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Abstract. The enumeration of walks in the quarter plane confined to the first quadrant has
attracted a lot of attention over the past fifteen years. The generating functions associated to
small steps models satisfy a functional equation in two catalytic variables. For such models,
Bousquet-Mélou and Mishna defined a group called the group of the walk which turned out to
be central in the classification of small steps models. In particular, its action on the catalytic
variables yields a set of change of variables compatible with the structure of the functional
equation. This particular set called the orbit has been generalized to models with arbitrary large
steps by Bostan, Bousquet-Mélou and Melczer. However, the orbit had till now no underlying
group.

In this article, we endow the orbit with the action of a Galois group, which extends the group
of the walk to models with large steps. Within this Galoisian framework, we generalize the
notions of invariants and decoupling. This enables us to develop a general strategy to prove the
algebraicity of models with small backward steps. Our constructions lead to the first proofs of
algebraicity of weighted models with large steps, proving in particular a conjecture of Bostan,
Bousquet-Mélou and Melczer, and allowing us to find new algebraic models with large steps.

1. Introduction

This paper concerns the study of 2-dimensional weighted lattice walks confined to the first
quadrant N2 as illustrated in Figure 1.1. In recent years, the enumeration of such walks has
attracted a lot of attention involving many new methods and tools. This question is ubiqui-
tous since lattice walks encode several classes of mathematical objects in discrete mathematics
(permutations, trees, planar maps, …), in statistical physics (magnetism, polymers, …), in prob-
ability theory (branching processes, games of chance …), in operations research (birth-death
processes, queueing theory).

λ λ

λ

Figure 1.1. The weighted model Gλ along with an example of a walk of size 8, total
weight λ2 and ending at (3, 0)
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Given a finite set S of allowed steps in Z2 and a family of W = (ws)s∈S of non-zero weights,
the combinatorial question consists in enumerating the weighted lattice walks in N2 with steps
in S. A weighted lattice walk or path of length n consists of n + 1 points whose associated
translation vectors belong to S. Its weight is the product of the weights of all translation vectors
encountered walking the path. To enumerate these objects, we study the generating function

Q(X,Y, t) =
∑
i,j,n

q(i,j)n XiY jtn

where q(i,j)n is the sum of the weights of all walks in N2 of n steps taken in S that start at (0, 0)
and end at (i, j). One natural question for this class of walks is to decide where Q(X,Y, t) fits
in the classical hierarchy of power series:

algebraic ⊂ D-finite ⊂ D-algebraic.
Here, one says that the series Q(X,Y, t) is D-finite if it satisfies a linear differential equation
in each variable X,Y ,t over Q(X,Y, t) and D-algebraic if it satisfies a polynomial differential
equation in each of the variables X,Y, t over Q(X,Y, t).

Walks with small steps. For unweighted small steps walks (that is S ⊂ {−1, 0, 1}2 and weights
all equal to 1), the classification of the generating function is now complete. It required almost
ten years of research and the contribution of many mathematicians, combining a large variety of
tools: elementary power series algebra [BMM10], computer algebra [BK10], probability theory
[DW15], complex uniformization [KR12], Tutte invariants [BBMR21] as well as differential
Galois theory [DHRS18].

In [BMM10], Bousquet-Mélou and Mishna associated with a model W a certain group G of
birational transformations which plays a crucial role in the nature of Q(X,Y, t). Indeed, the
series Q(X,Y, t) is D-finite if and only if G, called here the classical group of the walk, is a finite
group (see [BMM10, BK10, KR12, MR09, DHRS20]).

When the group G is finite, the algebraic nature of the generating function is intrinsically
related to the existence of certain rational fractions in X,Y, t called in this paper Galois in-
variants and Galois decoupling pairs. These notions were introduced in [BBMR21] where the
authors proved that the finiteness of the group G is equivalent to the existence of non-trivial
Galois invariants (see [BBMR21, Theorem 4.6]) and found that the algebraicity of the model is
equivalent to the existence of Galois invariants and decoupling pairs for the fraction XY (see
[BBMR21, Section 4]).

(a) Small steps models (b) Large steps models with
small forward steps

(c) Large steps models with
small backward steps

Figure 1.2. Models of walks

Walks with arbitrarily large steps. Compared to the case of small steps walks, the clas-
sification of walks with arbitrarily large steps is still at its infancy. In [BBMM21], Bostan,
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Bousquet-Mélou and Melczer lay the foundation of the study of large steps walks. To this
purpose, they attach to any model with large steps, a graph called the orbit of the walk whose
vertices are pairs of algebraic elements over Q(x, y). When all the steps of the walk are small,
the orbit of the walk coincides with the orbit of (x, y) under the action of the group G of
birational transformations introduced in [BMM10].

Bostan, Bousquet-Mélou and Melczer started a thorough classification of the 13110 nonequiv-
alent models with steps in {1, 0,−1,−2}2 (which are instances of walks with small forward steps,
see Figure 1.2b). They ended up with a partial classification of the differential nature of the
associated generating functions (see [BBMM21, Figure 7]). Among the 240 models with finite
orbit, they were able to prove D-finiteness for all but 9 models via orbit sum constructions
or Hadamard products. For the 12870 models with an infinite orbit, they were able to prove
non-D-finiteness for all but 16 models by exhibiting some wild asymptotics for the associated
generating functions. Content of the paper. When the step set contains at least one large
step, the authors of [BBMM21] deplored that, within their study, the group of the walk “ is lost,
but the associated orbit survives”. In this paper, we show that one can generalize the notion of
group of the walk to models with large steps as well as many objects and results related to the
small steps framework. The novelty of our approach lies in the use of tools from graph theory,
in particular graph homology and their combination with a Galois theoretic approach. We list
below our contributions.

• We attach to any model W a group G, which we call the group of the walk. This
group generalizes the “ classic” group of the walk in many ways. First, G is the group of
automorphisms of a certain field extension. It is generated by Galois automorphisms and
extends thereby the definition of the classical group of the walk as in [FIM99, Section 2.4]
(see Theorem 3.10 below). Moreover, we also prove that the orbit of the walk is the
orbit of (x, y) under the faithful action of G viewed as a group of graph automorphisms
(see Theorem 3.17). Finally, Section 6 studies the geometric interpretation of the group
G as group of birational transformations of a certain algebraic curve.

• The Galoisian structure of the group of the walk enables us to characterize algebraically
the existence of Galois invariants. To any model W, one can attach a kernel polynomial
K̃(X,Y ) in C[X,Y, t]. A pair of Galois invariants consists of a pair of rational fractions
(F (X), G(Y )) in C(X, t)× C(Y, t) such that

K̃(X,Y )R(X,Y ) = F (X)−G(Y ),

where R is a rational fraction in C(X,Y, t) whose denominator is not divisible by K̃.
Such a rational fraction is called regular. We prove that the existence of non-trivial
Galois invariants is equivalent to the finiteness of the group G, itself equivalent to the
finiteness of the orbit (see Theorem 4.3). This extends to any model of walk the result
of [BBMR21] for small steps walks. Finally, we give an explicit way of obtaining a non-
trivial pair of Galois invariants out of the data of a finite orbit (see Section 4.3). We give
here a geometric and Galoisian interpretation of the question of separating variables in
principal bivariate polynomial ideals, as studied in [BKP20].

• This Galoisian setting also sheds a new light on the notion of decoupling. Given a
regular fraction H(X,Y ) in C(X,Y, t), a Galois decoupling for H is a pair (F (X), G(Y ))
in C(X, t)× C(Y, t) such that

K̃(X,Y )R(X,Y ) = H(X,Y )− F (X)−G(Y ),

where R is a regular fraction.
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When the orbit of the model W is finite, we compute, for any regular fraction H,
the obstruction for the Galois decoupling of H. This obstruction is also a regular
fraction which is zero if and only if H admits a Galois decoupling. In that case, we
are able to give an explicit expression of the decoupling pair (F (X), G(Y )). This
amounts to evaluate H on some well chosen linear combination of pairs of the orbit
(Theorem 5.10), obtained using the Galoisian structure of the orbit and graph homology.
This combination is explicit, making the procedure constructive. Moreover, it admits
an efficient implementation under a small assumption depending only on the graph
structure of the orbit (see Section 5.5). We checked this assumption on all the finite
orbits for models with steps in {−1, 0, 1, 2}2 classified in [BBMM21], and other known
families of finite orbits. This construction generalizes [BBMR21, Theorem 4.11] to the
large steps case.

As an application, we study the existence of a Galois decoupling for the function XY
for weighted models with steps in {−1, 0, 1, 2}2. The finite orbit-types (which correspond
to the graph structures of the orbit of the walk of these models) have been classified
in [BBMM21]. For these orbit-types, we are able to give an efficient procedure to
test the existence of the Galois decoupling of any given regular fraction, and construct
it when it exists. We applied these procedures to XY for every unweighted model
with steps in {−1, 0, 1, 2}2 and finite orbit (see Proposition 5.37). We also apply our
framework to the detection of a wide range of exponents (a+ 1, b+ 1) such that XaY b

admits a Galois decoupling for the stretched Gessel models, having arbitrarily large
steps, all seemingly having a finite group. This has applications in the formulation of
an algebraicity conjecture for these models (see the next paragraph).

• Generating functions associated to models with small backward steps (see Figure 1.2c)
satisfy a functional equation in two catalytic variables of the form

K̃(X,Y )Q(X,Y, t) = XY + F (X) +G(Y ),

where F (X) (resp. G(Y )) involves only the section Q(X, 0, t) (resp. Q(0, Y, t)) of the
generating function. Such an equation is called a discrete differential equation in two
catalytic variables. There are many methods to solve this type of discrete differential
equations (see [BCvH+17, BM16, BMM10, BBMR21, BK19, BK22, MM14, MR09]).

The orbit-sum method is one of the most powerful when the group is finite. It origi-
nated from [BMM10] and was adapted to large steps models in [BBMM21]. An exten-
sion of this method can be found in [BK22]. In the orbit-sum method, one evaluates
the functional equation satisfied by the generating function on the orbit and then per-
forms some linear combination of the various versions of the functional equation. Under
certain assumptions on the model, [BBMM21, Proposition 12] shows that there exists a
unique section-free equation, that is, an equation that consists of a linear combination of
K̃(X,Y, t)Q(X,Y, t) and its evaluations on the orbit in its left hand-side and of an alge-
braic function in its right hand-side. In many cases, one can extract K̃(X,Y, t)Q(X,Y, t)
as the positive part of the right hand-side of the section-free equation. This coefficients
extraction characterizes the generating function as the diagonal of an algebraic function
and one concludes thanks to [Lip88] to its D-finiteness.

However, for many models with large forward steps, the orbit-sum is the zero equation
so that the orbit-sum method fails or one cannot characterize the generating function
as the positive part of the right hand-side. In [BBMR21] for small steps walks and
[BM21] for walks confined to the three-quadrant, the authors develop an alternative
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strategy to prove (when it holds) the algebraicity of the generating function. When XY
admits a Galois decoupling pair and when there exist nontrivial Galoisian invariants,
they were able to obtain from the functional equation above two functional equations in
one catalytic variable each, whose solutions are respectively the sections Q(X, 0, t) and
Q(0, Y, t). Since solutions of polynomial equations in one catalytic variable are known
to be algebraic by [BMJ06], one concludes to the algebraicity of the generating function
Q(X,Y, t). Thanks to our systematic approach to Galoisian invariants and decoupling,
this strategy based on the construction of rational invariants and decoupling is now
realistic for large steps models.

We apply this strategy to prove the algebraicity of the generating function Q(X,Y, t)
of the model Gλ for general λ. In particular, we prove that the excursion generating
function Q(0, 0, t) of Gλ is algebraic of degree 32 over Q(λ)(t). The algebraicity of the
excursion generating functions of G0 (λ = 0) and G1 (λ = 1) thus follows. Since these ex-
cursion generating functions coincide with those of the reversed models of G0 and G1, we
prove a conjecture on two models with small forward steps by Bostan, Bousquet-Mélou
and Melczer on [BBMM21, Page 57]. Moreover, in Appendix E, we successfuly carried
the strategy of [BBMR21] from the decoupling of Xa+1Y b+1 obtained for some streched
Gessel models Hn and proved the algebraicity of the generating functions counting walks
starting at these (a, b). This leads us to exhibit, for any Hn, a whole family of starting
points for which we conjecture that the associated generating function is algebraic.

• Finally, we develop a geometric framework suitable for the study of large steps models.
In [FIM99, 2.4.1], the authors interpret the Galoisian automorphisms of the “classic”
group of the walk as automorphisms of a Riemann surface Et, which is the compactifica-
tion of the zero set of the biquadratic polynomial K̃(X,Y, t) in P1 ×P1. This geometric
framework was crucial in the classification of generating functions for small steps walks.
Indeed, [KR12] uses these geometric automorphisms to prolong the generating function
as a meromorphic solution of a difference equation of the form σ(y) = y+ b defined over
Et and where σ is an automorphism of Et corresponding to one of the generators of the
“classic” group of the walk. This difference equation was central in the analytic approach
of [KR12] as well as in the differential Galois theoretic approach of [DHRS18] in order
to complete the classification of the generating functions. In Section 6, we prove that,
when the orbit of the walk is finite, the group of the walk of a large steps model can be
realized as a group of automorphisms of a Riemann surface which is not necessarily Et

but a finite cover of Et. Moreover, we show that, when the orbit is infinite, the group of
the walk is not a group of automorphisms of a Riemann surface when there is at least
one large step and the Riemann surface Et is smooth. This situation contrasts sharply
with the case of small steps models.

One can study the notions of Galois invariants and Galois decoupling of a regular fraction
in the more general context where C(t) is replaced by a field C of characteristic zero and the
kernel polynomial by an arbitrary irreducible polynomial in C[X,Y ]. These questions are known
in the literature as separating variables in ideals. The article [BKP20] proposes an algorithm
to test and construct Galois invariants in the polynomial ring C[X,Y ]. This work has been
generalized in [BK24] for multivariate polynomials. In [Buc24b] and [Buc24a], Buchacher gives
semi-algorithms to test the existence of Galois invariants and Galois decoupling of a given
regular fraction and construct these invariants and decoupling pair if they exist. Remark 3.3
gives a construction of the orbit in that more general framework. Our results generalize easily
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to this context. The semi-algorithm of [Buc24b] will produce non-trivial Galois invariants if
and only if the orbit is finite by Theorem 4.3 in our paper. Compared to our decoupling semi-
algorithm, one advantage of the semi-algorithm in [Buc24a] is that it may terminate even if the
orbit is infinite. However, in the finite orbit case, Buchacher’s semi-algorithm doesn’t compute
the obstruction for the Galois decoupling of a regular fraction (see Remark 5.36 for a more
detailed discussion).

The paper is organized as follows. In Section 2, we present a strategy illustrated on the
example of Gλ to prove the algebraicity of models with small backward steps based on the
Galois theoretic tools developed later on in the paper. In Section 3, we recall the construction
of the orbit of the walk and define the group of the walk as a group of field automorphisms.
Section 4 is concerned with the notion of pairs of Galois invariants and their properties. In
Section 5, we define the notion of Galois decoupling of the pair (x, y) in the orbit and prove the
unconditional existence of such a decoupling when the orbit is finite. This yields a criterion to
test the decoupling of any regular fraction, including XY . We also study the implementation
of our decoupling test via the notion of level lines of the graph of the orbit, allowing a more
effective computation. Section 6 is for the geometry inclined reader since it presents the Riemann
surfaces behind the large steps models.

Note that, in this paper, we consider a weighted model W which is entirely determined by a set
of directions S together with a set of weights (ws)s∈S . The weights are always non-zero and they
belong to a certain field extension of Q which is not necessarily algebraic, allowing the choice of
indeterminate weights. Without loss of generality, one can assume that Q (ws, s ∈ S) ⊂ C. For
ease of presentation, we consider polynomials, rational fractions with coefficients in C. However,
the reader must keep in mind that our results are valid if one replaces C by the algebraic closure
of Q (ws, s ∈ S).

2. A step by step proof of algebraicity

In this section, we fix a weighted model W with small backward steps. We explain how
one can combine the approach of Bousquet-Mélou and Jehanne on equations with one catalytic
variable [BMJ06] and the notion of Galois decoupling and invariants of a model to study the
algebraicity of the generating functions for models with small backward steps. This strategy is
not yet entirely algorithmic and follows the one developed in the small steps case in [BBMR21,
Section 5] and in [BM21] for walks in the three-quadrant. We summarize its main steps in
Figure 2.1. In subsection 2.2, we apply this strategy to prove that the generating function
of the weighted model Gλ defined in Example 2.1 is algebraic. Therefore, the same holds for
its excursion series. Since excursion series are preserved under central symmetry, the excursion
series of the reversed model of Gλ is also algebraic. Thereby, we prove two of the four conjectures
of Bostan, Bousquet-Mélou and Melczer in [BBMM21, Section 8.4.2]. More precisely, we prove
that the excursion series Q(0, 0, t) of two models which are obtained by reversing the step sets
of G0 and G1 are algebraic. In Appendix E, we apply this strategy to a new family of models
Hn and prove that the generating functions counting walks starting at (a, b) are algebraic for
various starting points (a, b).

2.1. Walks and functional equation in two catalytic variables. Recall that we do not
only study the number of walks of size n that corresponds to the series Q(1, 1). We record in
the enumeration the coordinates where these walks end, encoded in the generating function as
the exponents associated with the variables X and Y . The variables X and Y in Q(X,Y, t) are
called catalytic, as they provide an easy way to write a functional equation for Q(X,Y, t) from
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the recursive description of walks: either a walk is the trivial walk (with no steps) or one adds
a step to an existing walk, provided the new walk does not leave the quarter plane. This is the
boundary constraint which forces to consider the final coordinates (i, j) of the walk to form a
functional equation. This inductive description yields a functional equation for the generating
function Q(X,Y, t).

We encode the model W in two Laurent polynomials which are the step polynomial of the
model S(X,Y ) =

∑
(i,j)∈S wi,jX

iY j and the kernel polynomial K(X,Y, t) = 1 − tS(X,Y ).
This Laurent polynomial can be normalized into a polynomial K̃(X,Y, t) = XmxY myK(X,Y, t)
where −mx,−my are the smallest moves of the walk in the X and Y -direction. By an abuse of
terminology, we also call K̃ the kernel polynomial. We shall sometimes write Q(X,Y ),K(X,Y )

and K̃(X,Y ) instead of Q(X,Y, t),K(X,Y, t), K̃(X,Y, t) in order to lighten the notation. We
now illustrate the construction of the functional equation for the model Gλ.

Example 2.1 (The model Gλ). Consider the weighted model

Gλ = {(−1,−1), (0, 1), (1,−1), (2, 1), ((1, 0), λ)}

together with its step polynomial S(X,Y ) = 1
XY + Y + X

Y +X2Y + λX, and kernel polynomial
K̃(X,Y, t) = XY − t(1 + XY 2 + X2 + X3Y 2 + λX2Y ). The weight λ is a nonzero complex
number.

Now, to form a functional equation, observe that the steps (1, 0), (0, 1) and (2, 1) can be
concatenated to any existing walk, whereas the step (1,−1) can only be concatenated to a walk
that does not terminate on the X-axis, and the step (−1,−1) can only be concatenated to a
walk that does not terminate on the X-axis or the Y -axis. These conditions translate directly
into the following functional equation:

Q(X,Y ) = 1 + tY Q(X,Y ) + tX2Y Q(X,Y ) + λtXQ(X,Y )

+ tXY (Q(X,Y )−Q(X, 0))

+ t 1
XY (Q(X,Y )−Q(X, 0)−Q(0, Y ) +Q(0, 0)) .(2.1)

Note that we can express the generating function for walks ending on the X-axis, the Y -
axis or at (0, 0) as specializations of the generating function Q(X,Y ). For instance, the series
Q(X,Y )−Q(X, 0) counts the walks that do not end on the X-axis.

Grouping terms in Q(X,Y ) to the left-hand side and multiplying by XY to have polynomial
coefficients, we finally obtain the following equation for Q(X,Y ):

K̃(X,Y )Q(X,Y ) = XY − t(X2 + 1)Q(X, 0)− tQ(0, Y ) + tQ(0, 0).

The general form of the functional equation satisfied by the generating function of an arbitrary
weighted model with large steps might be quite complicated [BBMM21, Equation (11)]. For
models with small backward steps, the functional equation satisfied by Q(X,Y ) simplifies as
follows:

(2.2) K̃(X,Y )Q(X,Y ) = XY +A(X) +B(Y ),

where A(X) = K̃(X, 0)Q(X, 0)+ tεQ(0, 0) and B(Y ) = K̃(0, Y )Q(0, Y ) where ε is 1 if (−1,−1)
belongs to S and 0 otherwise. Thus, (2.2) only involves the sections Q(X, 0) and Q(0, Y ) which
makes it easier to study.
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Remark 2.2. One may ask whether there exists a weighting of the step set S of the model Gλ

which would still yield an algebraic generating function. Consider the model

W = {((−1,−1), µ), ((0, 1), µ), (2, 1), ((1, 0), λ), (1,−1)}

which consists in adding a nonzero weight µ to its two leftmost steps. It is easily seen that
the kernel polynomial KW(X,Y, t) for the model W coincides with KGλ′ (αxX,αyY, βt) where
KGλ′ (X,Y, t) denotes the kernel polynomial of the model Gλ′ with λ′ = λµ−

1
4 and (αx, αy, β) =

(µ−
1
2 , µ

1
4 , µ

3
4 ). In the terminology of [CMMR17, Theorem 17], the weightings W and Gλ′ of S

are called equivalent. [CMMR17, Proposition 18] shows that two equivalent weighting yield the
same generating function up to a scalar action on the variables (X,Y, t). In our example, this
gives QW(X,Y, t) = QGλ′ (αxX,αyY, βt) where QW and QGλ′ denote respectively the generating
functions for the model W and the model Gλ′ . More generally, [CMMR17, Theorem 17] shows
that a weighting (w(i,j))(i,j)∈S of the step set S is equivalent to Gλ if there exist some non-zero
constants αx, αy, β such that w(i,j) = βαx

iαy
j for (i, j) 6= (1, 0) and w(1,0) = λβαx. For any such

weighting of S, the associated model has the same nature than Gλ, that is, the orbit is finite
and the complete generating function as well as the excursion generating function is algebraic
as proved in the next section.

2.2. Algebraicity strategy. In [BMJ06], Bousquet-Mélou and Jehanne proved the algebraic-
ity of power series solution of well founded polynomial equations in one catalytic variable.
Their method has been further extended recently to the case of systems of discrete differential
equations by Notarantonio and Yurkevich in [NY23]. These algebraicity results are in fact par-
ticular cases of an older result in commutative algebra of Popescu [Pop86] but the strength of
the strategy developed in [BMJ06, NY23] lies in the effectiveness of their approach.

In this subsection, we recall the algebraicity strategy developed in [BMJ06, Section 4] to
construct two polynomial equations in one catalytic variable from the data of a polynomial
equation in two catalytic variables, a decoupling pair, and a pair of invariants. We illustrate
this strategy on the model Gλ. Since we alternate general discussions and their illustration on
our running example Gλ, we use � in this subsection to notify the end of the examples.

Let L be a field of characteristic zero. For an unknown bivariate function F (u, t) denoted for
short F (u), we consider the functional equation

(2.3) F (u) = F0(u) + tQ
(
F (u),∆F (u),∆(2)F (u), . . . ,∆(k)F (u), t, u

)
,

where F0(u) ∈ L[u] is given explicitly and ∆ is the discrete derivative: ∆F (u) = F (u)−F (0)
u .

One can easily show that the equation (2.3) has a unique solution F (u, t) in L[u][[t]], the ring of
formal power series in t with coefficients in the ring L[u]. Such an equation is called well-founded.
Here is one of the main results of [BMJ06].

