(y), the fields extensions C(x) and C(y) are algebraically in-
dependent over C and therefore linearly disjoint over C by Lemma 2.6.7 in [FJ23]. By the
tower property of the linear disjointness (Lemma 2.5.3 in [FJ23]), we find that C(x,Q(y)) is
linearly disjoint from C(y) over C(Q(y)). Using once again the tower property, we conclude
that C(x,Q(y)) and C(y, P(z)) are linearly disjoint over kiny = C(P(z),Q(y)). Lemma 2.5.6
implies that the following restriction map is a group isomorphism:

G = Gal(C(x,y)|C(P(x),Q(y))) — Gal(C(x,Q(y))IC(P(x),RQ(y))) x Gal(C(y, P(z))|C(P(x),Q(v)))
o — (olexeu) olewy,p@))-

By the above, we conclude that G is isomorphic to H, x H,.
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