Theorem 2.3 (Theorem 3 in [BMJ06]). The formal power series F (u, t) defined by (2.3) is
algebraic over L(u, t).

We shall use Theorem 2.3 as a black box in order to establish the algebraicity of power series
solutions of a polynomial equation in one catalytic variable.

In order to eliminate directly trivial algebraic models, we make the following assumption
on the step sets. Write −mx, Mx (resp. −my, My) for the smallest and largest move in the
x direction (resp. y direction) of the model W (the mx, Mx, my and My are non-negative).
Now, consider the class of models where one of these quantities is zero. All the models in this
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class are algebraic. Indeed, the corresponding models are essentially one dimensional. More
precisely, if Mx = 0, one shows that a walk based upon such a model is included in the half-line
x = 0. Similarly, if mx = 0, then the walks on this model have only the y constraint. Reasoning
analogously to [BMM10, Section 2.1] or [BBMM21, Section 6], one proves that the series is
algebraic. Thus, we may assume from now on that none of these parameters are zero so that
S(X,Y ) is not univariate. Moreover, analogously to [BBMM21, §8.1], we exclude upper
diagonal models, that is, models for which (i, j) ∈ S satisfy j ≥ i as well as their symmetrical,
the lower diagonal models. Indeed, these models are automatically algebraic.

This assumption being made, the series Q(X,Y ) satisfies naturally an equation with two
catalytic variables, and therefore does not fall directly into the conditions of Theorem 2.3.
However, the functional equation (2.2) implies that the generating function Q(X,Y ) is algebraic
over C(X,Y, t) if and only if the series A(X) and B(Y ) are algebraic over C(X, t) and C(Y, t)
respectively. Therefore, we set ourselves to find two well founded polynomial equations with
one catalytic variable: one for A(X) and the other for B(Y ).

In order to produce these two equations from the functional equation (2.2), we now present a
method inspired by Tutte [Tut95] which was further adapted by Bernardi, Bousquet-Mélou and
Raschel in the context of small steps walks [BBMR21] and by Bousquet-Mélou in the context
of three quadrant walks [BM21]. We reproduce here the method of [BM21] which relies on
suitable notion of t-invariants and an Invariant Lemma for multivariate power series. The
strategy developed in [BM21] is an adaptation for formal power series of the approach already
introduced in Section 4.3 in [BBMR21].

Definition 2.4. We denote by C(X,Y )((t)) the field of Laurent series in t with coefficients in
the field C(X,Y ). The subring Cmul(X,Y )((t)) of C(X,Y )((t)) formed by the series of the form

H(X,Y, t) =
∑
t

pn(X,Y )

an(X)bn(Y )
tn,

where pn(X,Y ) ∈ C[X,Y ], an(X) ∈ C[X] and bn(Y ) ∈ C[Y ].

Definition 2.5 (Definition 2.4 in [BM21]). LetH(X,Y, t) be a Laurent series in Cmul(X,Y )((t)).
The series H is said to have poles of bounded order at 0 if the collection of its coefficients (in
the t-expansion) have poles of bounded order at X = 0 and Y = 0. In other words, this means
that, for some natural numbers m and n, the coefficients in t of the series XmY nH(X,Y ) have
no pole at X = 0 nor at Y = 0.

Given a model W, one can use the notion of poles of bounded order at zero to construct an
equivalence relation in the ring Cmul(X,Y )((t)). To this purpose, we slightly adapt Definition 2.5
in [BM21] to encompass the large steps case. Moreover, in the following definition, we consider
division by K̃ and not by K as in [BM21] but one easily checks that Definition 2.8 below and
Definition 2.3 in [BM21] coincide.

Definition 2.6 (t-equivalence). Let F (X,Y ) andG(X,Y ) be two Laurent series in Cmul(X,Y )((t)).
We say that these series are t-equivalent, and we write F (X,Y ) ≡ G(X,Y ) if the series
F (X,Y )−G(X,Y )

K̃(X,Y )
has poles of bounded order at 0.

The t-equivalence is compatible with the ring operations on Laurent series applied pairwise
as stated below.

Proposition 2.7 (Lemma 2.5 in [BM21]). If A(X,Y ) ≡ B(X,Y ) and A′(X,Y ) ≡ B′(X,Y ),
then A(X,Y ) +B(X,Y ) ≡ A′(X,Y ) +B′(X,Y ) and A(X,Y )B(X,Y ) ≡ A′(X,Y )B′(X,Y ).
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The notion of t-equivalence allows us to define the notion of t-invariants as follows.

Definition 2.8 (t-Invariants (Definition 2.3 in [BM21])). Let I(X) and J(Y ) be two Laurent
series in t with coefficients lying respectively in C(X) and C(Y ). If I(X) ≡ J(Y ), then the pair
(I(X), J(Y )) is said to be a pair of t-invariants (with respect to the model W).

By Proposition 2.7, pairs of t-invariants are also preserved under sum and product applied
pairwise. We now state the main result on t-invariants [BM21, Lemma 2.6] whose proof origi-
nally for small steps models passes directly to the large steps context∗.

Lemma 2.9 (Invariant Lemma). Let (I(X), J(Y )) be a pair of t-invariants. If the coefficients
in the t-expansion of I(X)−J(Y )

K̃(X,Y )
have no pole at X = 0 nor Y = 0, then there exists a Laurent

series A(t) with coefficients in C such that I(X) = J(Y ) = A(t).

Note that the equations I(X) = A(t) and J(Y ) = A(t) involve only one catalytic variable. In
other words, the Invariant Lemma allows us to produce nontrivial equations with one catalytic
variable from one pair of t-invariants satisfying a certain analytic regularity.

Still assuming that the negative steps are small, we can now try to combine the notion of
t-invariants and the Invariant Lemma with the functional equation satisfied by Q(X,Y ) in order
to obtain two equations in one catalytic variable for Q(X, 0, t) and Q(0, Y, t).

First, we find a pair of t-invariants which involves the specializations Q(X, 0) and Q(0, Y ) of
Q(X,Y ). One way to obtain such a pair of t-invariants is by looking at (2.2), namely:

(2.4) K̃(X,Y )Q(X,Y ) = XY +A(X) +B(Y ).

Assume that there exist some fractions F (X) in C(X, t), G(Y ) in C(Y, t), and H(X,Y ) in
C(X,Y, t) having poles of bounded order at 0 such that that XY can be written as

XY = F (X) +G(Y ) + K̃(X,Y )H(X,Y ).

We call such a relation a t-decoupling of XY . Combining the t-decoupling of XY with (2.4),
one obtains the following rewriting

K̃(X,Y ) (Q(X,Y )−H(X,Y )) = (F (X) +A(X)) + (G(Y ) +B(Y )) .

Note now that the right-hand side has separated variables from the t-decoupling of XY . Since
Q(X,Y ) is a generating function for walks in the quarter plane, the coefficients of its t-expansion
are polynomials in C[X,Y ] (the coefficient of tn is

∑
i,j≥0 q

(i,j)
n XiY j), so the power series

Q(X,Y ) has poles of bounded order at 0. By assumption on H(X,Y ), this is also the case
for the series Q(X,Y )−H(X,Y ). Therefore, (I1(X), J1(Y )) = (F (X)+A(X),−G(Y )−B(Y ))
is a pair of t-invariants. It is noteworthy that this pair of t-invariants involves the sections
Q(X, 0) and Q(0, Y ).

We must note that the writing of XY as the sum of two univariate fractions modulo K̃ was
the only condition to the existence of the pair (I1, J1). In Section 5, we introduce the notion of
Galois decoupling of XY which is weaker though easier to test than the notion of t-decoupling.
A criterion to test the existence of a Galois decoupling for XY or, more generally, for any regular
fraction in Q(X,Y ) and the computation of a Galois decoupling pair if it exists are among the
main results of this paper, and are covered in full generality in Section 5. Provided the orbit of
the walk defined in Section 3 is finite, our Galois decoupling procedure is entirely algorithmic.

∗In [BM21], Lemma 2.6 requires that the coefficients in the t-expansion of I(X)−J(Y )
K(X,Y )

vanish at X = 0 and
Y = 0. This is equivalent to the condition stated in Lemma 2.9.
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Thus, one can search for a t-decoupling of XY by first looking for a Galois decoupling and then
by checking if this Galois decoupling is a t-decoupling. We now illustrate this step on the model
Gλ:

Example 2.10 (The model Gλ). Recall that the functional equation (2.4) obtained for Gλ is:

K̃(X,Y )Q(X,Y ) = XY +A(X) +B(Y ),

with A(X) = −t(X2 + 1)Q(X, 0) + tQ(0, 0) and B(Y ) = −tQ(0, Y ). One can check that XY
admits a t-decoupling of the following form:

XY = −3λX2t− λt− 4X

4t(X2 + 1)
+

−λY − 4

4Y
− K̃(X,Y )

(X2 + 1)Y t
.

Combining this identity with the functional equation, one obtains the following pair of t-
invariants:

(I1(X), J1(Y )) =

(
3λtX2 − λt− 4X

−4tX2 − 4t
− t
(
X2 + 1

)
Q(X, 0) + tQ(0, 0) , tQ(0, Y ) +

λY + 4

4Y

)
.

�

A priori, the pair of t-invariants (I1(X), J1(Y )) that can be obtained through the combina-
tion of the functional equation and a decoupling equation does not satisfy the conditions of
Lemma 2.9, as the coefficients of the t-expansion of I1(X)−J1(Y )

K̃(X,Y )
might have poles at 0. In order

to remove these poles, we want to combine the pair (I1(X), J1(Y )) with a second pair of t-
invariants (I2(X), J2(Y )) by means of Proposition 2.7, where I2(X) and J2(Y ) will be assumed
to be respectively in C(X, t) and C(Y, t). In order to obtain this second pair of t-invariants, we
rely once again on a weaker notion of invariants: the Galois invariants which are introduced
in Section 4. Theorem 4.3 below shows that the existence of a non-constant pair of Galois
invariants is equivalent to the finiteness of the orbit of the walk. Currently, the pole elimination
between the two pairs of t-invariants requires a case by case treatment. We detail it for our
running example Gλ.

Example 2.11 (The model Gλ). The pair (I2(X), J2(Y )) below is a pair of t-invariants for Gλ:

(I2, J2) =

((
−λ2X3 − X4 −X6 +X2 + 1

)
t2 −X2λ

(
X2 − 1

)
t+X3

t2X (X2 + 1)2
,
−t Y 4 + λtY + Y 3 + t

Y 2t

)
.

Analogously to the t-decoupling, we first search for a pair of Galois invariants, which amounts
to use the semi-algorithm presented in Section 4, and then check that this pair is a pair of
t-invariants.

As we now have two pairs of t-invariants P1 = (I1(X), J1(Y )) and P2 = (I2(X), J2(Y )), we
perform some algebraic combinations between them in order to eliminate their poles. To lighten
notation, we write the component-wise operations on the pairs Pi of t-invariants. Computations
can be checked in the joint Maple worksheet.

Consider the Taylor expansions of the first coordinates:

I1(X) =
λ

4
+O(X) ,

I2(X) = X−1 +O(X) .
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Out of these two pairs of t-invariants, we first produce a third pair of t-invariants without a
pole at X = 0 as follows:

P3 = (I3, J3) := P2

(
P1 −

λ

4

)
.

The first coordinate of the pairs P1 and P3 do not have a pole at X = 0. The Taylor expansion
of their second coordinates J1(Y ) and J3(Y ) at Y = 0 is as follows:

J3(Y ) = Y −3 + (tQ(0, 0) + λ)Y −2 + t

(
Q(0, 0)λ+

∂2Q

∂Y 2
(0, 0)

)
Y −1 +O

(
Y 0
)
,

J1(Y ) = Y −1 +O
(
Y 0
)
.

In order to produce a pair of t-invariants satisfying the assumption of the Invariant Lemma,
we need to combine P1 and P3 in order to eliminate the pole at Y = 0. Note that, since the
first coordinate of P1 and P3 have no pole at zero, the first coordinate of any sum or product
between these two pairs have no pole at X = 0. Using the simple pole at Y = 0 of J3, we
produce a new pair P4 whose coordinates have no pole at X and Y equal zero by setting

P4 = (I4, J4) := P3 − P 3
1 +

(
2tQ(0, 0)− λ

4

)
P 2
1 +

(
2t
∂2Q

∂Y 2
(0, 0)− t2Q(0, 0)2 +

5λ2

16

)
P1.

It remains to check that I4(X)−J4(Y )

K̃(X,Y )
has no poles at X = 0 and Y = 0. This is done in the

joint Maple worksheet. Therefore, the Invariant Lemma yields the existence of a series C(t) in
C((t)) such that I4(X) = C(t) and J4(Y ) = C(t). �

Once we have found a pair of t-invariants satisfying the conditions of Lemma 2.9, we end up
with two nontrivial polynomial equations in one catalytic variable involving the sections Q(X, 0)
and Q(0, Y ). If these equations are well-founded, then Theorem 2.3 allows us to conclude that
the series Q(X, 0) and Q(0, Y ) are algebraic over C(X, t) and C(Y, t) respectively, and therefore
that Q(X,Y ) is algebraic over C(X,Y, t).

Example 2.12 (The model Gλ). The value of C(t) can be deduced from the values of Q(0, Y )
and its derivatives at 0 by looking at the Taylor expansion of J4(Y ) at Y = 0. The verification
that the polynomial equations I4(X) = C(t) and J4(Y ) = C(t) are well-founded is done in the
Maple worksheet. We only give here the form of the well-founded equation for F (Y ) := Q(0, Y ):

F (Y ) = 1 + t

(
t2Y F (Y )

(
∆(1)F (Y )

)2
+ λtF (Y )∆(1)F (Y ) + t

(
∆(1)F (Y )

)2
(2.5)

+2tF (Y )∆(2)F (Y ) + Y F (Y ) + λ∆(2)F (Y ) + 2∆(3)F (Y )
)
.

Theorem 2.3 with L = Q(λ) implies that the generating function of the weighted model Gλ

is algebraic over Q(λ)(X,Y, t). Moreover, one can show that, at any step of our reasoning, one
may have taken the weight λ to be zero. In particular, the generating function of the model
G0 is algebraic. Thus, the excursion generating functions Q(0, 0) of the reverse models of G0

and G1 are algebraic over Q(t). In Appendix A, we apply the method of Bousquet-Mélou and
Jehanne to the polynomial equation (2.5) to find an explicit minimal polynomial of degree 32
over Q(λ, t) for Q(0, 0) of the model Gλ. �

For unweighted small steps models, the results of [BMM10, BK10, KR12, DHRS20, MM14]
show that the generating function is algebraic in the variables X and Y if and only if the
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model admits some non-trivial Galois invariants and XY has a Galois decoupling. For weighted
models with small steps, [DR19, Corollary 4.2] and [BBMR21, Theorem 4.6 and Theorem 4.11]
imply that the existence of non-trivial Galois invariants and of a Galois decoupling pair for XY
yield the algebraicity of the generating functions. We conjecture that the reverse implication is
also true yielding an equivalence which should also be valid in the large steps case. The general
strategy we used in this section is summarized in Figure 2.1 and motivates the above conjecture.
It is the first attempt at finding uniform proofs for the algebraicity of generating functions of
large steps models.

The strategy detailed above is entirely algorithmic, except for the fact that Galois invariants
and decoupling are t-invariants and t-decoupling and that they yield polynomial equations in
one catalytic variable satisfying the conditions of Theorem 2.3. Nonetheless, we think that
this last step could be made constructive via for instance the generalization of the notion of
weak invariants [BBMR21, Section 5.2] to the large steps framework. The rest of the paper is
devoted to the systematic and algorithmic study of the notions of pairs of Galois invariants and
decoupling.

Galois decoupling of XY

Functional equation for Q(X,Y ) Pair of t-invariants involving the functions Q(X, 0) and Q(0, Y )

Pair of Galois invariants

Pair of t-invariants without poles

Algebraic equations for Q(X, 0) and Q(0, Y )

Algebraic equation for Q(X,Y )

Figure 2.1. Summary of the strategy for proving algebraicity

3. The orbit of the walk and its Galoisian structure

In the context of small steps models, the group of the walk (which we qualify classic in this
paper for disambiguation) has been initially introduced in [FIM99, Section 2.4] to study the
invariant measure of a random walk. This approach was adapted in [BMM10, Section 3] for
small steps walks. In this paper, Bousquet-Mélou and Mishna introduce the group of the walk
as the group generated by two birational involutions Φ and Ψ of C × C defined as follows.
Assuming that the model has at least a negative and a positive X and Y -steps, one writes its
step polynomial S(X,Y ) =

∑
(i,j)∈S w(i,j)X

iY j as

S(X,Y ) = A−1(X)
1

Y
+A0(X) +A1(X)Y = B−1(Y )

1

X
+B0(X) +B1(Y )X,

where the Ai and Bi’s are Laurent polynomials. The birational transformations Φ and Ψ are
then defined as

Φ : (x, y) 7→
(
B−1(y)

xB1(y)
, y

)
and Ψ : (x, y) 7→

(
x,
A−1(x)

yA1(x)

)
.

When the classic group of the walk is infinite, its action on the variables X and Y produces
an infinite amount of singularities for the generating function Q(X,Y ) proving that the series
is not D-finite (see [MM14] or [KR12] for instance). When the group of the walk is finite, one
can describe in certain cases the generating function as a diagonal of a rational function, called
the (alternating) orbit sum. To such a group, one can attach a graph, called the orbit, whose
vertices are the orbit in C(x, y)2 of the pair (x, y) under the action of Φ and Ψ and whose edges
correspond to the action of Φ and Ψ (see [BMM10, Section 3]).



14 PIERRE BONNET AND CHARLOTTE HARDOUIN

In [BBMM21], the authors generalized the notion of the orbit of the walk to arbitrary large
steps models but did not attempt to find a group of transformations which generates this orbit.
In this section, we show how one can associate to a weighted model W a group, called in this
paper the group of the walk, which is generated by Galois automorphisms of two field extensions.
In this section, we prove that the group of the walk acts faithfully and transitively on the orbit
analogously to the classic group. When the orbit is finite, this group is itself presented as a
Galois group. We interpret in the next two sections the notions of invariants and decoupling
in this Galoisian framework. Moreover, for a finite orbit, one can interpret the group of the
walk as a group of automorphisms of an algebraic curve (see Appendix 6). This point of view
generalizes the geometric interpretation of the classic group of the walk in the small steps case
used in [KR12, DHRS18, DHRS20].

From now on, we fix W a weighted model, and we assume that the step polynomial S(X,Y ) is
not univariate, which is the case when considering models with both positive and negative steps
in each direction as in Section 2.1. In order to distinguish the coordinates of the orbit from the
coordinates of X,Y, t of the functional equation in Section 2.1, we introduce two new variables x
and y that are taken algebraically independent over C. We also denote by k the field C(S(x, y)).
As x, y and S(x, y) satisfy by definition the polynomial relation K̃(x, y, 1/S(x, y)) = 0, the
condition that S is not univariate implies the following lemma.
Lemma 3.1. The variables x, y and the polynomial S(x, y) satisfy the following relations:

(1) x and S(x, y) are algebraically independent over C, and so are y and S(x, y),
(2) x is algebraic over k(y) and y is algebraic over k(x).

The orbit as well as the associated group, Galois invariants and Galois decoupling pairs are
constructed for S(X,Y ) arising from a model of walk. These constructions should pass directly
to the case where S(X,Y ) is an arbitrary non-univariate rational fraction in C(X,Y )

by letting K̃(X,Y, t) be (1 − tS(X,Y ))B(X,Y ) with S = A
B for A,B two relatively prime

polynomial in C[X,Y ].
In Section 3.1, we recall the definition of the orbit of a model W with large steps. We give it

a Galois structure in Section 3.2. In Section 3.3, we define the group of the walk and prove that
it acts faithfully and transitively by graph automorphisms on the orbit. Finally, we investigate
the evaluation of rational fractions in C(X,Y, t) on the orbit.

3.1. The orbit. We recall below the definition of the orbit introduced in [BBMM21, Section 3],
and we also fix once and for all an algebraic closure K of C(x, y).
Definition 3.2 (Definition 3.1 in [BBMM21]). Let (u, v) and (u′, v′) be in K×K.

If u = u′ and S(u, v) = S(u′, v′), then the pairs (u, v) and (u′, v′) are called x-adjacent, and
we write (u, v) ∼x (u′, v′). Similarly, if v = v′ and S(u, v) = S(u′, v′), then the pairs (u, v)
and (u′, v′) are called y-adjacent, and we write (u, v) ∼y (u′, v′). Both relations are equivalence
relations on K×K.

If the pairs (u, v) and (u′, v′) are either x-adjacent or y-adjacent, they are called adjacent,
and we write (u, v) ∼ (u′, v′). Finally, denoting by ∼∗ the reflexive transitive closure of ∼, the
orbit of the walk, denoted by O, is the equivalence class of the pair (x, y) under the relation ∼∗.

Remark 3.3. The orbit was introduced in [BBMM21] and Definition 3.2 was motivated by
the enumeration of walks. Given a field C of characteristic zero and an irreducible polynomial
K̃(X,Y ) in C[X,Y ], one can attach an orbit to K̃(X,Y ) as follows. Let K be an algebraic
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(x, y)
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1
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(− 1
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,−xyz)

(− 1
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(−1
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O12

O18

Õ12

C6

Figure 3.1. A sample of finite orbits

closure of the quotient field of C = C[X,Y ]/(K̃(X,Y )). We denote by (x, y) the image of
(X,Y ) in C. One defines two equivalence relations ∼x and ∼y on pairs (u, v) ∈ K×K by setting
(u, v) ∼x (u′, v′) if and only if u = u′ and K̃(u, v) = K̃(u′, v′) = 0 and (u, v) ∼y (u′, v′) if and
only if v = v′ and K̃(u, v) = K̃(u′, v′) = 0. The orbit attached to K̃(X,Y ) is the orbit of the
pair (x, y) under the reflexive transitive closure of ∼x ∪ ∼y. For the kernel polynomial, this
definition of the orbit is isomorphic to the one above thanks to Proposition 3.24.

The orbit O has a graph structure: the vertices are the elements of the orbit and the edges
are adjacencies, colored here by their adjacency type. The x-adjacencies are represented in red
and the y-adjacencies in blue. As the x and y adjacencies come from equivalence relations, the
monochromatic connected components of O are cliques (any two vertices of such a component
are connected by an edge). Moreover, by definition of the transitive closure, the graph O is
connected, that is, every two vertices of the graph are connected by a path. In the sequel, we
denote by O either the set of pairs in the orbit or the induced graph. The structure considered
should be clear from the context. For a model W, its orbit type corresponds to the class of its
orbit modulo graph isomorphisms.

Example 3.4. For small steps models, the orbit when finite is always isomorphic to a cycle
whose vertices all belong to C(x, y)2. Example C6 in Figure 3.1 is for instance the unlabelled
orbit of the unweighted small steps model S = {(−1, 0), (0, 1), (1,−1)} [BMM10, Example 2].

The orbit type being preserved when one reverses the model, Section 10 in [BBMM21] lists
the distinct orbit types for models with steps in {−1, 0, 1, 2}2 with at least one large step. For
these models, the finite orbit types are exactly O12, Õ12 and O18 in Figure 3.1 and the cartesian
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product orbit-types of the Hadamard models that correspond to a step polynomial of the form
R(X) + P (X)Q(Y ) (see [BBKM16, Section 5] or [BBMM21, Section 6] or Section 5.6.3).

Example 3.5 (The model Gλ). For Gλ, the polynomial K̃(Z, y, 1/S(x, y)) is reducible over
k(x, y)[Z] and factors as (Z−x)yP (Z)

x3y2+(λy+1)x2+y2x+1
where

P (Z) = x y2Z2 + (x2y2 + λxy + x)Z − 1.

Thus, an element (z, y) ∈ K2 distinct from (x, y) is y-adjacent to (x, y) if and only if z is a root
of P (Z). Its roots are of the form z, −1

xy2z
by the relation between the roots and the coefficients

of a degree two polynomial. One can then show that the orbit O12 in Figure 3.1 is the orbit of
the model Gλ. Since none of the vertices depend on λ, the graph O12 is also the orbit of the
model G0.

Finally, we would like to discuss the finiteness of the orbit. For small steps walks, the finiteness
of the orbit depends only on the order of Φ ◦Ψ. Some number theoretic considerations on the
torsion subgroup of the Mordell-Weil group of a rational elliptic surface prove that this order,
when finite, is bounded by 6, which provides a very easy algorithm to test the finiteness of the
group of the walk. This bound is valid for any choice of weights contained in an algebraically
closed field of characteristic zero (see [HS08, Remark 5.1] and [SS19, Corollary 8.21]). For
models with arbitrarily large steps, there is currently no general criterion to determine whether
the orbit is finite or not, but only a semi-algorithm [BBMM21, Section 3.2]. We may also
mention [BBMM21, Theorem 7], which gives a criterion to prove that a given model has an
infinite orbit. This criterion, based on a fixed point argument, generalizes a criterion for small
steps walks developed in [BMM10]. We hope that, analogously to the small steps case, a
geometric interpretation of the notion of orbit will provide some nice bounds on the potential
diameter of the orbit and thereby some efficient algorithms to test the finiteness of the orbit.

3.2. The Galois extension of the orbit. In the remaining of the article, we denote by k(O)
the subfield of K generated over k = C(S(x, y)) by all coordinates of the orbit O. Note that
k(O) coincides with C(O) since x, y belong to the orbit.

We start this subsection with some terminology on field extensions. Our main reference is
[Sza09] which is a concise exposition of the Galois theory of field extensions of finite and infinite
degree. A field extension M ⊂ L is denoted by L|M . The degree of the field extension L|M
is the dimension of L as M -vector space. When this degree is finite, we denote it [L : M ].
For L|M and L′|M two field extensions, an M -algebra homomorphism of L into L′ is a ring
homomorphism from L to L′ that is the identity on M . An algebraic closure of a field M is
an algebraic extension of M that is algebraically closed. Let us recall some of its properties.

Proposition 3.6 (Proposition 1.1.3 in [Sza09]). Let M be a field.
(1) There exists an algebraic closure M of M . It is unique up to isomorphism.
(2) For an algebraic extension L of M , there exists an embedding from L to M leaving

M elementwise fixed. Moreover, any M -algebra homomorphism from L into M can be
extended to an M -algebra isomorphism of L to M .

The field K introduced in Section 3.1 is an algebraic closure of C(x, y). By definition of the
orbit, k(O) = C(O) is an algebraic field extension of C(x, y). Moreover, since y is algebraic over
k(x) and x is algebraic over k(y) by Lemma 3.1, then C(x, y) is an algebraic field extension of
k(x) and k(y). Therefore, k(O) is algebraic over k(x) and k(y). Proposition 3.6 implies that K
is an algebraic closure of k(x), k(y) and k(O).



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 17

Let L|M be a field extension. Any M -algebra endomorphism of L is an automorphism and
we denote by Aut(L|M) the set of M -algebra endomorphisms of L. An algebraic field extension
L|M is said to be Galois if the set LAut(L|M) of elements of L that remain fixed under the
action of Aut(L|M) coincides with M (see [Sza09, Definition 1.2.1]). In this case, Aut(L|M)
is denoted by Gal(L|M) and called the Galois group of L|M . By [Sza09, Proposition 1.2.4],
an algebraic field extension L|M is Galois if and only if, fixing an algebraic closure M of M ,
we have σ(L) ⊂ L for any automorphism σ in Aut(M |M) †. The Galois group Gal(L|M) of
a finite Galois extension L|M has order [L : M ] [Sza09, Corollary 1.2.7]. It is clear that any
sub-extension L|M ′ ‡ of a Galois extension L|M is Galois. Finally, we recall the following result.

Lemma 3.7 (Lemma 1.22 in [Sza09]). Let L|M be a Galois extension and µ ∈ M [X] an
irreducible polynomial with some root α in L. Then µ splits in L, and the group Gal(L|M) acts
transitively on its roots.

We let any C-algebra endomorphism σ of K act on K×K coordinate-wise by

σ · (u, v) def
= (σ(u), σ(v)).

The following lemma establishes the compatibility of the equivalence relation ∼∗ with the action
of C-algebra endomorphisms of K.

Lemma 3.8. Let (u, v) and (u′, v′) be two pairs in K × K and σ : K → K be a C-algebra
endomorphism. Then (u, v) ∼x (u′, v′) (resp. (u, v) ∼y (u′, v′)) implies that σ·(u, v) ∼x σ·(u′, v′)
(resp. σ · (u, v) ∼y σ · (u′, v′)). The same holds therefore for ∼∗.

Proof. Since σ is a C-algebra endomorphism, we have σS(u, v) = S(σu, σv) for any u, v in K.
Therefore, if (u, v) ∼x (u, v′) then S(σ(u), σ(v)) = σ(S(u, v)) = σ(S(u, v′)) = S(σ(u), σ(v′)),
so σ · (u, v) ∼x σ · (u, v′). The same argument applies if (u, v) ∼y (u′, v). The general case of
(u, v) ∼∗ (u′, v′) follows by induction. �

As a direct corollary, we find the following lemma which ensures the setwise stability of the
orbit under certain endomorphisms of K.

Lemma 3.9. Let σx : K → K be a k(x)-algebra endomorphism. Then, for all (u, v) in the orbit,
σx · (u, v) is in the orbit. Similarly, the orbit is also stable under k(y)-algebra endomorphisms
of K.

Proof. Let (u, v) be in the orbit, i.e. (u, v) ∼∗ (x, y). By Lemma 3.8, we find that
σx · (u, v) ∼∗ σx · (x, y) = (x, σx(y)).

By transitivity, we only need to prove that (x, σx(y)) is in the orbit. This is true because
S(x, σx(y)) = σxS(x, y) = S(x, y) since σx fixes C(x, S(x, y)) so (x, σx(y)) ∼x (x, y). �

The above two lemmas imply that any k(x) or k(y)-algebra automorphism of K induces a
permutation of the vertices of O which preserves the colored adjacencies, and is therefore a
graph automorphism of O. The stability result of Lemma 3.9 translates as a field theoretic
statement.

Theorem 3.10. The extensions k(O)|k(x), k(O)|k(y) and k(O)|k(x, y) are Galois.
†Since we are in characteristic zero, the separable closure of M coincides with the algebraic closure of M (see

[Sza09, page 12]).
‡By subextension, we mean that M ⊂ M ′ ⊂ L.
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Proof. We first prove that k(O)|k(x) is a Galois extension. Recall that the field extension
k(O)|k(x) is algebraic and K is an algebraic closure of k(O) and k(x). Thus, we only need to
prove that σ(k(O)) ⊂ k(O) for every automorphism σ in Aut(K|k(x)). This follows directly from
Lemma 3.9. The proof for k(O)|k(y) is entirely symmetric and the field extension k(O)|k(x, y)
is Galois as subextension of k(O)|k(x). �

Theorem 3.10 gives a Galoisian framework to the orbit, which will be central in our study
of Galois invariants and decoupling. Remark that the algebraic extension k(O)|k(x, y) may
be of infinite degree. In Figure 3.2, we represent the different Galois extensions involved in
Theorem 3.10 and we denote their Galois groups Gx = Gal(k(O)|k(x)), Gy = Gal(k(O)|k(y))
and Gxy = Gal(k(O)|k(x, y)). Note that Gxy = Gy ∩Gx.

k(O)

k(x, y)

k(x) k(y)

GxyGx Gy

Figure 3.2. The field extensions attached to the orbit

Example 3.11. For small steps models, we have k(O) = k(x, y) = C(x, y). Moreover, the field
extensions k(O)|k(x) and k(O)|k(y) are both of degree 2 so that Gx and Gy are groups of order
2 and thereby isomorphic to Z/2Z. In the notation of the beginning of Section 3, consider the
endomorphisms φ, ψ of C(x, y) defined as follows: for f(x, y) ∈ C(x, y), we set φ(f) = f(Φ(x, y))
and ψ(f) = f(Ψ(x, y)). It is easily seen that ψ ∈ Gx and that φ ∈ Gy and that they both are
non-trivial involutions. Thus, we have Gxy = 1, Gx = 〈ψ〉 ' Z/2Z and Gy = 〈φ〉 ' Z/2Z.

Example 3.12 below shows that, unlike the small steps case, one has to go to a finite non-
trivial field extension of C(x, y) in order to build the orbit of a large steps model.

Example 3.12 (The model Gλ). In the case of Gλ, we have k(O) = C(x, y, z) where z is a root
of the polynomial P (Z) = xy2Z2 + (x2y2 + λxy + x)Z − 1 (see Example 3.5). The polynomial
P (Z) is of degree 2 with coefficients in k(x, y). Its discriminant ∆ is

x
(
x3y4 + 2λx2y3 + λ2x y2 + 2x2y2 + 2λxy + 4y2 + x

)
.

A polynomial of degree 2 is reducible in k(x, y)[Z] if and only if its discriminant is a square in
k(x, y) = C(x, y). On the contrary, suppose that ∆ is a square of the form (A(x,y)

B(x,y))
2 with A,B

in C[x, y]. We then have A(x, y)2∆ = B(x, y)2. Since C[x, y] is a unique factorization domain
and x is an irreducible element, one finds that the x-adic valuation of A(x, y)2∆ is odd. Indeed,
the x-adic valuation of ∆ is 1 (If it was greater than 1 then x would divide the element 4y2

which is impossible). Since the x-adic valuation of B(x, y)2 is even, we find a contradiction and
conclude that P (Z) is irreducible in k(x, y)[Z] = C(x, y)[Z]. Therefore, z /∈ k(x, y) and the
extension k(O)|k(x, y) is of degree 2. As above, we find that Gxy ' Z/2Z.

The field extension k(O)|k(y) is of degree 6 so that its Galois group is either S3 or Z/6Z. In
this last case, the group Gxy would be a normal subgroup of Gy. As k(x, y) = k(O)Gxy , the
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extension k(x, y)|k(y) would be Galois by [Sza09, Theorem 1.2.5]. This is impossible since the
root z of K̃(Z, y, 1/S(x, y)) is not in k(x, y). Hence, we find that Gy ' S3.

The extension k(O)|k(x) is of degree 4. Its Galois group is of order four and therefore either
isomorphic to Z/2Z×Z/2Z or to Z/4Z. If Gx were Z/4Z then there would exist a k(x)-algebra
endomorphism σ of k(O) of order 4. Since Gxy is of order 2, the automorphism σ can not fix y
and we must have σ(y) = 1

xy , which is the other root of K̃(x, Y, 1/S(x, y)) ∈ k(x)[Y ]. Since the
orbit is set-wise invariant by σ and (z, y) is in the orbit, the same holds for σ(z, y) = (σ(z), 1

xy ).
From the description of the orbit of Gλ in Figure 3.1, we find that σ(z) ∈ {1

z , xy
2z}. In both

cases, we find that σ2(z) = z which implies that σ2 is the identity on k(O). A contradiction.
Hence, we conclude that the group Gx is isomorphic to Z/2Z× Z/2Z.

3.3. The group of the walk. In this section, we prove that the orbit O is the orbit of the pair
(x, y) under the action of a certain group which generalizes the one introduced in the small steps
case by Bousquet-Mélou and Mishna [BMM10, Section 3]. The following definition extends for
large steps models the Galoisian construction of [FIM99, Section 2.4] which corresponds to the
case of a biquadratic polynomial K̃.

Definition 3.13. For a model W with non-univariate step polynomial, we denote by G the
subgroup of Aut(k(O)|k) generated by Gx and Gy, and we call it the group of the walk.

Recall the discussion on small steps models. Example 3.11 shows that the group G is gener-
ated by the automorphisms ψ, φ, as they generate Gx and Gy. Thereby, G is isomorphic to the
classic group of the walk 〈Φ,Ψ〉.

As explained in Section 3.2, every element of G induces a graph automorphism of O, that
is, a permutation of the vertices of O which preserves the colored adjacencies on the orbit O.
In Theorem 3.17 below, we prove that there exists a finitely generated subgroup of G whose
action on O is faithful and transitive, which is a notable property of the classic group of the
walk. It is clear that the group G acts faithfully on the orbit O. Indeed, if an element σ of G
is the identity on any element of the orbit then σ is the identity on k(O). Therefore, σ is the
identity. The construction of a finitely generated subgroup of G with a transitive action on the
orbit requires a bit more work. We first prove two lemmas on the polynomial K̃(X,Y, t).

Lemma 3.14. The kernel polynomial K̃(X,Y, t) is irreducible in C[X,Y, t]. Therefore, it is
irreducible as a polynomial in C(X, t)[Y ],C(Y, t)[X] and C(t)[X,Y ].

Proof. The kernel polynomial is a degree 1 polynomial in t, therefore it is irreducible in C(X,Y )[t].
Moreover, its content is one by construction. Therefore, by Gauss Lemma [Lan02, chap. V par.
6 Theorem 10], the kernel polynomial is irreducible in C[X,Y ][t] = C[X,Y, t]. Since S(X,Y )

is not univariate, the polynomial K̃ does not belong to C[X, t], Gauss Lemma asserts that K̃
being irreducible in C[X, t][Y ] is also irreducible in C(X, t)[Y ]. The same reasoning holds for
the irreducibility of K̃ in C(Y, t)[X]. It is clear that since K̃ is irreducible in C[X,Y, t] and not
in C(t), it is irreducible in C(t)[X,Y ]. �

Lemma 3.15. The specializations of the kernel polynomial K̃ (x, Y, 1/S(x, y)) and K̃ (X, y, 1/S(x, y))
are respectively irreducible as polynomials in k(x)[Y ] and in k(y)[X].

Proof. We only prove the first assertion by symmetry of the roles of x and y. Consider the
C-algebra homomorphism φ : C[X, t] → k(x) defined by φ(X) = x and φ(t) = 1/S(x, y). Since
S(X,Y ) is not univariate, the fractions x and 1/S(x, y) are algebraically independent over C.
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Therefore the morphism φ is one-to-one, so it extends to a field isomorphism φ : C(X, t) → k(x)
(onto by definition of k(x)), which extends to a C-algebra isomorphism φ from C(X, t)[Y ] to
k(x)[Y ]. Moreover, by Lemma 3.14, K̃(X,Y, t) is irreducible as a polynomial in C(X, t)[Y ].
Therefore, since K̃ (x, Y, 1/S(x, y)) = φ(K̃(X,Y, t)) and φ(C(X, t)) = k(x), we conclude that
the polynomial K̃ (x, Y, 1/S(x, y)) is irreducible over k(x). �

For large steps models, the extensions k(O)|k(x) and k(O)|k(y) might be of infinite degree,
hence the groups Gx and Gy might not be finite, not even finitely generated (unlike the small
steps case where they are always cyclic of order 2). However, note that Gxy is the stabilizer of
the pair (x, y) in the orbit. Therefore, the action of G on (x, y) factors through the left quotients
Gx/Gxy and Gy/Gxy which are proved to be finite in the following lemma.
Lemma 3.16. The group Gxy is of finite index in Gx and in Gy with [Gx : Gxy] = my +My

and [Gy : Gxy] = mx +Mx.
Proof. The orbit Ω of y under the action of Gx is a subset of the roots of the polynomial
K̃(x,Z, 1/S(x, y)) ∈ k(x)[Z]. This polynomial is irreducible by Lemma 3.14, so Gx acts transi-
tively on its roots by Lemma 3.7, hence Ω coincides with the set of roots of K̃(x,Z, 1/S(x, y))

which is a finite set of cardinal degY K̃ =My +my. Moreover, the stabilizer of y for this action
is precisely the group Gxy. Therefore, the quotient Gx/Gxy can be identified with Ω, which
proves that Gxy is of finite index in Gx with [Gx : Gxy] =My +my. The proof for the subgroup
Gy is analogous. �

Therefore, we fix, once and for all, a set Ix = {id, ιx1 , . . . , ιxmy+My
} of representatives of the

left cosets of Gx/Gxy, and a set Iy = {id, ιy1, . . . , ι
y
mx+Mx

} of representatives of the left cosets of
Gy/Gxy. By construction,

Gx = 〈Ix, Gxy〉 , Gy = 〈Iy, Gxy〉 , and G = 〈Ix, Iy, Gxy〉 .
We now have all the ingredients to prove the transitivity of the action of a finitely generated

subgroup of G on O. We only recall that the distance between two vertices of a graph is the
number of edges in a shortest path connecting them.
Theorem 3.17 (Transitivity of the action). The subgroup of G generated by Ix and Iy acts
transitively on the orbit O.
Proof. We show that for all pairs (u, v) of O there exists an element σ in 〈Ix, Iy〉 such that
σ · (x, y) = (u, v). As the graph of the orbit is connected, the proof is done by induction on the
distance between (x, y) and (u, v). If (u, v) is at distance zero to (x, y) then (u, v) = (x, y) and
we set σ = id.

Let (u, v) be in O of positive distance d to (x, y). Then there exists a pair (u′, v′) at distance
d−1 to (x, y) that is adjacent to (u, v). Without loss of generality, one can assume that (u′, v′) is
x-adjacent to (u, v), that is, u = u′. By induction hypothesis, there exists σ in 〈Ix, Iy〉 such that
σ ·(x, y) = (u, v′). Therefore, since (u, v′) ∼x (u, v), the application of σ−1 implies by Lemma 3.8
that (x, y) ∼x (x, σ−1(v)). Thus, y and σ−1(v) satisfy the equation S(x, y) − S(x, Y ), so they
are roots of the polynomial K̃ (x, Y, 1/S(x, y)) which is an irreducible polynomial over k(x) by
Lemma 3.15. Therefore, by Lemma 3.7, there is an element σx in Gx such that σx(y) = σ−1(v).
Since Ix is by definition a set of representatives of the left cosets of Gx/Gxy, there exists ιxi
in Ix such that ιxiGxy = σxGxy. Thus, ιxi = σx ◦ τ for some τ ∈ Gxy. This proves that
ιxi (y) = σx ◦ τ(y) = σx(y) because τ , as any element of Gxy, fixes y. Thus, ιxi · (x, y) = σx · (x, y)
because ιxi and σx leave x fixed. This concludes the proof. �



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 21

This result shows that the orbit O is actually the orbit of the pair (x, y) under the action of
a finitely generated subgroup of G. As a direct corollary, one finds that the extensions k(x, y)|k
and k(u, v)|k are isomorphic for any pair (u, v) in the orbit. Indeed, let σ in G such that
σ · (x, y) = (u, v) then σ induces a k-algebra isomorphism between k(x, y) and k(u, v).

For large steps models with an infinite orbit, it might be quite difficult to give a precise
description of the automorphisms in Ix and Iy. Indeed, they act as a permutation on the
infinite orbit O and their action on x or y is not in general given by a rational fraction in x and
y as in the small steps case. When the steps are small or when the orbit is finite, one is able to
give a more precise description of these generators.

Example 3.18. In the small steps case and in the notation of Example 3.11, one can choose
Ix = {id, ψ} and Iy = {id, φ}.

Example 3.19 (The model Gλ). For Gλ, the group Gy is isomorphic to S3, Gxy to Z/2Z and
Gx to Z/2Z. We give in Figure 3.3 the expression of automorphisms ιx, ιy and τ such that

Ix = {id, ιx}, Iy = {id, ιy}, Gxy = 〈τ〉.

They satisfy the relations (ιx)2 = (ιy)3 = τ2 = id.

(x, 1
xy )

(xy2z, 1
xy ) (−1

z ,
1
xy )

(x, y)

(z, y) (− 1
xy2z

, y)

(z, 1
yz )

(xy2z, 1
yz )

(− 1
x ,

1
yz )

(− 1
xy2z

,−xyz)

(− 1
x ,−xyz)

(−1
z ,−xyz)

ιx

ιy (ιy)2

ιyιx(ιy)−1 (ιy)2ιx(ιy)−2

ιx(x) = x
ιx(y) = 1

xy

ιx(z) = xy2z

τ(x) = x
τ(y) = y
τ(z) = − 1

xy2z

ιy(x) = z
ιy(y) = y
ιy(z) = − 1

xy2z

Figure 3.3. The elements of Ix and Iy for the model Gλ

Example 3.20. In [BKP20, Notation 3.6], the authors attach to a “separated polynomial ”
P (X) + Q(Y ) where P (X) ∈ C[X] of degree m and Q(Y ) ∈ C[Y ] of degree n a Galois group
which can be seen as a subgroup of Sm×Sn. This Galois group coincides with the group of the
walk of the Hadamard model with step polynomial P (X) +Q(Y ) (see Appendix D).

Note that an x-adjacency in the orbit corresponds to the action of an element of G that
is conjugate to an element of Gx. Indeed, for (u, v) in the orbit, Theorem 3.17 yields the
existence of σ ∈ G such that σ(u, v) = (x, y). Then, if (u, v) ∼x (u, v′), Lemma 3.8 proves
that σ(u, v′) ∼x (x, y). As explained above, any x-adjacency to (x, y) corresponds to the action
of an automorphism in Gx so that there exists σx in Gx such that σ(u, v′) = σx(x, y). We
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conclude that (u, v′) = σ−1σxσ(u, v). In the above example for the model Gλ, one sees that
(z, y) ∼x (z, 1

yz ) and that ιyιx(ιy)−1 · (z, y) = (z, 1
yz ). The automorphism ιx belongs to Gx but

it is not the case of ιyιx(ιy)−1 since ιyιx(ιy)−1(x) = xy2z.
Moreover, the transitivity of the action of G on the orbit also implies the following minimality

result for the extension k(O).

Proposition 3.21. The field k(O) is the smallest field in K that is a Galois extension of k(x)
and a Galois extension of k(y).

Proof. Let M ⊂ K be a Galois extension of k(x) and a Galois extension of k(y). Proposition 3.6
shows that K is an algebraic closure for M . Let (u, v) be an element of O. To prove that
k(O) ⊂M , we only need to show that u and v belong to M . By Theorem 3.17, there exists σ in
G such that σ · (x, y) = (u, v). Let us first assume that σ belongs to Gx. Since K is an algebraic
closure for k(x), Proposition 3.6 shows that σ extends as a k(x)-algebra endomorphism of K
still denoted σ. The field extension M |k(x) is Galois and K is an algebraic closure of M so that
σ(M) ⊂M . Since x and y belong to M , the same holds for (u, v). The proof is analogous if σ
belongs to Gy. Since G is generated by Gx and Gy, an easy induction concludes that u = σ(x)
and v = σ(y) both belong to M for any σ in G. �

3.4. Orbit sums. One of the purposes of the orbit is to provide a nice family of changes of
variables, in the sense that the kernel polynomial K(X,Y, t) is constant on the orbit: for all pairs
(u, v) of the orbit, K(u, v, t) = K(x, y, t) (because S(x, y) = S(u, v)). This polynomial being a
factor of the left-hand side of the functional equation satisfied by the generating function, one
can evaluate the variables (X,Y ) at any pair (u, v) of the orbit and obtain what is called an
orbit equation. Indeed, the generating function Q(X,Y ) and its sections Q(X, 0) and Q(0, Y )
belong to the ring of formal power series in t with coefficients in C[X,Y ] so that their evaluation
at (u, v) belongs to the ring C[O][[t]]. Note that such an evaluation leaves the variable t fixed.
The strategy developed in [BBMM21, Section 4] for models with small forward steps consists
in forming linear combinations of these orbit equations so that the resulting equation is free
from sections. From the section-free equation, Bostan, Bousquet-Mélou and Melczer sometimes
succeed in isolating the generating function Q(X,Y ) and expressing it as a diagonal of algebraic
fractions which leads to its D-finiteness by [Lip88]. For models with small backward steps, it
is quite easy to produce a section-free equation from (2.2) when the orbit contains a cycle.
However, it is very unlikely that, for models with small backward steps and at least one large
step, such a section free equation suffices to characterize the generating function.

In this paper, we want to evaluate the variables X,Y, t at (u, v, 1/S(x, y)) for (u, v) an element
of the orbit. Since K̃(u, v, 1/S(x, y)) = 0 for any element (u, v) of the orbit O, such an evaluation
is similar to the kernel method used in [KR12] for models with small steps. More precisely, let us
define a 0-chain as a formal C-linear combination of elements of the orbit O with finite support.
This terminology is borrowed from graph homology (see Section 5 for some basic introduction).
Let γ =

∑
(u,v)∈O c(u,v)(u, v) be a zero chain. Since the coefficients c(u,v) are complex and almost

all zero, the evaluation Pγ of a polynomial P (X,Y, t) ∈ C[X,Y, t] at γ is defined as

Pγ =
∑

(u,v)∈O

c(u,v)P (u, v, 1/S(x, y)),

and belongs to k[O]. The evaluation of K̃(X,Y, t) at any 0-chain vanishes so that one can not
evaluate a rational fraction in C(X,Y, t) whose denominator is divisible by K̃. This motivates
the following definition.
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Definition 3.22. Let H(X,Y, t) = A(X,Y,t)
B(X,Y,t) be a rational fraction in C(X,Y, t) where A(X,Y, t)

and B(X,Y, t) are relatively prime polynomials in C[X,Y, t]. We say that H(X,Y, t) is a regular
fraction if B(X,Y, t) is not divisible by the kernel polynomial K̃(X,Y, t) in C[X,Y, t].

Remark 3.23. Since S(X,Y ) is not univariate, the kernel polynomial involves all three vari-
ables X,Y and t, so does a multiple of K̃(X,Y, t) (by a simple degree argument). Therefore,
any fraction in C(X, t) or C(Y, t) is regular.

We endow the set of regular fractions in C(X,Y, t) with the following equivalence relation:
two regular fractions H,G are equivalent if there exists a regular fraction R such that H−G =

K̃(X,Y, t)R. We denote by C the set of equivalence classes. Since the equivalence relation is
compatible with the addition and multiplication of fractions, one easily notes that C can be
endowed with a ring structure. Moreover, since K̃(X,Y, t) is irreducible in C[X,Y, t], any non-
zero class is invertible proving that C is a field. Indeed, if H is a regular fraction that is not
equivalent to zero, then one can write H = A

B with A,B ∈ C[X,Y, t] relatively prime and K̃

does not divide A nor B. Thus, the fraction B
A is regular and its class in C is an inverse of the

class of A
B . Moreover, since K̃ is not univariate, any non-zero element in C(X, t) or C(Y, t) is a

regular fraction which is not equivalent to zero. Therefore, the fields C(X, t) and C(Y, t) embed
into C. By an abuse of notation, we denote by C(X, t) and C(Y, t) their image in C.

Proposition 3.24. For a fraction H in C(X,Y, t) and (u, v) in O, the evaluation H(u, v, 1/S(x, y))
of H at (u, v) is a well defined element of K if and only if H is a regular fraction.

The C-algebra homomorphism φ : C → k(x, y), P (X,Y, t) 7→ P (x, y, 1/S(x, y)) is well defined
and is a field isomorphism which maps isomorphically C(t) onto k = C(S(x, y)), C(X, t) onto
k(x) and C(Y, t) onto k(y).

Proof. Recall that by Theorem 3.17, given a pair (u, v) ∈ O, there exists σ ∈ G such that
σ · (x, y) = (u, v). The automorphism σ induces a k-algebra isomorphism between k(x, y)
and k(u, v) so that the evaluation at (x, y, 1/S(x, y)) composed by σ is the evaluation at
(u, v, 1/S(x, y)). Thus, we only need to prove the first part of the proposition for the eval-
uation at (x, y, 1/S(x, y)).

Since K̃(x, y, 1/S(x, y)) = 0, it is clear that one can not evaluate a fraction that is not regular.
Thus, we only need to show that the evaluation of a regular fraction at (x, y, 1/S(x, y)) is well
defined. Let us write H(X,Y, t) = A(X,Y,t)

B(X,Y,t) where A(X,Y, t) and B(X,Y, t) are relatively prime
in C[X,Y, t], and the kernel polynomial K̃(X,Y, t) does not divide B(X,Y, t). Since K̃(X,Y, t)

does not divide B(X,Y, t) in C[X,Y, t] and K̃(X,Y, t) has content 1 in C[X,Y ][t], the polynomial
K̃(X,Y, t) does not divide B(X,Y, t) in C(X,Y )[t] (it is a straightforward application of Gauss
Lemma). In C(X,Y )[t], the Euclidean division of B(X,Y, t) by K̃(X,Y, t), which is of degree 1
in t, is therefore of the form

B(X,Y, t) = K̃(X,Y, t)M(X,Y, t) +R(X,Y ),

where R(X,Y ) is a non-zero element of C(X,Y ). Evaluating this identity at (x, y, 1/S(x, y))
yields B(x, y, 1/S(x, y)) = R(x, y). Since x, y are algebraically independent over C, one finds
that R(x, y) 6= 0 so that B(x, y, 1/S(x, y)) is non-zero and H (x, y, 1/S(x, y)) is well defined.

By Lemma 3.14, the kernel polynomial K̃(X,Y, t) is irreducible as a polynomial in C(t)[X,Y ].
The ring R = C(t)[X,Y ]/(K̃(X,Y, t)) is therefore an integral domain. By [Mat80, page 9, (1K)],
its quotient field is precisely C. Now, the evaluation map from C(t)[X,Y ]/(K̃(X,Y, t)) to k[x, y]
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is a ring isomorphism which maps isomorphically C(t) onto k. The latter ring isomorphism
extends to an isomorphism between the quotient field C of C(t)[X,Y ]/(K̃(X,Y, t)) and the
quotient field k(x, y) of k[x, y] which concludes the proof. �

If H is a regular fraction, we denote H(u,v) its evaluation at an element (u, v) of the orbit
and we can extend this evaluation by C-linearity to any 0-chain γ. We denote by Hγ the
corresponding element in k(O). Such an evaluation is called an orbit sum. We let the group G

act on 0-chains by C-linearity, that is, σ
(∑

(u,v)∈O c(u,v)(u, v)
)
=
∑

(u,v)∈O c(u,v)σ · (u, v). The
following lemma shows that the evaluation morphism is compatible with the action of G on
k(O) and on 0-chains.

Lemma 3.25. Let σ be an element of G, γ be a 0-chain, and H(X,Y, t) be a regular fraction
in C(X,Y, t). Then σ(Hγ) = Hσ·γ.

Proof. Let (u, v) be an element in the orbit. Since σ fixes k = C(S(x, y)), we have
σ(H(u,v)) = σ (H(u, v, 1/S(x, y)) = H (σ(u), σ(v), 1/S(x, y)) = Hσ·(u,v).

The general case follows by C-linearity. �

Two equivalent regular fractions have the same evaluation in k(O). Thus, certain classes of
regular fractions can be characterized by the Galoisian properties of their evaluation in k(O).
This idea underlies the Galoisian study of invariants and decoupling in Sections 4 and 5. To
conclude, we want to compare the equivalence relation among regular fractions that are elements
of Cmul(X,Y )((t)) and the t-equivalence (see Section 2.2 for notation).

Proposition 3.26. Let F ∈ Cmul(X,Y )((t)) that is also a regular fraction in C(X,Y, t). If F
is t-equivalent to 0, that is, the t-expansion of F/K̃ has poles of bounded order at 0, then the
fraction F/K̃ is regular so that the regular fraction F is equivalent to zero by definition.

Proof. Our proof starts by following the lines of the proof of Lemma 2.6 in [BM21]. Assume that
F is t-equivalent to 0, so that there exists H(X,Y, t) ∈ Cmul(X,Y )((t)) with poles of bounded
order at 0 such that
(3.1) F (X,Y ) = K̃(X,Y, t)H(X,Y, t).

Analogous arguments to Lemma 2.6 in [BM21] show that there exists a root X ofK(., Y, t) = 0
that is a formal power series in t with coefficients in an algebraic closure of C(Y ) and with
constant term 0. Since H and F have poles of bounded order at 0, one can specialize (3.1)
at X = X and find F (X , Y, t) = 0. Writing F = P

Q where P,Q ∈ C[X,Y, t] are relatively
prime, one finds that P (X , Y, t) = 0. Since K̃(., Y, t) is an irreducible polynomial over C(Y, t)
by Lemma 3.14, we conclude that K̃ divides P . Because P and Q are relatively prime, we find
that K̃ doesn’t divide Q which concludes the proof. �

Clearly, the regular fraction K̃(X,Y,t)
Y−t is equivalent to zero but not t-equivalent to zero, so

the converse of Proposition 3.26 is false. With the strategy presented in Section 2 in mind, we
will use in the next sections the notion of equivalence on regular fractions and its Galoisian
interpretation to produce pairs of Galois invariants and Galois decoupling pairs. For each
pair of Galois invariants and decoupling functions constructed for the models presented in
Section 5.6, it happens that any equivalence relation among these regular fractions is actually
a t-equivalence. Unfortunately, we do not have any theoretical arguments yet to explain this
phenomenon.
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The rest of the paper is devoted to the Galoisian interpretation of the notions of invariants
and decoupling. Their construction relies on the evaluation of regular fractions on suitable
0-chains.

4. Galois invariants

In this section, we prove that the finiteness of the orbit is equivalent to the existence of a non-
constant pair of Galois invariants (see Theorem 4.3 below). This result generalizes [BBMR21,
Theorem 7] in the small steps case and was proved in the more general context of finite alge-
braic correspondences in [Fri78, Theorem 1]. Fried’s framework is geometric, but his proof is
essentially Galois theoretic. We give here an alternative presentation which does not require
any algebraic geometrical background. Moreover, we show in this section that if the orbit is
finite, the field of Galois invariants is of the form k(c) for some element c transcendental over
k. In addition, we give an algorithmic procedure to effectively construct c.

4.1. Galois formulation of invariants. In Section 2, we aimed at constructing t-invariants
that were rational fractions, that is, pairs (I(X, t), J(Y, t)) satisfying an equation of the form
I(X, t)− J(Y, t) = K̃(X,Y, t)R(X,Y, t) with R having poles of bounded order at zero (I and J
are t-equivalent). With the philosophy of Section 3.4 in mind, we introduce the weaker notion
of pair of Galois invariants based on rational equivalence. Our definition extends Definition 4.3
in [BBMR21] to the large steps context.

Definition 4.1. Let (I(X, t), J(Y, t)) be a pair of rational fractions in C(X, t)×C(Y, t) (hence
regular, as they are univariate). We say that this pair is a pair of Galois invariants if there
exists a regular fraction R(X,Y, t) such that I(X, t) − J(Y, t) = K̃(X,Y, t)R(X,Y, t), that is,
the regular fractions I(X, t) and J(Y, t) are equivalent.

From Proposition 3.26, a pair of rational t-invariants is a pair of Galois invariants. Therefore,
it is justified to look for a pair of Galois invariants first, and then to check by hand if their
difference is t-equivalent to 0. Moreover, the notion of pairs of Galois invariants is purely
algebraic while the notion of pairs of t-invariants involves some analytic considerations which
might be difficult to handle. Using Lemma 3.24, the set of pairs of Galois invariants corresponds
to a subfield of k(O) which can be easily described.

Proposition 4.2. Let P = (I(X, t), J(Y, t)) be a pair of fractions in C(X, t)×C(Y, t). Then P
is a pair of Galois invariants if and only if the evaluations I(x,y) and J(x,y) are equal, and thus
belong to k(x) ∩ k(y) ⊂ k(O). Moreover, the pair P is a constant pair of Galois invariants if
and only if I(x,y) = J(x,y) is in k.

Therefore we denote the field k(x) ∩ k(y) as kinv and, by an abuse of terminology, call its
elements Galois invariants. The definition of the group G and the Galois correspondence applied
to k(O)|k(x) and k(O)|k(y) show that f in k(O) is a Galois invariant if and only if f is fixed
by G. Moreover, Proposition 4.2 reduces the question of the existence of a nonconstant pair of
Galois invariants to the question of deciding whether kinv = k or not.

4.2. Existence of nontrivial Galois invariants and finiteness of the orbit. The existence
of a non-constant pair of Galois invariants is equivalent to the finiteness of the orbit as proved
in Theorem 1 and Lemma p 470 in [Fri78] which holds also in positive characteristic and in
a higher dimensional context. Theorem 4.3 below is a rephrasing of Fried’s Theorem in pure
Galois theoretic arguments.
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Theorem 4.3. The following are equivalent:
(1) The orbit O is finite.
(2) There exists a finite Galois extension M of k(x) and k(y) such that Gal(M |k(x))

and Gal(M |k(y)) generate a finite group 〈Gal(M |k(x)),Gal(M |k(y))〉 of automorphisms
of M .

(3) There exists a nontrivial Galois invariant, that is, k ( kinv.
Proof. (1) ⇒ (2): Set M = k(O). The group G = 〈Gx, Gy〉 acts faithfully on the orbit, so it
embeds as a subgroup of S(O), the group of permutations of the pairs of the orbit O. The orbit
is finite, therefore G is finite.

(2) ⇒ (3): Write H = 〈Gal(M |k(x)),Gal(M |k(y))〉. By the same argument as in the begin-
ning of Section 3.3, the field MH is the field kinv of Galois invariants. Since H is finite, the
extension M |kinv is finite of degree |H|, hence the subextension k(x)|kinv is also finite. Since the
extension k(x)|k is transcendental by hypothesis on W, we conclude that k ( kinv. Proposition
4.2 yields the existence of a pair of nontrivial Galois invariants.

(3) ⇒ (1): Let (I(X, t), J(Y, t)) be a pair of nontrivial Galois invariants. By the assump-
tion on the model, S(x, y) and x are algebraically independent over C. Since I(x, 1/S(x, y))
is not in C(1/S(x, y)) by Lemma 3.24, this implies that the extension k(I(x, 1/S(x, y)))|k is
transcendental. As the transcendence degree of k(x) over k is 1, this implies that the extension
k(x)|k(I(x, 1/S(x, y))) is algebraic, hence x is algebraic over kinv, with minimal polynomial
P (X).

The group G leaves kinv fixed. Thus the orbit of x in K under the action of G is a subset
of the roots of P (X). By Theorem 3.17, the action of G is transitive on the orbit, hence the
set G · x = {u ∈ K | ∃σ ∈ G, u = σx} = {u ∈ K | ∃v ∈ K, (u, v) ∈ O} is finite. As there are
degY K̃(X,Y, t) pairs of the orbit with first coordinate u for each u in G · x, we conclude that
O is finite. �

In the rest of the paper, we assume that the orbit is finite. Theorem 4.3 implies that the
extension k(O)|kinv is finite and Galoisian with Galois group G = 〈Gx, Gy〉.

4.3. Effective construction. In order to apply the algebraic strategy presented in Section 2,
we want to find explicit nonconstant rational t-invariants. As already mentioned, we shall first
construct explicitly the field of Galois invariants and then search among these Galois invariants
the potential rational t-invariants.

In the small steps case, an orbit sum argument was used to construct a pair of Galois invariants
[BBMR21, Theorem 4.6]. This construction generalizes mutatis mutandis to the large steps case,
and is reproduced here to show one way to exploit the group of the walk.
Lemma 4.4. Let ω be the 0-chain 1

|O|
∑

a∈O a. Then, for any regular fraction H ∈ Q(X,Y, t)

the element Hω is a Galois invariant.
Proof. Let H(X,Y, t) be a regular fraction. Since, by Theorem 3.17, the group G acts faithfully
on O, the 0-chain ω is invariant by the action of G. Thus, by Lemma 3.25, for all σ in G,
σ (Hω) = Hσ·ω = Hω. Therefore, by the Galois correspondence, Hω is a Galois invariant. �

Unfortunately, a non-constant regular fraction H might have a constant evaluation, that is,
Hω might belong to k. Indeed, for the step polynomial S(X,Y ) = (X + 1

X )(Y + 1
X ) and the

regular fraction H = XY , the element Hω = S(x, y) belongs to k = Q(S(x, y)) but H(x,y) = xy
is non-constant. Thus, one has to choose carefully H in order to avoid this situation which
is precisely the strategy used in [BBMR21, Theorem 4.6]. Below, we describe an alternative
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construction which is easier to compute effectively and yields a complete description of the field
kinv.

Consider first this simple observation. Since x is algebraic over kinv, we can consider its
minimal polynomial µx(Z) in kinv[Z]. One of its coefficients must be in kinv \ k because x is
transcendental over k. Thus, such a coefficient is a non-trivial Galois invariant.

A more sophisticated argument using a constructive version of Lüroth’s Theorem says actually
much more about such a coefficient.

Theorem 4.5 (Lüroth’s Theorem [Rot15], Th. 6.66). Let k(x) be a field with x transcendental
over k and k ⊂ K ⊂ k(x) a subfield. If x is algebraic over K, then any coefficient c of its
minimal polynomial µx(Z) over K that is not in k is such that K = k(c).

Applying this result to the tower k ⊂ kinv ⊂ k(x), not only can we find nontrivial Galois
invariants among the coefficients of µx, but any one of them generates the field of Galois
invariants. In one sense, these coefficients contain all the information on the Galois invariants
attached to the model. Therefore, all that remains is to compute effectively the polynomial
µx(Z).

By irreducibility of the polynomial µx(Z) in kinv[Z], the Galois group G = Gal(k(O)|kinv)
acts transitively on its roots. By Theorem 3.17, the orbit of x under the action of G is the
set of left coordinates of the orbit. Therefore, µx(Z) is precisely the vanishing polynomial of
the left coordinates of the orbit, which is exactly computed in the construction of the orbit in
[BBMM21, Section 3.2]. We detail this construction in Appendix B.

In order to find an explicit pair of non-constant Galois invariants (I(X, t), J(Y, t)), we com-
pute µx(Z). Each of its coefficients lies in kinv and corresponds via Proposition 3.24 to a pair
of Galois invariants: the non-constant coefficients of µx(Z) leading to non-trivial Galois invari-
ants. One can therefore lift µx(Z) either as a polynomial in C(X, t)[Z] or as a polynomial in
C(Y, t)[Z]. The lifts of the polynomial µx(Z) to C(X, t)[Z] and to C(Y, t)[Z] can be computed
directly when constructing the orbit, see B.1, and their difference is a multiple of K̃(X,Y, t) by
a polynomial in Z whose coefficients are regular fractions.

Example 4.6 (The model Gλ). Consider the model Gλ. Its orbit type is O12. We compute the
lift of µx(Z) in C(X, t)[Z] as

Z6 −
(
λ2X3 +X6 + X4 −X2 − 1

)
t2 +X2λ

(
X2 − 1

)
t−X3

t2X (X2 + 1)2
Z5 +

t+ λ

t
Z4

− 2
X6t2 +

(
−λ2 t2

2 + 1
2

)
X5 + t (t+ λ)X4 +

(
−t2 − λ t

)
X2 −

(
λ2 t2−1

)
X

2 − t2

t2X (X2 + 1)2
Z3

− (t+ λ)Z2

t
−
(
λ2X3 +X6 + X4 −X2 − 1

)
t2 +X2λ

(
X2 − 1

)
t−X3

t2X (X2 + 1)2
Z − 1

and in C(Y, t)[Z] as

Z6 +
−t Y 4 + λtY + Y 3 + t

t Y 2
Z5 +

t+ λ

t
Z4 − 2

(
Y 4 − 1

2Y
2λ2 − Y λ− 1

)
t2 − t Y 3 + Y 2

2

t2Y 2
Z3

− (t+ λ)

t
Z2 +

(
−t Y 4 + λtY + Y 3 + t

)
t Y 2

Z − 1.
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The non-constant coefficients of µx(Z) are the coefficients a5, a3, a1 of Z5, Z3 and Z. One
sees easily that a5 = a1 and that 2a5 = a3 +

−λ2t2+1
t2

. The coefficient a5 yields the following
pair of non-trivial Galois invariants (I(X, t), J(Y, t))(

−
(
λ2X3 +X6 + X4 −X2 − 1

)
t2 +X2λ

(
X2 − 1

)
t−X3

t2X (X2 + 1)2
,
−t Y 4 + λtY + Y 3 + t

t Y 2

)
.

We check that I(X,t)−J(X,t)

K̃(X,Y,t)
has poles of bounded order at 0, hence (I(X, t), J(Y, t)) is a pair

of t-invariants. Moreover, Theorem 4.5 says that kinv = k (I(x, 1/S(x, y))), so any pair of Galois
invariants for Gλ is a fraction in the pair (I(X, t), J(Y, t)).

Example 4.7. The orbit type of the model with step polynomial S(X,Y ) = X + X
Y + Y

X2 +
1
X2

is O18 (see Figure 3.1). With our method, we find the following pair of Galois invariants((
−X9 − 3X3 + 1

)
t2 +

(
X8 +X5 − 2X2

)
t+X4

X6t2
,

(
Y 3 + 3Y + 1

)
(Y + 1)3 t3 + Y 4

Y 2t3 (Y + 1)3

)
.

One can also check by looking at the t-expansions that it is a pair of t-invariants.

5. Decoupling

In this section, we study the Galoisian formulation of the notion of decoupling introduced in
Section 2.2. In particular, we give a necessary and sufficient condition for the Galois decoupling
of a regular fraction H(X,Y, t) in terms of the vanishing of its evaluation on a certain 0-
chain α of the orbit. The element Hα in k(x, y) yields thereby an obstruction of the Galois
decoupling of H. If H comes with parameters, such that for instance XaY b where (a, b) are a
new starting point for the walks, one can compute this obstruction and try to find constraints on
the parameters of H to obtain its decoupling. Analogously to [FIM99, Section 4], one can hope
that a better understanding of this obstruction yields to a complete classification in the finite
orbit case. Moreover, when Hα vanishes, we also obtain a decoupling pair for H by evaluating
H on certain 0-chains of the orbit.

Our constructions and approaches are inspired by the Galoisian formalism developed in
[FIM99, Section 4]. In particular, when the “classic ” group of the walk is finite, [FIM99,
Theorem 4.2.9 and Theorem 4.2.10] give Galoisian conditions to guaranty the existence of ra-
tional solutions to an equation analogous to (2.2). These conditions were adapted in [BBMR21,
Theorem 4.11] for walks with small steps to give a necessary and sufficient condition for the
decoupling of a regular fraction.

5.1. Galois formulation of decoupling. As in the previous section, we adapt the notion of
decoupling introduced in Section 2.2 to our Galoisian framework. The definition below is the
straightforward analogue of Definition 4.7 in [BBMR21] for large steps models.

Definition 5.1 (Galois decoupling of a regular fraction). Let H(X,Y, t) be a regular fraction in
C(X,Y, t). A pair of fractions (F (X, t), G(Y, t)) in C(X, t)×C(Y, t) is called a Galois decoupling
pair for the fraction H if there exists a regular fraction R(X,Y, t) satisfying

H(X,Y, t) = F (X, t) +G(Y, t) + K̃(X,Y, t)R(X,Y, t).

We call such an identity a Galois decoupling of the fraction H.
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Thanks to Proposition 3.26, if a regular fraction admits a decoupling with respect to the
t-equivalence then it admits a Galois decoupling. Analogously to the notion of Galois invariants
and as a corollary of Proposition 3.24, one can interpret the Galois decoupling as an identity in
the extension k(O).

Proposition 5.2. Let H be a regular fraction in C(X,Y, t). Then H admits a Galois decoupling
if and only if H(x,y) can be written as f + g with f in k(x) and g in k(y).

By an abuse of terminology, we call any identity H(x,y) = f + g with f in k(x) and g in
k(y) a Galois decoupling of H. Furthermore, these last two conditions can be reformulated
algebraically via the Galois correspondence applied to the extensions k(O)|k(x) and k(O)|k(y):
H(x,y) = f + g with f fixed by Gx and g fixed by Gy.

Given a regular fraction H, one could try to use the normal basis theorem (see [Lan02, chapter
6, § 13]) to test the existence of a Galois decoupling for H. The normal basis theorem states
that there exists a kinv-basis of k(O) of the form (σ(α))σ∈G for some α ∈ k(O). The action
of Gx and Gy on this basis is given by permutation matrices, and thus the linear constraints
for the Galois decoupling of H(x,y) is equivalent to a system of linear equations. Unfortunately
the computation of a normal basis requires a priori a complete knowledge of the Galois group
G, whose computation is a difficult problem. Therefore, we present in the rest of the section
a construction of a Galois decoupling test which relies entirely on the orbit and its Galoisian
structure.

5.2. The decoupling of (x, y) in the orbit.

Definition 5.3. Let α be a 0-chain of the orbit. We say that α cancels decoupled fractions if
Hα = 0 for any regular fraction H(X,Y, t) of C(X, t) + C(Y, t).

(u1, v1) (u2, v2)

(u1, v2)

(u2, v3)

(u3, v3)

(u3, v1)

α = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v3)

F (X)α = F (u1)− F (u1) + F (u2)− F (u2) + F (u3)− F (u3) = 0

G(Y )α = G(v2)−G(v1) +G(v3)−G(v2) +G(v1)−G(v3) = 0

α

Figure 5.1. The 0-chain induced by a bicolored loop cancels decoupled fractions

We recall that a path in the graph of the orbit is a sequence of vertices (a1, a2, . . . , an+1) such
that ai ∼ ai+1 for all 0 ≤ i ≤ n. The length of (a1, a2, . . . , an+1) is the number of adjacencies
(that is n). A path is called a loop § if an+1 = a1. A loop is called simple if only its first and
last vertices are equal.

§We know that the terminology loop is unorthodox, however we follow [Gib81, Definition 1.8].
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Example 5.4. A bicolored loop is a loop (a1, a2, . . . , a2n+1) of even length such that for all i,
a2i ∼x a2i−1 and a2i+1 ∼y a2i. One associates to (a1, a2, . . . , a2n+1) the 0-chain

α =
2n∑
i=1

(−1)iai =
n∑

i=1

(a2i − a2i−1) =
n∑

i=1

(a2i − a2i+1).

Taking F (X, t) a fraction in C(X, t), one observes that for all i, Fa2i −Fa2i−1 = 0, as vertices
a2i and a2i−1 share their first coordinate. Symmetrically, taking G(Y, t) a fraction in C(Y, t),
Ga2i+1 − Ga2i = 0. Therefore, Fα = Gα = 0. Hence, the 0-chains induced by bicolored loops
cancel decoupled fractions. Figure 5.1 illustrates this observation.

Example 5.4 is fundamental for picturing the 0-chains that cancel decoupled fractions because
of the following stronger result:

Proposition 5.5. A 0-chain cancels decoupled fractions if and only if it can be decomposed as
a C-linear¶ combination of 0-chains induced by bicolored loops.

There exists an elementary graph theoretic proof of this fact. However, we choose to postpone
the proof of Proposition 5.5 after the proof of Theorem 5.24, which is an algebraic reformulation
of the condition for a 0-chain to cancel decoupled fractions.

Example 5.6. A straightforward application of this observation, is the following obstruction
for the existence of a Galois decoupling of XY . Consider an orbit whose graph contains a
bicolored square (bicolored loop of length 4), with associated 0-chain α = (u1, v1) − (u1, v2) +
(u2, v2) − (u2, v1) (thus with u1 6= u2 and v1 6= v2). The evaluation of XY on this 0-chain
factors as (XY )α = (u1 − u2)(v1 − v2), which is always nonzero. Therefore, if the orbit of a
model W contains a bicolored square, then XY never admits a Galois decoupling and thereby a
decoupling in the sense of the t-equivalence. Thus, we can conclude that for models with orbit
Õ12 (see Figure 3.1) or Hadamard (see Section 5.6.3), or the “Fan model” (see Appendix C.3),
the fraction XY never admits a decoupling.

For now, we only saw that the canceling of a regular fraction on 0-chains that cancel decoupled
fraction gives a necessary condition for the Galois decoupling of this fraction. We prove in this
section that this condition is in fact sufficient and that one only needs to consider the evaluation
on a single 0-chain.

For small steps walks with finite orbit, there is only one bicolored loop and thereby only
one 0-chain α induced by the bicolored loop. Theorem 4.11 in [BBMR21] shows that a regular
fraction admits a Galois decoupling if and only its evaluation on α is zero. More precisely,
Bernardi, Bousquet-Mélou and Raschel proved an explicit identity in the algebra of the group
of the walk. Rephrasing their equality in terms of 0-chains in the orbit, we introduce the notion
of decoupling of the pair (x, y) in the orbit as follows:

Definition 5.7 (Decoupling of (x, y)). We say that (x, y) admits a decoupling in the orbit if
there exist 0-chains γ̃x, γ̃y, α such that

• (x, y) = γ̃x + γ̃y + α
• σx · γ̃x = γ̃x for all σx ∈ Gx

• σy · γ̃y = γ̃y for all σy ∈ Gy

• the 0-chain α cancels decoupled fractions
¶Note that if the 0-chain is with integer coefficients, one can choose the combination with integer coefficients

as well.
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In that case, we call the identity (x, y) = γ̃x + γ̃y + α a decoupling of (x, y).

Note that if (γ̃x, γ̃y, α) is a decoupling of (x, y) then the 0-chain α is equal to (x, y)− γ̃x− γ̃y.
Hence, when giving such a decoupling, we will often state explicitly only γ̃x and γ̃y.

Example 5.8. For the orbit of the model Gλ, a decoupling equation is as follows: (x, y) =
γ̃x + γ̃y + α with

γ̃x =

(
1

2
((x, y) + (x, xy))− 1

8

(
(z, y) + (−xy2z, y) + (xy2z, xy) + (−z, xy)

)
+
1

8

(
(xy2z, yz) + (z, yz) + (−xy2z,−xyz) + (−z,−xyz)

))
and γ̃y =

(
1

4

(
(x, y) + (z, y) + (−xy2z, y)

)
− 1

4

(
(x, xy) + (z, yz) + (−xy2z,−xyz)

))
,

where α denotes 1
α . This decoupling is constructed in Subsection 5.6.2 and the 0-chain α is

represented in Figure 5.2. It is the sum of the two 0-chains α1 and α2 induced by the two
bicolored loops where the weights of the 0-chains α1 and α2 are written in grey next to their
corresponding vertex.

(x, y1)

(x3, y1) (x4, y1)

(x, y)

(x1, y) (x2, y)

(x1, y2)
(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

11

−1−1

1 1

0

−1

1

−1 −1

1

−1

0

α1 α2

Figure 5.2. A 0-chain of O12 characterizing decoupled fractions for the model Gλ where
the weights are written in grey next to their corresponding vertex.

The relation between the notion of decoupling of (x, y) in the orbit and the notion of Galois
decoupling is detailed in the following proposition.

Proposition 5.9. Assume that (x, y) = γ̃x+ γ̃y +α is a decoupling of (x, y), and let H(X,Y, t)
be a regular fraction. Then the following assertions are equivalent:

(1) H admits a Galois decoupling
(2) Hα = 0
(3) H(x,y) = Hγ̃x +Hγ̃y is a Galois decoupling of H.
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Proof. (3) ⇒ (1) is obvious.
(1) ⇒ (2): By definition of a Galois decoupling of (x, y), α cancels decoupled fractions.
(2) ⇒ (3): Evaluating H on the decoupling of (x, y) yields the identity H(x,y) = Hγ̃x +Hγ̃y .

Moreover, since γ̃x (resp. γ̃y) is fixed by Gx (resp. Gy), then Lemma 3.25 and the Galois
correspondence in the extensions k(O)|k(x) and k(O)|k(y) ensure that Hγ̃x and Hγ̃y belong
respectively to k(x) and k(y), hence Hγ̃x +Hγ̃y is a Galois decoupling of H. �

Therefore, if we solve the decoupling problem of (x, y) in the orbit, we also solve the Galois
decoupling problem for regular fractions: an explicit decoupling of (x, y) will grant us with a
simple test to check whether a regular fraction admits a Galois decoupling (some orbit sum
is zero), and an effective way to construct the associated Galois decoupling based on orbit
sum computations. We now state the main result of this section, whose proof will follow from
Theorem 5.26.

Theorem 5.10 (Decoupling). If the orbit O is finite, then (x, y) always admits a decoupling
in the orbit with rational coefficients.

The rest of this section is dedicated to the proof of Theorem 5.10 and to the effective con-
struction of the decoupling of (x, y) in the orbit.

5.3. Pseudo-decoupling. We define here a more flexible notion of decoupling in the orbit
called pseudo-decoupling, mainly used in the proof of the Theorem 5.10.

Definition 5.11 (Pseudo-decoupling). Let γx and γy be two 0-chains. We call the pair (γx, γy)
a pseudo-decoupling of (x, y) if for every regular fraction H(X,Y, t) that admits a Galois decou-
pling, the equation H(x,y) = Hγx + Hγy is a Galois decoupling of H, that is, Hγx ∈ k(x) and
Hγy ∈ k(y).

For instance, if (x, y) = γ̃x + γ̃y + α is a decoupling of (x, y), then the pair (γ̃x, γ̃y) is a
pseudo-decoupling of (x, y) by Proposition 5.9.

Theorem 5.12 below shows how a pseudo-decoupling yields a decoupling. First let us give
some notation. Let G′ be a subgroup of G. We denote by [G′] the formal sum 1

|G′|
∑

σ∈G′ σ.
From a Galois theoretic point of view, if G′ is the Galois group of some subextension k(O)|M ,
then [G′] is the trace of the field extension k(O)|M .

Theorem 5.12. If a pair (γx, γy) is a pseudo-decoupling of (x, y), then (x, y) admits a decoupling
of the form

(x, y) = γ̃x + γ̃y + α

where γ̃x = [Gx] · γx and γ̃y = [Gy] · γy.

Proof. By construction, the 0-chains γ̃x and γ̃y are fixed under the respective actions of Gx and
Gy. Therefore, we only need to prove that α cancels decoupled fractions, for which purpose we
rewrite it as the sum of three terms

α = ((x, y)− γx − γy) + (γx − [Gx] · γx) + (γy − [Gy] · γy).
Let H be a regular fraction that admits a Galois decoupling. Then

• H(x,y) −Hγx −Hγy = 0 by definition of the pseudo-decoupling (γx, γy).
• For σx in Gx, we compute Hγx−σx·γx = Hγx −σx(Hγx) thanks to Lemma 3.25. As Hγx is

in k(x), it turns out that Hγx−σx·γx is zero. Since 1
|Gx|

∑
σx∈Gx

(γx−σx·γx) = γx−[Gx]·γx,
we obtain that γx − [Gx] · γx cancels H.
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• The argument for γy − [Gy] · γy is similar.
Thus Hα = 0, which concludes the proof. �

We finish this subsection with two important lemmas.

Lemma 5.13. If the pair (γx, γy) is a pseudo-decoupling of (x, y), and α and α′ are 0-chains
that cancel decoupled fractions, then (γx + α, γy + α′) is also a pseudo-decoupling of (x, y).

Proof. Let H(X,Y, t) be a regular fraction that admits a Galois decoupling. By definition of α
and α′, we have Hα = Hα′ = 0, which by linearity proves that Hγx+α = Hγx and Hγy+α′ = Hγy .
Since (γx, γy) is a pseudo-decoupling of (x, y), the equationH(x,y) = Hγx+Hγy = Hγx+α+Hγx+α′

is a Galois decoupling of H proving that (γx+α, γy+α′) is also a pseudo-decoupling of (x, y). �

Lemma 5.14. If two 0-chains γx and γy satisfy the following conditions
• (x, y) = γx + γy
• for all σx ∈ Gx, the 0-chain σx · γx − γx cancels decoupled fractions
• for all σy ∈ Gy, the 0-chain σy · γy − γy cancels decoupled fractions

then (γx, γy) is a pseudo-decoupling of (x, y).

Proof. Let H be a regular fraction which admits a Galois decoupling. As H(x,y) = Hγx +Hγy

from the first point, one only needs to show that Hγx is in k(x) and that Hγy is in k(y). Let
σx be in Gx, then σx(Hγx) = Hσx·γx = H(σx·γx−γx)+γx = Hγx because (σx · γx − γx) cancels
decoupled fractions. Therefore, the Galois correspondence proves that Hγx is in k(x). The
same argument proves that Hγy is in k(y). �

5.4. Graph homology and construction of the decoupling. Our construction of a decou-
pling relies on the graph structure of the orbit O, and in particular on the formalism of graph
homology.

5.4.1. Basic graph homology. We recall here the basic definitions of graph homology and the
properties that will be used in the construction of the decoupling (see [Gib81] for a comprehen-
sive introduction to graph homology).

Definition 5.15. A graph (undirected) is a pair Γ = (V,E) where V is the set of vertices and
E ⊂ {{a, a′} | a, a′ ∈ V, a 6= a′} is the set of edges. A subgraph of Γ is a graph Γ′ = (V ′, E′) such
that V ′ ⊂ V and E′ ⊂ E.

An oriented graph is a pair Γ = (V,E+) where V is the set of vertices and E+ ⊂ {(a, a′) | a, a′ ∈ V, a 6= a′}
the set of arcs (oriented edges) such that if (a, a′) ∈ E+ then (a′, a) /∈ E+. An orientation of
a graph Γ = (V,E) is an oriented graph Γ′ = (V,E+) such that the map E+ → E which maps
(a, a′) to {a, a′} is a bijection.

Note that every graph can be given an orientation by freely choosing an origin for each edge.
Conversely, given an oriented graph Γ = (V,E+), one can consider the associated undirected
graph (V,E) where E = {{a, a′} such that (a, a′) ∈ E+ or (a′, a) ∈ E+}. In what follows,
the notions of graph homomorphism, path, connected components concern the structure of
undirected graph.

Example 5.16. The graphs considered here are the graph induced by the orbit (O,∼) still
denoted O, and the two subgraphs of the orbit restricted to each individual type of adjacency,
which are Ox = (O,∼x) and Oy = (O,∼y).

We now introduce the chain complex attached to an oriented graph.
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Definition 5.17. Let Γ = (V,E+) be an oriented graph and K a field. Such a graph induces a
chain complex C∗(Γ) defined as follows. The space C0(Γ) of 0-chains of Γ is the free K-vector
space spanned by the vertices of V . Similarly, the space C1(Γ) of 1-chains of Γ is the free
K-vector space spanned by the arcs of E+. The boundary homomorphism is then the K-linear
map ∂ defined by

∂ : C1(Γ) −→ C0(Γ)
(a, a′) ∈ E+ 7−→ a′ − a

As the reader notices, the chain complex has only been defined for an oriented graph.
Nonetheless, if (V,E+

1 ) and (V,E+
2 ) are two orientations of a graph Γ, it is easy to see that

the associated chain complexes are isomorphic [Gib81, 1.21 (3)]. When the context is clear, we
shall abuse notation and define a chain complex C∗(Γ) of a graph Γ as the chain complex of the
oriented graph (V,E+) where E+ is an arbitrary orientation of Γ.

We make the following convention. Let a and a′ be two adjacent vertices of Γ. Given an
orientation E+ of Γ, we abuse notation and denote by (a, a′) the 1-chain

(a, a′) =

{
(a, a′) if (a, a′) is in E+

−(a′, a) otherwise
This notation is extremely convenient, because for two adjacent vertices of Γ, the boundary
homomorphism always satisfies ∂((a, a′)) = a′ − a and (a, a′) = −(a′, a).

Definition 5.18. Let Γ = (V,E+) be an oriented graph. A 1-chain c which satisfies ∂(c) = 0
is called a 1-cycle.

Example 5.19 (1-chain induced by a path). Let Γ = (V,E) be a graph and let (a1, a2, . . . , an+1)
be a path in Γ, that is, a sequence of vertices such that ai is adjacent to ai+1 for i = 1, . . . , n.
Given an arbitrary orientation E+ of Γ, we define the 1-chain p =

∑n
i=1(ai, ai+1), and we call it

the 1-chain induced by the path (a1, a2, . . . , an+1). By telescoping, ∂(p) = an+1−a1, therefore if
the path is a loop of Γ then p is a 1-cycle, hence the name. Every 1-cycle is a linear combination
of 1-cycles induced by the simple loops of the graph, that is, loops with no repeated vertex (see
[Gib81, Theorem 1.20]).

We recall that a graph is called connected if any two vertices are joined by a path. The
reader should note that the notion of path does not take into account a potential orientation
of the edges. Every finite graph is the disjoint union of finitely many connected components
which are maximal connected subgraphs. Any orientation of a graph induces by restriction an
orientation on its subgraphs and thereby on its connected components. With this convention,
it turns out that the chain complex of a finite oriented graph is isomorphic to the direct sum of
the chain complexes of its connected components. Hence, it is harmless to extend Theorem 1.23
in [Gib81] to the case of a non-connected graph.

Proposition 5.20. Let Γ = (V,E) be a graph, and let (Γi = (Vi, Ei))i=1,...,r be its connected com-
ponents. Define the augmentation map ε : C0(Γ) → Kr by ε(

∑
a∈V λaa) = (

∑
a∈Vi

λa)i=1,...,r.
Then, Ker ε = Im ∂.

Let Γ = (V,E) be a graph and let σ be a graph endomorphism of Γ. Fixing an orientation
E+ on Γ, we let σ act on the space of 0 and 1-chains by K-linearity via:

σ · a = σ(a) for any a in V and σ · (a, a′) = (σ(a), σ(a′)) for any (a, a′) in E+.

The reader should note that the action on the space of 1-chains uses the convention on the
arc notation introduced at the beginning of this subsection. It is easily seen that the action
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of a graph endomorphism of Γ is compatible with the boundary homomorphism of the chain
complex C∗(Γ).

Proposition 5.21. Let Γ = (V,E) be a graph and σ be a graph endomorphism of Γ. Then σ
induces a chain map on C∗(Γ), which means that the following diagram of K-linear maps is
commutative.

C1(Γ) C0(Γ)

C1(Γ) C0(Γ)

∂

σ σ

∂

5.4.2. The chain complex of the orbit and the algebraic description of bicolored loops. We now
apply the homological formalism to the graphs associated with the orbit O with base field C
(see Example 5.16). We fix once for all an orientation on O which induces an orientation on the
subgraphs Ox and Oy. Quoting [Gib81, Remark 1.21], “the choice of this orientation is just a
technical device introduced to enable the computation of the boundary homomorphisms”. We
denote by ∂ (resp. ∂x, ∂y) the boundary homomorphism on the connected graph O (resp. the
non-connected graphs Ox, Oy). Moreover, we denote by ε (resp. εx, εy) the augmentation map
defined in Proposition 5.20 for O (resp. Ox, Oy).

Lemma 5.22. The C-vector space C1(O) is equal to C1(Ox) ⊕ C1(Oy) and the boundary
homomorphism ∂ coincides with ∂x + ∂y where one has extended ∂x (resp. ∂y) by zero on
C1(Oy) (resp. C1(Ox)).

Proof. Every edge {a, a′} of O is either an x-adjacency or a y-adjacency, and not both. There-
fore, the set of arcs of an orientation of O is the disjoint union of the arcs of the orientations
of Ox and Oy, which thus induces a direct sum decomposition on the free vector space C1(O).
The decomposition of the homomorphism ∂ follows directly. �

The action of the Galois group G on the vertices of O preserves the adjacency types of the
edges (see Lemma 3.8). Therefore G acts by graph automorphisms on Ox and Oy. Thus,
Proposition 5.21 allows us to define the action of G on the chains of Ox and Oy in a compatible
way with the decomposition of Lemma 5.22.

Proposition 5.23. Let σ be in G. Then σ induces automorphisms of the chain complexes
C∗(O), C∗(Ox) and C∗(Oy) such that σ ◦ ∂x = ∂x ◦ σ and σ ◦ ∂y = ∂y ◦ σ.

The boundary homomorphisms ∂x, ∂y allow us to rewrite the 0-chains induced by bicolored
loops as boundaries. If α is the 0-chain associated to a bicolored loop as in Example 5.4, then
it is easily seen that α = ∂x(p) = ∂y(−p) with p the 1-chain as in Example 5.19. The homology
formalism generalizes the above description to any 0-chain that cancels decoupled fractions.

Theorem 5.24. Let α be a 0-chain. Then the following statements are equivalent:
(1) α cancels decoupled fractions.
(2) εx(α) = 0 and εy(α) = 0.
(3) There exists a 1-cycle c of O such that α = ∂x(c).
(3’) There exists a 1-cycle c of O such that α = ∂y(c).

Proof. (1) ⇒ (2): Let α be a 0-chain that cancels decoupled fractions. The connected compo-
nents of the graph Ox are of the form Ox

u = {(u′, v′) ∈ O |u′ = u} for the distinct left coordi-
nates u of O. We denote by U the set of distinct left coordinates. Therefore, we decompose
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α =
∑

u∈U αu where αu =
∑

v′ λ
u
v′(u, v

′) is a 0-chain with vertices in Ox
u. Now, we consider the

family of monomials (Xi)i which are obviously decoupled. Since α cancels decoupled fractions,
the following holds for all i:

0 = (Xi)α =
∑
u

(Xi)αu =
∑
u

∑
v′ / (u,v′)∈Ox

u

λuv′(X
i)(u,v′) =

∑
u

 ∑
v′ / (u,v′)∈Ox

u

λuv′

ui =
∑
u

εx(α)uu
i.

The vector (εx(α)u)u∈U lies therefore in the kernel of the Vandermonde matrix (ui)i<|U |,u∈U .
Since the elements of U are distinct, this matrix is invertible and the εx(α)u are all equal to 0.
Thus, εx(α) = 0. The same argument yields εy(α) = 0.

(2) ⇒ (3) and (3’): Assume that εx(α) = 0 and εy(α) = 0. By Proposition 5.20, there exist
cx in C1(Ox) and cy in C1(Oy) such that ∂x(cx) = α and ∂y(cy) = α. Moreover,

∂(cx − cy) = ∂(cx)− ∂(cy) = ∂x(cx)− ∂y(cy) = α− α = 0.

Therefore, c = cx − cy is a 1-cycle of O which satisfies ∂x(c) = α and ∂y(−c) = α.
(3) ⇔ (3’): Let c be a 1-cycle of O, then ∂x(c) = ∂(c) − ∂y(c) = ∂y(−c). This proves the

equivalence.
(3) ⇒ (1): Assume that α = ∂x(c) = ∂y(−c) for c a cycle of O. Now, let e = ((u, v), (u, v′)) be

an arc of Ox and take F (X, t) ∈ C(X, t). Then F∂x(e) = F (u, 1/S(x, y))− F (u, 1/S(x, y)) = 0.
Therefore, by C-linearity, this implies that Fα = F∂x(c) = 0. Symmetrically, if G(Y, t) ∈ C(Y, t),
then we deduce that Gα = G∂y(−c) = 0, which concludes the proof. �

We now apply this pleasant characterization to prove our earlier claim that 0-chains that
cancel decoupled fractions are induced by C-linear combinations of 1-cycles induced by bicolored
loops.

Proof of Proposition 5.5. Let α be a 0-chain which cancels decoupled fractions, then by (3) of
Theorem 5.24, we can write it α = ∂x(c) = −∂y(c) with c a 1-cycle of O. Since the 1-cycles
induced by the simple loops of O generate the 1-cycles of O (see [Gib81, Theorem 1.20]), we
can assume without loss of generality that c is induced by a simple loop p = (a1, a2, . . . , an) of
O.

Moreover, if consecutive arcs ei, . . . , ei+k−1 = (ai, ai+1), (ai+1, ai+2), . . . , (ai+k−1, ai+k) of p
are of the same adjacency type (say x), then since the monochromatic components of O are
cliques, (ai, ai+k) is an arc of O. Therefore, ∂x(ei + · · · + ei+k−1) = ∂x(ei + · · · + ei+k−1 +
(ai+k, ai)) + ∂x((ai, ai+k)), the first term being zero because it is the boundary of a monochro-
matic cycle. The exact same reasoning can be done for consecutive y-adjacencies. Thus, replac-
ing consecutive arcs of the same adjacency type by one single arc of the same adjacency type,
we can assume without loss of generality that c is the 1-chainduced by a simple bicolored loop.
This proves that α is the 0-chainduced by a bicolored loop, finishing the proof. �

5.4.3. Construction of the decoupling. We now use the results of the previous subsections to
construct a pseudo-decoupling of (x, y) on a finite orbit O. For p = (pa)a∈O a family of 1-chains,
we consider the 0-chains

γx(p) = − 1

|O|
∑
a

∂y(pa) and γy(p) = − 1

|O|
∑
a

∂x(pa)

where all sums run over O. The C-linearity of the boundary homomorphisms implies that
γx and γy are C-linear morphisms from C1(O)O to C0(O). We recall that ω is the 0-chain
1
|O|
∑

a∈O a defined in Lemma 4.4.
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Lemma 5.25. Let (ca)a∈O be a family of 1-chains. Then the following assertions hold.
(1) If ∂(ca) = 0 for all a, then the two 0-chains γx(c) and γy(c) cancel decoupled fractions.
(2) If ca ∈ C1(Ox) for all a, then γx(c) = 0. Likewise, if ca ∈ C1(Oy) for all a, then

γy(c) = 0.

Proof. We prove the first point. Assume that ∂(ca) = 0 for all a, then by Theorem 5.24 the
0-chains ∂x(ca) and ∂y(ca) cancel decoupled fractions for all a. Hence, by linearity, so do γx(c)
and γy(c). We prove the second point. Assume that ca ∈ C1(Ox) for all a, then ∂y(ca) = 0 for
all a. Thus, γx(c) = 0 by linearity. The case ca ∈ C1(Oy) is symmetric. �

Theorem 5.26 (Decoupling theorem). Let px = (pxa)a∈O and py = (pya)a∈O be two families of
1-chains, that are such that, for all a ∈ O, one has

(5.1) εx(∂(pxa) + (x, y)− a) = 0 and εy(∂(pya) + (x, y)− a) = 0.

Then, the pair (ω + γx(p
x), γy(p

y)) is a pseudo-decoupling of (x, y).

Proof. Let us first consider a pair (px, py) of families of 1-chains such that px = py and ∂(pxa) +
(x, y)− a = 0 for all a in O. In order to prove that (ω+ γx(p

x), γy(p
y)) is a pseudo-decoupling,

we will show that this pair satisfy the three conditions of Lemma 5.14. The first condition
comes down to showing that (x, y) = ω + γx(p

x) + γy(p
y). By construction, we have that

a− (x, y) = ∂(pxa) = ∂y(pxa) + ∂x(pxa),

for all a in O. Summing this identity over the orbit yields∑
a∈O

a− |O| · (x, y) =
∑
a∈O

∂y(pxa) +
∑
a∈O

∂x(pxa) =
∑
a∈O

∂y(pxa) +
∑
a∈O

∂x(pya),

which can be rewritten as (x, y) = (ω + γx(p
x)) + γy(p

y). For the second condition, we need to
prove that σx · (ω + γx(p

x))− (ω + γx(p
x)) cancels decoupled fractions for every σx in Gx. The

compatibility of G with the boundary homomorphisms (Proposition 5.23) yields

σx · γx(px) = − 1

|O|
∑
a∈O

∂y(σx · pxa)

= − 1

|O|
∑
a∈O

∂y(pxσx·a)−
1

|O|
∑
a∈O

∂y(σx · pxa − pxσx·a).

The homomorphism σx induces a bijection on the vertices of O, so the first sum on the right
hand-side is equal to γx(px). Hence, we find

σx · γx(px)− γx(p
x) = − 1

|O|
∑
a∈O

∂y(σx · pxa − pxσx·a).

Moreover, since σx fixes x ∈ k(O), we have σx · (x, y) = (x, v) for some v. Thus, the arc
c := ((x, y), (x, v)) ∈ C1(Ox) satisfies ∂(c) = σx · (x, y) − (x, y) and ∂y(c) = 0. Hence, we may
rewrite the above equation into

(5.2) σx · γx(px)− γx(p
x) = − 1

|O|
∑
a∈O

∂y(σx · pxa − pxσx·a + c).
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By assumption on px, we have ∂(pxa) = a− (x, y) for all a in O. The compatibility of Gx with
the boundary homomorphism yields
∂(σx·pxa−pxσx·a+c) = σx(∂(p

x
a))−∂(pxσx·a)+∂(c) = σx·(a−(x, y))−(σx·a−(x, y))+(σx·(x, y)−(x, y)) = 0,

for all a ∈ O. Therefore, the 1-chain σx · qa− qσx·a+ c is a 1-cycle for all a, so, by Theorem 5.24,
the 0-chain ∂y(σx · P x

a − pxσx·a + c) cancels decoupled fractions. By linearity, we conclude from
(5.2) that σx ·γx(px)−γx(px) cancels decoupled fractions. Finally, as ω is fixed by σx, we deduce
that σx · (ω + γx(p

x)) − (ω + γx(p
x)) = σx · γx(px) − γx(p

x) cancels decoupled fractions. The
proof that (ω + px, py) satisfies the third condition of Lemma 5.14 is completely analogous to
the proof for the second condition.

Let us now prove the general case by showing that one can always reduce to the situation
above. Let (pxa)a∈O and (pya)a∈O be two families of 1-chains that satisfy (5.1). From Propo-
sition 5.20 applied to the graphs Γ = Ox and Γ = Oy, we see that (5.1) is equivalent to the
existence of two families of 1-chains δx = (δxa)a∈O and δy = (δya)a∈O with δxa in C1(Ox) and δya
in C1(Oy) such that
(5.3) ∂(pxa − δxa) = a− (x, y) and ∂(pya − δya) = a− (x, y),

for all a in O. Define a family of 1-chains qx = (qxa)a∈O by qxa := pxa − δxa . By construction,
∂(qxa) = a − (x, y). The first part of the proof shows that the pair (ω + γx(q

x), γy(q
x)) is a

pseudo-decoupling. Lemma 5.25 (2) yields γx(px) = γx(q
x) and γy(py) = γy(p

y−δy). Moreover,
(5.3) implies that

∂((pya − δya)− qxa) = ∂((pya − δya)− (pxa − δxa)) = a− (x, y)− (a− (x, y)) = 0,

for all a ∈ O. By Lemma 5.25 (1), we obtain that γy(py)− γy(q
x) = γy((p

y − δy)− qx) cancels
decoupled fractions. Thus, the pairs of 0-chains (ω + γx(p

x), γy(p
y)) and (ω + γx(q

x), γy(q
x))

differ by 0-chains that cancel decoupled fractions. Lemma 5.13 concludes the proof. �

We can now prove the existence of a decoupling of (x, y) for any finite orbit.

Proof of Theorem 5.10. The graph O is connected. Hence, for every a ∈ O, there exists a path
from (x, y) to a. Denoting by pxa = pya the associated 1-chain, we have ∂(pxa) = a − (x, y) (see
Example 5.19). Therefore, the families (pxa)a∈O and (pya)a∈O satisfy the assumptions of Theo-
rem 5.26 leading to the existence of a pseudo-decoupling. Theorem 5.12 establishes the existence
of a decoupling obtained from a pseudo-decoupling concluding the proof of Theorem 5.10: if
the orbit is finite, the pair (x, y) always admits a decoupling in the orbit. �

The reader may have noticed that we used in the proof of Theorem 5.10 two families of
1-chains px, py that satisfy a stronger assumption than (5.1). The idea beyond the assump-
tion (5.1) is that it offers more flexibility in the choice of the families of 1-chains px, py. Such
flexibility is required in Theorem 5.35. Indeed, there is a precise choice of the families of 1-chains
that produces a pseudo-decoupling on which the evaluation of regular fractions is more efficient.

In [BMPF+22, Definition 6.1], the authors introduce the notion of a multiplicative decoupling
of a regular fraction. In our context, we say that a regular fraction H(X,Y ) has a multiplicative
Galois decoupling if and only if there exists a positive integer m such that

H(X,Y )m = F (X, t)G(Y, t) + K̃(X,Y, t)P (X,Y, t),

for some rational fractions F (X, t), G(Y, t) and a regular fraction P (X,Y, t).



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 39

Theorem 5.10 yields a decoupling of (x, y) with 0-chains γ̃x, γ̃y and α having rational coeffi-
cients. Let d be the common denominator of the rational coefficients of γ̃x, γ̃y and α which is
easily seen to divide the size of the orbit in the proof of Theorem 5.26 when the input 1-chains in
px and py all have integer coefficients. Then, the 0-chains dγ̃x, dγ̃y, dα have integer coefficients.
For such chains, one can define a multiplicative evaluation:

For a 0-chain c =
∑

u,v cu,v(u, v) with integer coefficients, define

Hmul
c =

∏
u,v

H(u, v, 1/S(x, y))cu,v .

As a direct corollary of the existence of a decoupling in the orbit, the following lemma gives
an explicit procedure to test and construct, when it exists, the multiplicative Galois decoupling
of a regular fraction H.

Lemma 5.27. The following statements are equivalent:
• H(X,Y, t) has a multiplicative Galois decoupling.
• There exists a positive integer m such that

(
Hmul

dα

)m
= 1.

Proof. From Proposition 3.24, the regular fraction H(X,Y, t) admits a multiplicative Galois
decoupling if and only if there exist a positive integer m, f(x) ∈ k(x) and g(y) ∈ k(y) such that
Hm

(x,y) = f(x)g(y).
Let us assume that H admits a multiplicative Galois decoupling and let m be a positive integer
such that H(X,Y )m = F (X)G(Y ) +K(X,Y, t)P (X,Y, t) for some rationals fractions F,G and
a regular fraction P . By multiplicative evaluation of the previous identity on dα, we find that(
Hmul

dα

)m
=
(
F (X)mul

dα

)m(
G(Y )mul

dα

)m
. It is clear that dα is a 0-chain with integer coefficients

that cancels decoupled fractions. By Proposition 5.5, the chain dα is a Z-linear combination of 0-
chains induced by bicolored loops. One proves easily by a multiplicative analogue of Example 5.4
that if β is a 0-chain induced by a bicolored loop then F (X)mul

β = G(Y )mul
β = 1 which concludes

the proof of the first implication.
Conversely, if there exists a positive integer m such that

(
Hmul

dα

)m
= 1, the decoupling d·(x, y) =

dγ̃x + dγ̃y + dα yields by multiplicative evaluation(
Hmul

d(x,y)

)m
= H(x,y)

dm =
(
Hmul

dγ̃x

)m(
Hmul

dγ̃y

)m
.

By definition of the decoupling of (x, y) = γ̃x + γ̃y + α, we find that σ · dγ̃x = dσ · γ̃x = dγ̃x for
all σ ∈ Gx. A multiplicative analogue of Lemma 3.25 implies easily that Hmul

dγ̃x
is left fixed by

Gx so that Hmul
dγ̃x

belongs to k(x). A similar argument shows that Hmul
dγ̃y

belongs to k(y) which
concludes the proof. �

5.5. Effective construction. The evaluation of a regular fraction at a vertex of the orbit, that
is, at a pair of algebraic elements in K might be difficult from an algorithmic point of view since
this requires to compute in an algebraic extension of Q(x, y). This is however the cost we may
have to pay in our decoupling procedure if we choose random families of 1-chains satisfying the
assumptions of Theorem 5.26.

In this section, we show how, under mild assumption on the distance transitivity of the graph
of the orbit, one can construct a decoupling in the orbit expressed in terms of specific 0-chains
that we call level lines. These level lines regroup vertices of the orbit that satisfy the same
polynomial relations. Therefore, one can use symmetric functions and efficient methods from
computer algebra to evaluate regular fractions on these level lines (see Appendix B).
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Definition 5.28. Let a be a vertex of O. We define the x-distance of a to be dx(a) =
inf{d(a, a′) | a′ ∼x (x, y)}, that is, the length of a shortest path in O from a to the clique
(x, ·).

Such a shortest path (g0, g1, . . . , gr), that is, gr = a, g0 ∼x (x, y) and dx(a) = r, is called an
x-geodesic for a. Note that we have dx(gi) = i for all i = 0, . . . , r. We denote by Px

a the set of
1-chains associated with x-geodesics for a as in Example 5.19.

The x-level lines X0,X1, . . . are defined by Xi = {a ∈ O | dx(a) = i}, and we associate to the
level line Xi the 0-chain Xi =

∑
a∈X i a. Analogously, we define the y-distance dy, the set Py

a of
y-geodesics for a, the y-level lines Y0,Y1, . . . , and denote by Yi the 0-chain associated with the
y-level line Yi.

(x, y1)

(x3, y1) (x4, y1)

(x, y)

(x1, y) (x2, y)

(x1, y2)

(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

(x, y1)

(x3, y1) (x4, y1)

(x, y)

(x1, y) (x2, y)

(x1, y2)

(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

Y0

Y1

Y2

X0

X1

X2

X3

Figure 5.3. The level lines for the orbit O12

The level lines can be represented graphically, as in Figure 5.3, or in Section 5.6 or in the
examples of Appendix C. The level lines and geodesics are our key tools to construct relevant
collections of 1-chains satisfying the conditions of Theorem 5.26. First, the boundaries of a
geodesic are easy to express.

Lemma 5.29. Let a be a vertex of O and (g0, g1, . . . , gr) an x-geodesic for a, then gi ∼y gi−1

if and only if i is odd. Similarly, for (g0, g1, . . . , gr) a y-geodesic for a, then gi ∼x gi−1 if and
only if i is odd.

Proof. Let g = (g0, g1, . . . , gr) be an x-geodesic of length r. Assume that there exists i such
that gi ∼x gi+1 ∼x gi+2. By transitivity of ∼x, this implies that gi ∼x gi+2, contradicting
the minimality of the geodesic g. Similarly, if there exists i such that gi ∼y gi+1 ∼y gi+2

then gi ∼y gi+2, also contradicting the minimality of the geodesic. Therefore, the adjacency
types of the edges of the geodesic alternate. Finally, if g0 ∼x g1, then this also contradicts
the minimality of the geodesic because then (x, y) ∼x g1. This fixes the starting parity of the
alternating adjacency types of edges of the geodesic, and thus gi ∼y gi−1 if and only if i is odd.
The case of a y-geodesic is symmetric. �
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Corollary 5.30. Let a be a vertex of O, (g0, g1, . . . , gr) an x-geodesic for a and g its associated
1-chain, then ∂y(g) =

∑
1≤i≤r
i odd

gi − gi−1. Analogously, for (g0, g1, . . . , gr) a y-geodesic for a then

∂x(g) =
∑

1≤i≤r
i odd

gi − gi−1.

Recall from Section 5.4.1 that any graph automorphism τ of O acts on the vertex a of O
coordinate-wise and that we denote this action τ · a. We extend the action of τ to any path
(a1, . . . , an+1) as follows

τ · (a1, . . . , an+1) = (τ · a1, . . . , τ · an+1).

Note that this action is compatible with the action of graph automorphisms on 1-chains defined
in Section 5.4.1. Indeed, if p is the 1-chain associated with the path (a1, . . . , an+1) as in Example
5.19 then τ · p is the 1-chain associated with the path τ · (a1, . . . , an+1).

The following lemma shows that the geodesics and level lines satisfy some stability properties
with respect to the action of elements of Gx and Gy viewed as subgroups of the group of graph
automorphisms of O.

Lemma 5.31. Let σx be in Gx and a in O. Then dx(σx ·a) = dx(a). Moreover, if (g0, . . . , gr) is
an x-geodesic for a, then σx · (g0, . . . , gr) is an x-geodesic for σx · a. Analogously, if σy is in Gy

and a in O, then dy(σy ·a) = dy(a), and if (g0, . . . , gr) is a y-geodesic for a, so is σy · (g0, . . . , gr)
for σy · a.

Proof. Assume that dx(a) = r. Then there exists an x-geodesic for a that is (g0, g1, . . . , gr)
with gr = a. Apply the graph automorphism σx to each of the vertices of this path. Then
(σx · g0, σx · g1, . . . , σx · gr) with σx · gr = σx · a is a path of the orbit. By definition, g0 ∼x (x, y),
thus σx · g0 ∼x (x, y) since x is fixed by Gx. Therefore, dx(σx · a) ≤ r = dx(a). Since σx is an
automorphism, we conclude that dx(σx · a) = dx(a). We finally deduce that σx · (g0, . . . , gr) is
a x-geodesic for σx · a. �

This observation leads us to define two subgroups of automorphisms of the graph O. We
denote by Autx(O) (resp. Auty(O)) the subgroup of graph automorphisms of O that preserve
the x (resp. y)-distance and the adjacency types ‖. By definition, any element τ in Autx(O)
maps an x-geodesic for a onto an x-geodesic for τ ·a. Moreover, a graph automorphism preserves
the x-distance if and only if it induces a bijective map from Xi to itself for each i. Analogous
results hold for Auty(O).

Lemma 5.31 implies that Gx (resp. Gy) is isomorphic to a subgroup of Autx(O) (resp.
Auty(O)). The benefit of the groups Autx(O) and Auty(O) is that, unlike Gx and Gy, they
only depend on the graph structure of the orbit, and thus are more easily computable. Note
however that not all such graph automorphisms come from a Galois automorphism (see for
instance the Hadamard example in Section 5.6.3). We now state an assumption on the distance
transitivity of the graph of the orbit.

Assumption 5.32. Let a and a′ be two pairs of O. If dx(a) = dx(a
′), then there exists σx in

Autx(O) such that σx ·a = a′. Similarly, if dy(a) = dy(a
′), then there exists σy in Auty(O) such

that σy(a) = a′. In other words, Autx(O) (resp. Auty(O)) acts transitively on Xi (resp. Yi) for
all i.

‖One can show that this last condition is redundant with the condition on the distance preservation.
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This assumption has been checked for all the finite orbit types appearing for models with
steps in {−1, 0, 1, 2}2 as well as for Hadamard and Fan-models (see the examples in Section 5.6
or Appendix C). To prove that Assumption 5.32 is satisfied in practice, we only need to find a
subgroup of Autx(O) that acts transitively on the orbit. This does not require to compute the
full group of graph automorphisms which might be quite hard in general. However, Assumption
5.32 does not always hold as illustrated in the following example.

Example 5.33. Consider the weighted model described by the Laurent polynomial S(X,Y ) =(
X + 1

X + Y + 1
Y

)2. The kernel polynomial K̃ is an irreducible polynomial of degree 4 in X
and in Y . Therefore, the cardinal of Y0 is 4 and the only right coordinate of the elements in Y0

is y. Moreover, each element of Y0 is x-adjacent to three distinct elements in Y1 so the cardi-
nality of Y1 is 12. Now, it is easily seen that the right coordinates of vertices in Y0 ∪ Y1 are
the roots of the polynomial Res(K̃(X, y, 1/S(x, y)), K̃(X,Y, 1/S(x, y)), X). Since x and y are
algebraically independent over C, its irreducible factors in C(x, y)[Y ] are (Y y − 1), (−y + Y ) ,(
Y 2xy + 2Y x2y + Y x y2 + Y x+ 2Y y + xy

)
and

(
Y 2xy − 2Y x2y − 3Y x y2 − 3Y x− 2Y y + xy

)
.

This proves that the cardinality of the set V of right-coordinates of elements in Y1 is 5.
If Assumption 5.32 were true for this model then the transitive action of Auty(O) on Y1

implies that the sets Kv = {(u,w) | w = v and (u,w) ∈ Y1} ⊂ Y1 for v in V are all in bijection.
Indeed, Kv is equal to {a ∈ O | a ∼y (u, v)}∩Y1 for some (u, v) ∈ Kv. Therefore, as Assumption
5.32 provides σy in Auty(O) such that σy · (u, v) = (u′, v′) ∈ Kv′ , its restriction to Kv gives an
embedding into Kv′ , because σy preserves the y-adjacencies and the y-distance. By symmetry,
this proves that Kv and Kv′ are in bijection. Since these sets form a partition of Y1, this would
imply that the cardinality of V (5) divides the cardinality of Y1 (12). A contradiction.

We now show that Assumption 5.32 is sufficient for (x, y) to admit a decoupling in terms of
level lines.

Lemma 5.34 (Under Assumption 5.32). Let a and a′ be two vertices with dx(a) = dx(a
′). Then

there is a bijection between Px
a and Px

a′. Analogously, if a and a′ satisfy dy(a) = dy(a
′), then

there is a bijection between Py
a and Py

a′.

Proof. Use Assumption 5.32 to produce σx in Autx(O) such that σx(a) = a′. This σx induces a
bijection between Px

a and Px
σx·a = Px

a′ by Lemma 5.31 and the compatibility between the action
of σx on x-geodesics and its action on the associated 1-chains. �

The following theorem gives a decoupling of (x, y) in terms of level lines.

Theorem 5.35 (Under Assumption 5.32). Define the following 0-chains:

γx = − 1

|O|
∑
i≥1

|Xi|
∑

1≤j≤i
j odd

(
Xj

|Xj |
− Xj−1

|Xj−1|

)
and γy = − 1

|O|
∑
i≥1

|Yi|
∑

1≤j≤i
j odd

(
Yj
|Yj |

− Yj−1

|Yj−1|

)
.

Then (x, y) = (ω + γx) + γy + α is a decoupling of (x, y) in the orbit (with ω = 1
|O|
∑

a∈O a).

Proof. Consider the two families of 1-chains (pxa)a∈O and (pya)a∈O defined for a in O as

pxa =
1

|Px
a |
∑
g∈Px

a

g and pya =
1

|Py
a |
∑
g∈Py

a

g.

For all g = (g0, . . . , gr) in Px
a , we have ∂(g) = a− g0 with g0 ∼x (x, y). Then, εx(∂(g)− a+

(x, y)) = 0. Thus, we find by linearity that εx(∂(pxa) − a + (x, y)) = 0. The same argument
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shows that εy(∂(pya)− a+ (x, y)) = 0. Therefore, both families of 1-chains (pxa)a∈O and (pya)a∈O
satisfy the conditions of Theorem 5.26, which thus states that if we take

γx = − 1

|O|
∑
a∈O

∂y(pxa) and γy = − 1

|O|
∑
a∈O

∂x(pya),

then the pair (ω + γx, γy) is a pseudo decoupling. As the geodesics are stable under the action
of their respective Galois groups by Lemma 5.31, it is also a decoupling.

Therefore, we are left to prove that γx and γy admit the announced (pleasant) expressions.
We only treat the case of γx, the case of y being totally symmetric.

First, note that, by Lemma 5.34, the cardinality of Px
a (resp. Py

a ) depend only on the x-
distance (resp. y-distance) of a. For i a non-negative integer, we denote by mx

i (resp. my
i ) the

cardinality of Px
a (resp. Py

a ) for any a such that dx(a) = i (resp. dy(a) = i). The expression of
the boundary of a geodesic (Lemma 5.30) combined with the partition of O into x-level lines
yields

γx = − 1

|O|
∑
i≥0

∑
a∈Xi

∂y(pxa) = − 1

|O|
∑
i≥0

1

mx
i

∑
a∈Xi

∑
g∈Px

a

∑
j odd
j≤i

(gj − gj−1) .

If we denote
Si
j =

1

mx
i

∑
a∈Xi

∑
g∈Px

a

gj ,

then γx rewrites as

γx = − 1

|O|
∑
i≥1

∑
j odd
j≤i

Si
j − Si

j−1.

First, observe that, for any x-geodesic (g0, . . . , gi), the j-th component gj has x-distance j,
so the vertices appearing in Si

j with nonzero coefficients are in Xj . Thus, we can write

Si
j =

∑
b∈Xj

λi,jb b.

Let σx be in Autx(O). Remind that σx induces a bijection on each x-level line and maps
bijectively Px

a and Px
σx·a for all a. Thus, we find

σx · Si
j =

1

mx
i

∑
a∈Xi

∑
g∈Px

a

σx · gj =
1

mx
i

∑
a∈Xi

∑
g∈Px

a

(σx · g)j =
1

mx
i

∑
a∈Xi

∑
g∈Px

σx·a

gj = Si
j .

Under Assumption 5.32, the group Autx(O) acts transitively on Xj . Since Si
j is fixed by

the action of Autx(O), one concludes easily that all the coefficients λi,jb are equal to some
scalar λij and that Si

j = λijXj (∗). To compute the value of λij , we recall the existence of the
augmentation morphism ε : C0(O) → C which associates to a 0-chain the sum of its coefficients.
We apply ε to each side of (∗). On the one hand, ε(Si

j) =
∑

a∈Xi

1
|Px

a |
∑

g∈Px
a
1 =

∑
a∈Xi

1 = |Xi|.
On the other hand, ε(λijXj) = λij |Xj |. Therefore, we deduce λij = |Xi|

|Xj | and the announced
expression for the decoupling follows. �
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Remark 5.36. For C a field of characteristic zero and K̃(X,Y ) an irreducible polynomial in
C[X,Y ], the semi-algorithm in [Buc24a] test the existence and compute, if it exists, a Galois
decoupling for a given regular fraction H(X,Y ) in C(X,Y ). This algorithm also works when the
orbit is infinite but it might not always terminate. Buchacher’s strategy consists in determining
the poles on the kernel curve Et (see Section 6) of a possible decoupling pair (F (X), G(Y ))
of H(X,Y ). This amounts to compute the dynamical orbit of the poles (α, β) of H(X,Y ),
viewed as a function on the kernel curve Et. More precisely, one takes the horizontal line
P1 × {β}, intersects it with Et, then takes the vertical lines through these intersection points
and determines their intersections with Et and so on. The collection of points of Et obtained
in this way is the dynamical orbit of the point (α, β). The orbit of K̃(X,Y ) as defined in
Remark 3.3 coincides with the dynamical orbit of the generic point of Et (see [Har77, Example
2.3.4]). Therefore, it happens that the dynamical orbit of certain points on Et is finite while the
dynamical orbit of the generic point is infinite. Our approach relies crucially on the fact that the
dynamical orbit of the generic point is finite and we need to compute its orbit entirely in order
to use Galois theoretic arguments. Thus, the complexity of our decoupling algorithm depends
on the complexity of the orbit. However, the computation of the orbit does not depend on the
regular fraction H(X,Y ). The complexity of the algorithm of [Buc24a] depends on the algebraic
complexity of the poles of H and of their dynamical orbit. Hence, Buchacher’s algorithm might
be more efficient than ours if the algebraic complexity of the poles of H and their dynamical
orbit is not too big.
Our approach generalizes [BBMR21, Theorem 4.11] which is only valid for a cyclic orbit. In
[DHRS18, HS21], the authors give a criterion to test the decoupling of a regular fraction H that
is based on the computation of orbit-residues. These orbit-residues are essentially the sum of
the residues of H along the dynamical orbit of a given pole of H. The algorithm developed in
[Buc24a] relies on similar ideas.

To conclude, we have defined in this section a distance-transitivity property that is only
graph-theoretic. When this property is satisfied by the orbit-type, it leads to a decoupling
expressed in terms of level lines. As described in Appendix B, the evaluation of a regular
fraction on a level line is efficient from an algorithmic point of view and so is our procedure
for the Galois decoupling of a regular fraction. In the following section and in Appendix C,
we easily check Assumption B on various orbit-types and produce the associated decoupling in
terms of level-lines.

5.6. Examples. In this last subsection and Appendix C, we check Assumption 5.32 and unroll
the construction of the decoupling of the previous section for all the finite orbit-types of models
with steps in {−1, 0, 1, 2}2, namely with orbits O12, O18, Õ12 as well as for the cyclic models, the
Hadamard models and the fan models. We summarize the results of this section and Appendix
C on the decoupling of XY in the following proposition.

Proposition 5.37. The regular fraction XY does not decouple for any weighted models with
orbit-types Hadamard (see below) nor for the family of the fan-models (see Appendix C). The
regular fraction XY does not decouple for unweighted models with steps in {−1, 0, 1, 2}2 with
orbit-types O18, Õ12. The fraction XY decouples for the model Gλ with any λ.

5.6.1. Cyclic orbit. Assume that the orbit is a cycle of size 2n, which is the orbit-type of any
small-steps model with finite orbit. The graph of the orbit looks as follows, where we have
labeled vertices from 0 to 2n− 1. We represent both x-level lines and y-level lines.
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0

1

2

3

2n− 4

2n− 3

2n− 2

2n− 1

X0 X1 Xn−2 Xn−1

0

2

1

4

2n− 5

2n− 2

2n− 3

2n− 1

Y0 Y1 Yn−2 Yn−1

Each of the x-level lines has 2 elements, so does any y-level line. The reader can check that the
permutation σx = (0, 1)(2, 3) . . . (2i, 2i+1) . . . (2n−1, 2n−2) which corresponds to a horizontal
reflection on the figure on the left-hand side, induces a graph automorphism of Autx(O), that
is preserving the x-distance and the type adjacencies. Moreover, σx acts transitively on each x-
level line. As the situation is completely symmetric for y-level lines, this proves Assumption 5.32
for cyclic orbits. In this section, we take the convention that the exponents on the permutation
indicate which type of level lines these automorphisms stabilize. According to Theorem 5.35,
we find:

(x, y) =

ω − 1

2n

∑
j odd

(n− j) (Xj −Xj−1)

−

 1

2n

∑
j odd

(n− j) (Yj − Yj−1)

+ α.

In the above equation and in the rest of the section, we only give the explicit expressions
of γ̃x, γ̃y and we write them between parenthesis according to their order in the expression
(x, y) = γ̃x+ γ̃y+α. The above decoupling equation corresponds to the decoupling construction
obtained for small steps walks in [BBMR21, Theorem 4.11].

5.6.2. The case of O12. Below are the x and y-level lines for the orbit type O12:

3

6 7

0

1 2

4
11

10

5

9

8

3

6 7

0

1 2

4

11

10

5

9

8X0

X1

X2

X3

Y0

Y1

Y2

Consider the following permutations of the vertices of the orbit: τx,y = (1 2)(4 5)(6 7)(9 10)(8 11)
the vertical reflection on both sides, τx = (0 3)(1 6)(2 7)(4 11)(5 8) the horizontal reflection on
the left-hand side, τy = (0 1 2)(3 4 5)(6 10 8)(7 11 9) the 2π

3 rotation on the right -hand side. The
reader can check that these automorphisms are elements of Autx(O) or Auty(O) according to
their exponents and that their action on the corresponding level lines is transitive.

Therefore Assumption 5.32 holds for the orbit type O12. The cardinality of O is 12 and
one can write ω = 1

12 (X0 +X1 +X2 +X3). Thus, according to Theorem 5.35, the decoupling



46 PIERRE BONNET AND CHARLOTTE HARDOUIN

equation is

(x, y) =
2

12

(
X2

4
− X3

2

)
+

4 + 4 + 2

12

(
X0

2
− X1

4

)
+

3 + 6

12

(
Y0
3

− Y1
3

)
+ ω + α

=

(
X0

2
− X1

8
+
X2

8

)
+

(
Y0
4

− Y1
4

)
+ α.

5.6.3. Hadamard models. The notion of Hadamard models has been introduced by Bostan,
Bousquet-Mélou and Melczer who proved that these models are always D-finite [BBMM21,
Proposition 21]. Hadamard models are characterized by the shape of their Laurent polynomial:
S(X,Y ) = P (X)Q(Y ) +R(X) for P , Q and R three Laurent polynomials.

The Hadamard models form an interesting class because their orbit is always finite and
in the form of a cartesian product. Indeed, [BBMM21, Proposition 22] yields the existence
of distinct elements x0, . . . , xn−1 and y0, . . . , ym−1 in K with x0 = x and y0 = y such that
O = {xi | 0 ≤ i ≤ n− 1} × {yj | 0 ≤ j ≤ m− 1}. As a consequence, the orbits of the Hadamard
models, even though their size might be arbitrarily large, are always of diameter two. This
means that the distance between any two vertices is at most two as illustrated below:

(x0, y0) (x0, yj)

(xi, y0) (xi, yj)

X0

X1

(x0, y0) (xi, y0)

(x0, yj) (xi, yj)

Y0

Y1

These orbit-types are very symmetric. The x-level lines X0 is {(x, yj) | 0 ≤ j ≤ m− 1} while
X1 = {(xi, yj) | 0 ≤ j ≤ m − 1 and 1 ≤ i ≤ n − 1}. Thus, |X0| = m and |X1| = (n − 1)m. It is
easy to prove that any element of Autx(O) is of the form φxσ,τ : (xi, yj) 7→ (σ(xi), τ(yj)), for τ a
permutation of the set {yj | 0 ≤ j ≤ m − 1} and σ a permutation of {xi | 0 ≤ i ≤ n − 1} such
that σ(x) = x. An analogous description holds for the y-level lines and Auty(O) proving that
the Hadamard models satisfy Assumption 5.32 and that Autx(O) ' Sn−1×Sm and Auty(O) '
Sn × Sm−1. Theorem 5.35 gives the following decoupling:

(x, y) =
m(n− 1)

nm

(
X0

m
− X1

m(n− 1)

)
+
n(m− 1)

nm

(
Y0
n

− Y1
n(m− 1)

)
+ ω + α

=

(
1

m
X0

)
+

(
m− 1

nm
Y0 −

1

nm
Y1

)
+ α =

(
1

m
X0

)
+

(
1

n
Y0 − ω

)
+ α,

with ω = 1
mn(Y0 + Y1). Note that any Hadamard model where degX K̃ > 1 and degY K̃ > 1

always contains a bicolored square, so the regular fraction XY never admits a decoupling (see
Example 5.6).

The complete description of the groups Autx(O) and Auty(O) obtained above is particularly
useful to construct examples of orbits whose graph automorphisms are not necessarily Galois
automorphisms as illustrated below.
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Example 5.38. Consider the nontrivial unweighted model defined by S(X,Y ) =
(
X + 1

X

) (
Y n + 1

Y n

)
.

Then by Proposition 22 in [BBMM21], the orbit has the form

{x, 1
x
} × {ζiy, ζi 1

y
for i = 0, . . . , n− 1}

where ζ is a primitive n-th root of unit. Hence, the extension k(O) equals C(x, y) = k(x, y).
Consider the tower of field extensions k(x) ⊂ k(x, yn) ⊂ k(x, y). Since k(x) coincides with
C(x, yn + 1

yn ) and k(x, yn) with C(x, yn), the multiplicativity of the degree of a field extension
yields

[k(O) : k(x)] = [C(x, y) : C(x, yn)]× [C(x, yn) : C(x, yn +
1

yn
)] = n× 2.

Indeed, since x and y are algebraically independent over C, the element yn is not a m-th power
in C(x, yn) for m dividing n. Thus, the minimal polynomial of y over the field C(x, yn) is Y n−yn
so that [C(x, y) : C(x, yn)] equals n. Moreover, since yn does not belong to C(x, yn + 1

yn ), its
minimal polynomial over the later field is Y 2 − (yn + 1

yn )Y + 1. Thus, Gx ( Autx(O) because
Gx is a dihedral group of size 2n and Autx(O) is S2n by the above description.

6. The algebraic kernel curve and its covering

In this section, we present an informal discussion on the geometric framework for walks
confined to a quadrant. For small steps walks, this approach was developed in [FIM99, KR12].
In that setting, one can construct a difference equation whose meromorphic solution has the
same nature than the generating function. This difference equation permits to prove non-D-
finiteness results [KR12], to apply differential Galois theory [DHRS18] as well as to construct
canonical weak invariants in order to give explicit expressions of the differentially algebraic
generating functions [Ras12, BBMR21]. Thanks to the geometric interpretation of the group of
the walk in the small steps case, one obtains some efficient bounds on the order of the group
and one can build an efficient decoupling algorithm in the infinite group case [HS21].

For small steps models, this geometric framework amounts to interpret theX and Y -symmetries
of the polynomial K̃(X,Y, t) as automorphisms of a certain algebraic curve. For large steps mod-
els, we shall see that this interpretation is still valid when the orbit is finite but might be no
longer true for an infinite orbit. Our intention in this section is to introduce a geometric frame-
work and not to give a complete and systematic study of this geometric setting for large steps
walks which is a whole subject in its own right.

Though the kernel polynomial K̃(X,Y, t) is irreducible over Q(t)[X,Y ], it might be re-
ducible over Q(t), the algebraic closure of Q(t). Indeed, consider for instance a model de-
fined by S(X,Y ) = (P (X,Y )

XY )2 for some polynomial P (X,Y ) in Q[X,Y ]. Then, the polynomial
K̃(X,Y, t) = (XY )2−tP (X,Y )2 factors as (XY −

√
tP (X,Y ))(XY +

√
tP (X,Y )) in Q(t)[X,Y ].

For small steps walks, Proposition 1.2 in [DHRS21] characterizes the models, called degenerate,
whose associated kernel polynomial is reducible over Q(t). These small steps models correspond
to the univariate cases described in Section 2.2 plus the two cases where the step polynomial
S(X,Y ) is either a Laurent polynomial in XY or in X/Y . The generating function Q(X,Y, t)
of a degenerate model with small steps is always algebraic over Q(X,Y, t). One could wonder
if the degenerate models in the large steps situation still coincide with the univariate cases de-
scribed in Section 2.2 and are therefore algebraic. The question of the reducibility of the kernel
polynomial over Q(t) requires some substantial work and we leave it for further articles. Thus,
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we assume from now on that the kernel polynomial is irreducible over Q(t) of positive degree
dx = mx +Mx (resp. dy = my +My) in X (resp. in Y ) in the notation of Section 2.2.

Let us fix once for all a complex transcendental value for t so that Q(t) embeds into C. We
denote by P1(C) the complex projective line, that is, the set of equivalence classes [α0 : α1] of
elements (α0, α1) ∈ C2 up to multiplication by a non-zero scalar. The projective line P1(C) can
be identified to C∪{∞} where C = {[α0 : 1] with α0 ∈ C} and ∞ is the point [1 : 0]. We define
the kernel curve Et as follows.

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C)× P1(C) | K(x0, x1, y0, y1, t) = 0},

where K(x0, x1, y0, y1, t) is the homogeneous polynomial defined by xdx1 y
dy
1 K̃(x0

x1
, y0y1 , t) (see

[DHRS21, Section 2] for the small steps case). The kernel curve Et ⊂ P1(C) × P1(C) is a
projective algebraic curve. It is naturally equipped with two projections πx : Et → P1

x, ([x0 :
x1], [y0 : y1]) 7→ [x0 : x1] and πy : Et → P1

y, ([x0 : x1], [y0 : y1]) 7→ [y0 : y1] where the notation
P1
x,P1

y emphasizes the variable on which one projects. The curve Et is irreducible by our as-
sumption on K̃. If we denote by Sing its singular locus, that is, the set of points of Et at which
the tangent is not defined, its genus is given by the formula

(6.1) g(Et) = 1 + dxdy − dx − dy −
∑

P∈Sing

∑
i

mi(P )(mi(P )− 1)

2
,

where mi(P ) is a positive integer standing for the multiplicity of a point P , that is, for every
` < mi(P ), the partial derivatives of K of order ` vanish at P [Har77, Exercise 5.6, Page 231-232
and Example 3.9.2, Page 393].
Example 6.1. The kernel polynomial associated to the model Gλ is K̃(X,Y, t) = XY − t(1 +
XY 2 +X2 +X3Y 2 + λX2Y ) One can easily check that the algebraic curve Et corresponding
to the model Gλ is smooth∗∗, so that its genus equals 2 = 1 + 3.2− 3− 2.

If the curve Et is smooth, it can be endowed with a structure of compact Riemann surface
(see [GGD12, Example 1.46]). We recall that the function field C(E) of an irreducible projective
curve E defined by some irreducible polynomial F (X,Y ) is the quotient field of the C-algebra
C[X,Y ]/(F ) where (F ) is the polynomial ideal generated by F .

The following categories are equivalent
• the category of smooth projective curves E over C and non-constant morphisms,
• the category of finitely generated field extensions C(E) of C of transcendence degree

one and morphisms of field extensions,
• the category of compact Riemann surfaces E and their morphisms [GGD12, Remark

1.94 and Proposition 1.95].
Loosely speaking, a category is a collection of “objects” together with a collection of “arrows”

linking these objects. One can “compose” these arrows and, for each object X, there is an
“identity arrow” going from X to X. These “arrows” and “identity arrows” satisfy a certain set
of diagrammatic axioms. An equivalence between two categories C and D is a correspondence
between the “objects” and “arrows” of these two categories that establishes that C and D are
essentially the same. For precise definitions on Category theory, we refer the reader to [ML98].

When the projective curve Et is singular, any automorphism of its function field corresponds
to a birational transformation of the curve Et but, for simplicity of presentation, we assume from

∗∗This means that Et has no singular point. Otherwise, one says that the curve is singular.
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now on that Et is smooth. The above equivalence of categories applied to the two projections
πx, πy implies that C(Et) is a field extension of C(x) = C(P1

x) and of C(y) = C(P1
y).

When the model is with small steps, the curve Et is of genus one if Et is smooth (see
[DHRS21, Proposition 2.1]). Moreover, the field C(Et) is an extension of degree 2 of the
fields C(x) and C(y) and thereby a Galois extension of these two fields. The Galois groups
Gal(C(Et)|C(x)) (resp. Gal(C(Et)|C(y))) are cyclic of order two. Their generators correspond
via the aforementioned equivalence of categories to two automorphisms Φ,Ψ of Et which are
respectively the deck transformations of the projections from Et to P1

x and to P1
y. These two

automorphisms coincide on a Zariski open set of Et ∩ C2 with the two birational involutions
defined in Section 3. When Et is of genus one, the automorphism Φ◦Ψ extends to the universal
cover C of Et as a translation map z 7→ z + ω3. Thus, Et can be identified to the quotient
of C by a lattice Zω1 + Zω2. The field of meromorphic functions over C, that are ω1-periodic
and fixed by Φ ◦ Ψ, is of transcendence degree 1 over C. It is the function field C(E) of the
elliptic curve E = C/Zω1+Zω3. In [BBMR21, Section 5.2], the authors define a canonical weak
invariant that is built upon the Weierstrass p-function attached to the elliptic curve E. Then,
they prove that, under certain convergence conditions, the t-invariants are rational fractions in
the canonical weak invariant. This allows them to describe explicitly the generating function
of decoupled models in terms of rational fractions in the canonical weak invariant. When the
group of the walk is finite, there are some rational invariants and the field C(E) is a finite
extension of the field kinv so that the canonical weak invariant is algebraic over kinv.

When the model has at least one large step, that is, dx or dy is strictly greater than 2, and
the curve Et is irreducible and smooth, (6.1) yields that the genus of Et is strictly greater than
one. Hurwitz’s Theorem [GGD12, Theorem 2.41] implies that the group of automorphisms of
Et, as the group of automorphisms of any algebraic curve of genus strictly greater than one, is
of finite order bounded by 84(g(Et)− 1). Moreover, the function field C(Et) is in general not a
Galois extension of C(x) and of C(y) as illustrated in the following example.
Example 6.2. In the notation of Example 3.12, the field C(Et) = C(x, y) associated to the
model Gλ is not Galois and is a proper subextension of the Galois extension C(O) = C(x, y, z).

If the genus of the curve Et is strictly greater than one, the same holds for any cover M
of Et so that the group of automorphisms Aut(M) of any cover M of Et is finite [GGD12,
Theorem 1.76]. Therefore if the curve Et is smooth, irreducible and the model has at least one
large step, Theorem 4.3†† shows that the existence of a Galois extension M of C(x) and C(y) is
equivalent to the finiteness of the orbit of the model. Indeed, the condition that Gal(M |C(x))
and Gal(M |C(y)) generate a finite subgroup of Aut(M) is automatic since Aut(M), which is
isomorphic to Aut(M) by the above equivalence of category, is finite. Applying once again the
equivalence of categories, one finds that the Galois group Gal(M |C(x)) (resp. Gal(M |C(y)))
corresponds to the group of deck transformations of πx (resp. πy). We summarize this discussion
in the following Theorem.
Theorem 6.3. Assume that the model has at least one large step and that the curve Et is
irreducible and smooth. The following statements are equivalent:

• the orbit of the walk is finite,
• there exists a cover M of Et which is a Galois cover of P1

x and P1
y.

In that case, the group of the walk G is isomorphic to the group of automorphims of M generated
by the deck transformations of the covers M → P1

x and M → P1
y.

††which still holds if one replaces k by C.
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Under the assumption of Theorem 6.3, one sees that the geometric interpretation of the group
of the walk as group of automorphisms of a smooth projective curve depends on the finiteness of
the orbit. Indeed, if the orbit is finite, the group of the walk is the subgroup of automorphisms
of M generated by the deck transformations of the two projections of M onto P1

x,P1
y. It is in

general no longer a group of automorphisms of the kernel curve Et, unless Et equals M, which
may happen only in very restricted situations. If the orbit is infinite and the curve Et is of
genus greater than one, one cannot realize the group of the walk as a group of automorphisms
of an algebraic curve that covers Et. When the orbit is finite, one may hope that the geometric
description of the group of the walk will lead to a description of the t-invariants analogous to
the small steps case.

Acknowledgements We thank Andrea Sportiello for suggesting the addition of weights to
the models G0 and G1 (of which the model Gλ of Example 2.1 is a generalization), Alin Bostan for
his advice on formal computation over the orbit, and Mireille Bousquet-Mélou for her inspiring
guidance, suggestions and review of preliminary versions. We are very grateful to the referees
for their careful reading of the paper and for their comments and detailed suggestions.

Appendix A. Solving the model Gλ

In Section 2.2, we illustrate how the construction of pair of Galois invariants and Galois
decoupling pairs for the model Gλ allows us to construct explicit equations in one catalytic
variable satisfied by the sections Q(X, 0) and Q(0, Y ). Theorem 3 in [BMJ06] implies that
these sections are algebraic which yields the algebraicity of the generating function Q(X,Y ).
Moreover, [BMJ06] actually gives a general method to obtain explicit polynomial equations for
the solutions of equations in one catalytic variable.

In this section, we follow this method to provide an explicit polynomial equation for the
excursion generating function Q(0, 0) attached to the model Gλ. We then exploit this explicit
polynomial equation to give an explicit asymptotic for the number of excursions on the model
G0. All the computations can be found in the Maple worksheet AlgebraicityProofs.mw and we
give here their guidelines.

A.1. Explicit polynomial equation for Q(0, 0) on the model Gλ. We start from the
functional equation obtained for Q(0, Y ), because it is the simplest of the two and we recall
below its canonical form, with F (Y ) = Q(0, Y ):

F (Y ) = 1 + t

(
t2Y F (Y )

(
∆(1)F (Y )

)2
+ λtF (Y )∆(1)F (Y ) + t

(
∆(1)F (Y )

)2
+ 2tF (Y )∆(2)F (Y ) + Y F (Y ) + λ∆(2)F (Y ) + 2∆(3)F (Y )

)
,

where ∆ is the discrete derivative: ∆G(Y ) = G(Y )−G(0)
Y . Besides F (Y ), there are three unknown

functions: F (0) (the excursions series), F ′(0) and F ′′(0). The above equation can hence be
rewritten as

(A.1) P (F (Y ), F (0), F ′(0), F ′′(0), t, Y ) = 0,

with P (x0, x1, x2, x3, t, Y ) a polynomial with coefficients in Q(λ).
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The method of Bousquet-Mélou and Jehanne consists in constructing more equations from
(A.1). For that purpose, we search for fractional power series ‡‡ Yi’s that are solutions of (A.1)
and of the following equation
(A.2) (∂x0P ) (F (Y ), F (0), F ′(0), F ′′(0), t, Y ) = 0.

Then the paper [BMJ06] points out that any such solution is also a solution of the following
equation
(A.3) (∂Y P ) (F (Y ), F (0), F ′(0), F ′′(0), t, Y ) = 0.

Moreover, these solutions are double roots of D(F (0), F ′(0), F ′′(0), t, Y ) the discriminant of
P with respect to x0 [BMJ06, Theorem 14]. If there are enough fractional power series Yi’s
(at least the number of unknown functions), then the result of [BMJ06] provides “enough”
independent polynomial equations Pi(X0, X1, X2) relating the unknown functions (here F (0),
F ′(0) and F ′′(0)) so that the dimension of the polynomial ideal generated by the Pi’s is zero.
This shows that one can eliminate these multivariate polynomial equations to find a one variable
polynomial equation for each of the unknown series.

Let Y be a solution to (A.2). Eliminating F ′′(0) between (A.2) and (A.3), one finds a first
equation between Y and F (Y ):

(A.4)
−2F (Y )t Y 4 + F (0)2 t2Yi − 4F (0)F (Y ) t2Y + 3Y t2F (Y )2 − F (0)λtY

+ F (Y )λtY + F (Y )Y 3 − 2F ′(0)tY − Y 3 − 4tF (0) + 4F (Y )t = 0.

Now, eliminating F (Y ) between (A.4) and (A.1), and removing the trivially nonzero factors,
we obtain the following polynomial equation satisfied by Y :
(A.5) 2t Y 4 − Y 3 + λtY + 2t = 0.

Using Newton polygon’s method, we find that, among the four roots of the irreducible polyno-
mial above, exactly three are fractional power series Y1, Y2 and Y3 that are not formal power
series. The last root, denoted Y0, is a Laurent series with a simple pole at t = 0. Moreover,
(A.5) yields

t =
Y0

2Y0
4 + λY0 + 2

,

so that Q(λ, t) ⊂ Q(λ, Y0). Replacing t by the above expression in (A.5) and factoring by Y −Y0,
we obtain the minimal polynomial M(Y0, Y ) satisfied by the series Y1, Y2, Y3 over Q(λ, Y0) as:

(A.6) M(Y0, Y ) = 2Y0
3Y 3 − Y0

2λY − Y0λY
2 − 2Y0

2 − 2Y0Y − 2Y 2.

This polynomial of degree 3 is irreducible over the field Q(λ, Y0) ⊂ Q(λ)((t)) because other-
wise one of the series Yi’s would belong to Q(λ, Y0) which is impossible since the Yi’s are not
Laurent series in t. Since Q(λ, Y0, F (0), F

′(0), F ′′(0)) ⊂ Q(λ)((t)), the same argument shows
that M(Y0, Y ) remains irreducible over Q(λ, Y0, F (0), F

′(0), F ′′(0)).
Now, since the Yi’s are double roots ofD(F (0), F ′(0), F ′′(0), t(Y0), Y ), the polynomialM(Y0, Y )2

must divide D(F (0), F ′(0), F ′′(0), t(Y0), Y ) so that the remainder R(Y ) in the euclidian divi-
sion of D(F (0), F ′(0), F ′′(0), t(Y0), Y ) by M(Y0, Y )2 should be identically zero. The polynomial
R(Y ) has degree at most 5 (the discriminant has degree 12 and M(Y0, Y )2 has degree 6), and
we write it as

R(Y ) = e1 + e2Y + e3Y
2 + e4Y

3 + e5Y
4 + e6Y

5

‡‡A fractional power series is an element of C[[t1/d]] for some positive integer d.
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with ei a polynomial in Y0, F (0), F ′(0) and F ′′(0). Hence, each of its coefficients gives an
equation ei = 0 on the unknown functions in terms of Y0. We first eliminate F ′′(0) between e1
and e2 which yields an equation e7 between Y0, F (0), F ′(0). We get another such equation e8
by eliminating F ′′(0) between e1 and e3. Finally, eliminating F ′(0) between e7 and e8 yields an
equation e9 over Q(λ) between Y0 and F (0). The polynomial defining the equation e9 factors
into 6 factors. Among these 6 factors, there are two nontrivial algebraic equations for F (0). To
decide which of these factors is a polynomial equation for F (0), we compute the first terms of
the t-expansion F (0) = Q(0, 0, t) (which is easy from the functional equation for Q(X,Y )) and
of Y0(t) (thanks to the Newton method) and we plug these approximations in the two factors of
e9. One finds that F (0) is algebraic of degree 8 over Q(λ)(Y0). One eliminates Y0 thanks to its
functional equation and, thanks to Maple, one verifies that F (0) is algebraic of degree 32 over
Q(t) (see the Maple worksheet). This gives the following result:
Proposition A.1. The series Q(0, 0) is algebraic of degree 8 over Q(λ)(Y0) (for any λ). Hence,
as Y0 is of degree 4 over Q(λ)(t), we conclude that Q(0, 0) is an algebraic series of degree 32
over Q(λ)(t).

We note that any step of our procedure remains valid if one specializes λ to 0 and 1 so that the
excursion series Q(0, 0) of the models G0 and G1 remains algebraic of degree 32 over Q(λ)(Y0).

A.2. Asymptotic for the excursions on the model G0. In [DW15], Denisov and Wachtel
propose a method to compute the asymptotic for the number of excursions when the model
is aperiodic (see [BBMM21, Theorem 3.11] for details). This strategy gives the asymptotic of
the number of excursions for the model Gλ for λ 6= 0 of the form κµnn−5/2. The model G0 is
not aperiodic. [BBMM21, Theorem 3.11] gives the value ( 3

16)
3/4 of the radius fo convergence

of the generating function counting excursions for G0. However, it only gives an upper and
lower bounds for the asymptotic of G0. Using the explicit vanishing polynomial P1(t, y) for
the generating function Q(0, 0) ∈ Q[[t]] of excursions on the model G0 over Q(t), we follow the
method exposed in [FS09] to compute precisely the asymptotics of its coefficients.

We remark that, in the case λ = 0, the coefficients of P1 belong to Q[t4]. Hence, we may
write Q(0, 0) = F (t4) for some F ∈ Q[[t]]. Writing P (t4, y) := P1(t, y), we have that F satisfies
the equation P (t, F (t)) = 0. We thus focus on the asymptotics of the coefficients of the power
series F (t). We follow the method of singularity analysis detailed in [FS09, VII.7.1]. Thus, we
first locate the dominant singularity of F (t), and then compute the Newton polygon at this
singularity to determine its nature.

Proposition A.2. Let αn = q0,04n be the n-th coefficient of F (t), that is, the number of excursions
on the model G0 of length 4n. Then, one has

αn ∼ κ
(
16
3

)3n
n−5/2 with κ ≈ 0.07021064809.

Proof. We refer the reader to the joint Maple worksheet AsymptoticG0.mw for the computation’s
details. We start from the polynomial equation P (t, F (t)) = 0 satisfied by F (t) to perform some
singularity analysis.

We first compute the exceptional set Ξ of P , which provides a set of potential candidates for
the dominant singularity. It is the set of roots of the discriminantR(t) := Res(P (t, y), ∂yP (t, y), y).
From Pringsheim’s Theorem [FS09, Th. IV.6], the radius of convergence ρ = ( 3

16)
3 of F (t) must

be a dominant singularity of F (t). Moreover, we check that no other element of Ξ has norm ρ,
thus ρ is the only dominant singularity of F (t) (see joint Maple worksheet for the computations).
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We now determine the nature of F (t) at this singularity. Computing the Puiseux expansions
of the roots of P (t, Z) at t = ρ, one sees that there are 16 branches that have an algebraic
singularity at ρ with an expansion of the form a+ b(1− t

ρ)+ c(1−
t
ρ)

3/2+O((1− t
ρ)

2), while the
other ones don’t have a singularity at this point. Therefore, from Darboux’s theorem [Mel21,
Proposition 2.11], one has q0,04n ∼ c

Γ(−3
2 )

(
16
3

)3n
n−5/2 where c is the coefficient of (1 − t

ρ)
3/2 in

the Puiseux expansion of F . As Γ(−3
2) ≥ 0, we know that c must be positive. But there is only

one among the 16 constants c that is greater than 0, and Maple gives c ≈ 0.1659268448, which
allows us to conclude. �

Appendix B. Formal computation of decoupling with level lines

As explained in Section 5.5, the evaluation of a regular fraction at an arbitrary pair of elements
in the orbit is expensive from a computer algebra point of view. We describe below a family of
0-chains called symmetric chains which are easy to evaluate on. We will then show that the level
lines introduced in Section 5.5 can be described explicitly in terms of these symmetric chains.
Thus, under Assumption 5.32, Theorem 5.35 yields an expression of the decoupling in the orbit
in terms of symmetric chains which provides a powerful implementation of the computation of
the Galois decoupling of a regular fraction (see the Sage worksheet).

B.1. Symmetric chains on the orbit.
Definition B.1. Let P (X) be a square-free polynomial in C(x, y)[Z]. We define two finite
subsets of K × K to be V 1(P ) = {(u, v) ∈ K × K |P (u) = 0 ∧ S(x, y) = S(u, v)} and V 2(P ) =
{(u, v) ∈ K×K |P (v) = 0 ∧ S(x, y) = S(u, v)}.

We recall here a well known corollary of the theory of symmetric polynomials (see [Lan02,
Theorem 6.1]). Let P (X) be a polynomial with coefficients in a field L and let x1, . . . , xn be its
roots taken with multiplicity in some algebraic closure of L. If H(X) is a rational fraction over
L with denominator relatively prime to P (X), then the sum

∑
iH(xi) is a well defined element

of L. There are numerous effective algorithms to compute such a sum based on resultants, trace
of a companion matrix, Newton formula…(see for example [BFSS06]).

We extend these methods to the computation of s =
∑

(u,v)∈V 1(P )H(u, v, 1/S(x, y)) for P a
square-free polynomial such that V 1(P ) ⊂ O and H(X,Y, t) a regular fraction as follows. By
definition of V 1(P ), we can rewrite s as the double sum

s =
∑

u /P (u)=0

∑
v / K̃(u,v,1/S(x,y))=0

H(u, v, 1/S(x, y)).

Consider the sum
∑

v / K̃(x,v,1/S(x,y))=0
H(x, v, 1/S(x, y)). It is a well-defined element of k(x)

which can be computed efficiently since it is a symmetric function on the roots of the square-free
polynomial K̃(x, Y, 1/S(x, y)). Let Σ(X) be in k(X) such that

Σ(x) =
∑

v / K̃(x,v,1/S(x,y))=0

H(x, v, 1/S(x, y)).

Since the group of the orbit G acts transitively on the orbit and preserves the adjacencies, it is
easily seen that, for any right coordinate of the orbit u, the sum

∑
v / K̃(u,v,1/S(x,y))=0

H(u, v, 1/S(x, y))

coincides with Σ(u). Then, s =
∑

u /P (u)=0Σ(u) is of the desired form and can also be computed
efficiently since it is a symmetric function on the roots of the square-free polynomial P . The
process is symmetric for V 2(P ). These observations motivate the following definition.
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Definition B.2. A symmetric chain is a C-linear combination of 0-chains of the form
∑

a∈V i(P ) a

with P a square-free polynomial such that V i(P ) ⊂ O.

From the above discussion, any regular fraction H(X,Y, t) can be evaluated on a symmetric
chain an efficient way.

B.2. Level lines as symmetric chains. We now motivate the choice of level lines introduced
in Section 5.5, by showing they are symmetric chains which one can construct efficiently. We
recall that the square-free part of a polynomial P in K[Z] is the product of its distinct irreducible
factors and can be computed as P/ gcd(P, P ′).

Now, let P be a polynomial in C(x, y)[Z]. Then we denote by R
K̃,X

(P ) the square-free
part of Res(K̃(X,Z, 1/S(x, y)), P (X), X) in C(x, y)[Z]. Similarly, we define R

K̃,Y
(P ) to be the

square-free part of Res(K̃(Z, Y, 1/S(x, y)), P (Y ), Y ) in C(x, y)[Z]. The following lemmas are
straightforward so that we omit their proofs.

Lemma B.3. Let P (Z) be a polynomial in C(x, y)[Z]. Then,
V 2(R

K̃,X
(P )) = {a ∈ K×K | ∃a′ ∈ V 1(P ), a ∼y a′}

and
V 1(R

K̃,Y
(P )) = {a ∈ K×K | ∃a′ ∈ V 2(P ), a ∼x a′}.

Lemma B.4. Let i be a positive integer. Any element a of Xi is adjacent to some element a′
of Xi−1. Moreover, if i is odd then a ∼y a′ and if i is even then a ∼x a′.

Now, we construct by induction a sequence of square-free polynomials (P x
j (Z))j ∈ C(x, y)[Z]

which satisfy the equations
V 1(P x

2i) = X2i ∪ X2i−1 and V 2(P x
2i+1) = X2i+1 ∪ X2i for all i.

We set P x
0 (Z) = Z − x so that V 1(P x

0 ) = X0 ⊂ O. Now, assume that we have con-
structed the polynomials P x

j (Z) for j = 0, . . . , 2i. By Lemma B.3 and the induction hypothesis,
V 2(R

K̃,X
(P x

2i)) is composed of all the vertices that are y-adjacent to some vertex in X2i∪X2i−1.
Moreover, by the induction hypothesis, V 2(P x

2i−1) = X2i−1∪X2i. Hence, by Lemma B.4 we find
that

V 2(R
K̃,X

(P x
2i)) \ V 2(P x

2i−1) = X2i+1 ∪ X2i.

Hence, if we define P x
2i+1 to be R

K̃,X
(P x

2i) divided by its greatest common divisor with P x
2i−1,

then P x
2i+1 is square-free, and the above equation ensures that V 2(P x

2i+1) = X2i+1 ∪ X2i. We
construct P x

2i+2 using similar arguments. Analogously, one can construct a sequence of square-
free polynomials (P y

j (Z))j ∈ C(x, y)[Z] which satisfy

V 1(P y
2i) = Y2i ∪ Y2i−1 and V 2(P y

2i+1) = Y2i+1 ∪ Y2i for all i,
starting from P y

0 (Z) = Z − y.
As the x-level lines are disjoint sets of vertices, the 0-chain associated with Xi+1 ∪ Xi is just

the sum Xi+1 + Xi. Hence, as X0 and all Xi+1 + Xi are symmetric chains, all the Xi are
symmetric chains as well. The same argument holds for y-level lines. Note that, as expected,
the coefficients of the P x

i are actually in k(x) and the coefficients of the P y
i are in k(y). By

Proposition 3.24, one can identify k(x) (resp. k(y)) with C(X, t) (resp. C(Y, t)) by identifying
1/S(x, y) with t, x with X and y with Y so that the coefficients P x

i (resp. P y
i ) can be considered

in C(X, t) (resp. C(Y, t)). If the orbit is finite, the number of x or y-level lines is also finite.



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 55

Thus, there is only a finite number of polynomials P x
i . In the notation of Section 4.3, the

minimal polynomial µx(Z) of x over k(O) is the vanishing polynomial of the left coordinates of
the orbit. It is therefore equal to the product of the P x

i ’s.

Appendix C. Some more decoupling of orbit types

C.1. The case of Õ12. We represent below the x and y-level lines for the orbit type Õ12:

83

0

11

7

9

4 1 2

5

10

6

X0

X1

X2
21

0

6

7

5

4 3 8

9

10

11

Y0

Y1

Y2

We find the following automorphisms: τx,y = (1 2)(3 8)(4 7)(5 6)(9 11) the vertical reflection,
τx = (0 1 2)(3 5 7)(4 6 8)(9 10 11) the 2π

3 rotation. One can check that their action is transitive
on the x-level lines. As the situation is completely symmetric for y-level lines, Assumption 5.32
holds for this orbit type. Thus, according to Theorem 5.35 and taking ω = 1

12 (X0 +X2 +X3),
the decoupling equation is

(x, y) =
6 + 3

12

(
X0

3
− X1

6

)
+

6 + 3

12

(
Y0
3

− Y1
6

)
+ ω + α

=

(
X0

3
− X1

24
+
X2

12

)
+

(
Y0
4

− Y1
8

)
+ α.

C.2. The case of O18. We represent below the x and y-level lines for the orbit type O18.
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1 2

9

5

10

17

15

16

116

3

14

12

13

8

4

7

3

6 11

17

16

15

9

10

5

21

0

8

4

7

14

12

13

0 Y0

Y1

Y2

Y3

X0

X1

X2

X3

We present some elements belonging to the groups Autx(O) and Auty(O):
τxy = (1 2)(6 11)(4 5)(7 10)(8 9)(13 15)(14 17)(12 16) the vertical reflection,
τy = (0 1 2)(3 4 5)(6 7 9)(8 10 11)(12 13 14)(15 16 17) the 2π

3 rotation for dy(v) ≤ 2 + rotating
each ”ear”,
τx1 = (0 3)(1 6)(2 11)(4 12)(5 16)(7 13)(8 14)(9 17)(10 15) the horizontal reflection,
τx2 = (15 17)(8 10)(4 5)(7 9)(13 14)(1 2) the pinching of the upper ”arms”.
The reader can check that these elements act transitively on their respective level lines which
proves Assumption 5.32 for O18. Thus, according to Theorem 5.35 and taking ω = 1

18 (X0 +X1 +X2 +X3),
the decoupling equation is

(x, y) =
8

18

(
X2

4
− X3

8

)
+

4 + 4 + 8

18

(
X0

2
− X1

4

)
+

6

18

(
Y2
6

− Y3
6

)
+

3 + 6 + 6

18

(
Y0
3

− Y1
3

)
+ ω + α

=

(
X0

2
− X1

6
+
X2

6

)
+

(
5Y0
18

− 5Y1
18

+
Y2
18

− Y3
18

)
+ α.

C.3. Fan models. We study a class of models derived from the ones arising in the enumeration
of plane bipolar orientations (see [BMFR20]). The fan models are derived from those introduced
in [BMFR20, Equation (7)] by a horizontal reflection.
Definition C.1. For i ≥ 0, define Vi(X,Y ) =

∑
0≤j≤iX

jY i−j . If z1, . . . , zp are complex
weights, with zp being nonzero, we define the p-fan to be the model with step polynomial

S(X,Y ) =
1

XY
+
∑
i≤p

ziVi(X,Y ).

By [BBMM21, Proposition 3], the orbits of models related to one another by a reflection are
isomorphic so that one can directly use the orbit computations of Proposition 4.4 in [BMFR20]
to compute the orbit of a p-fan.
Proposition C.2. Let x0, . . . , xp be defined as the roots of the equation S(X, y) = S(x, y) with
x0 = x and xp+1 = y. Moreover, for 0 ≤ i ≤ p+ 1, denote yi = xi.

In particular, yp+1 = y. Then the pairs (xi, yj) with i 6= j form the orbit of the walk for the
p-fan.
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Note that all these models have small backward steps and that they all have an X/Y sym-
metry. As a result, the orbit is of size (p + 2)(p + 1), and the cardinalities of the level lines
are |X0| = p + 1, |X2| = p + 1 and |X1| = p(p + 1). The y-level lines are symmetric. Below is
a depiction of this orbit type, with the indices i and j satisfy 0 < i 6= j < p + 1. Note that
the orbit of the p-fan contains a bicolored square, hence no decoupling of XY is possible (see
Example 5.6).

(x0, yp+1) (xi, yp+1)

(xi, yj)

(xp+1, yj) (xp+1, y0)

(xi, y0)(x0, yj)

X0 X1 X2

Y0

Y1

Y2

The groups Autx(O) and Auty(O) contain particular the following family of automorphisms
φxσ,τ : (xi, yj) 7→ (σ(xi), τ(yj)) with σ and τ some permutations such that σ(x0) = x0, φyσ,τ : (xi, yj) 7→
(σ(xi), τ(yj)) with σ and τ some permutations such that τ(yp+1) = yp+1. This family of au-
tomorphisms acts transitively on the level lines proving Assumption 5.32. Thus using Theo-
rem 5.35 we obtain the decoupling equation of (x, y) as

(x, y) =
(p+ 1) + p(p+ 1)

(p+ 1)(p+ 2)

(
X0

p+ 1
− X1

p(p+ 1)

)
+

(p+ 1) + p(p+ 1)

(p+ 1)(p+ 2)

(
Y0
p+ 1

− Y1
p(p+ 1)

)
+ ω + α

=

(
X0

p+ 1
− X1

p (p+ 1) (p+ 2)
+

X2

(p+ 1) (p+ 2)

)
+

(
Y0
p+ 2

− Y1
p (p+ 2)

)
+ α.

Appendix D. Computation of a Galois group : Hadamard models

Consider S(X,Y ) = P (X)Q(Y ) + R(X) a Hadamard model, with PR and Q nonconstant
Laurent polynomials over C. We first note that the pair ( t

−1−R(X)
P (X) , Q(Y )) is a pair of nontrivial

Galois invariants, hence the orbit of a Hadamard model is always finite by Theorem 4.3. One
can also easily describe its field of Galois invariants.

Proposition D.1. The field of Galois invariants of a Hadamard model given by S(X,Y ) =
P (X)Q(Y ) +R(X) coincides with k(Q(y)).

Proof. Writing Q(Y ) = A(Y )/B(Y ) with A and B relatively prime, we know that the right coor-
dinates of the orbit are the roots of the polynomial µy(Y ) = B(Y )−A(Y )Q(y) ∈ k(Q(y))[Y ] ⊂
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kinv[Y ]. Thus, by Section 4.3, the coefficients of this polynomial generate the field of Galois
invariants, implying that k(Q(y)) ⊂ kinv ⊂ k(Q(y)), which shows the claim. �

The form of the step polynomial of Hadamard models is a strong constraint on the orbit
which has the form of a Cartesian product as described below.

Proposition D.2 (Proposition 3.22 in [BBMM21]). The orbit of a Hadamard model given by
S(X,Y ) = P (X)Q(Y ) + R(X) is of the form x × y where x = x0, . . . , xm−1 the m distinct
solutions xi of P (X)Q(y) + R(X) = P (x)Q(y) + R(x) and y = y0, . . . , yn−1 the n distinct
solutions yi of Q(y) = Q(Y ). Hence, the field k(O) is equal to C(x,y).

Our goal in the rest of this section is to give an explicit description of the group of the walk
for a Hadamard model when the step polynomial is of the form S(X,Y ) = Q(Y ) + R(X) or
P (X)Q(Y ). In that situation, we shall prove that the group of the walk is a direct product of
two simple Galois groups.

Proposition D.3. Consider a Hadamard model with step polynomial of the form Q(Y )+P (X)
or P (X)Q(Y ). The following holds.

• The field kinv is C(P (x), Q(y)).
• In the notation of Proposition D.2, the elements of x satisfy P (xi) = P (x) and the

field extensions C(x)|C(P (x)) and C(y)|C(Q(y)) are both Galois with respective Galois
groups Hx and Hy.

• The group of the walk Gal(k(O)|kinv) is isomorphic to Hx ×Hy.

Before proving Proposition D.3, we recall some terminology. We say that two field extensions
L|K and M |K, subfields of a common field Ω, are algebraically independent if any finite set
of elements of L, that are algebraically independent over K, remains algebraically independent
over M . We say that L|K and M |K are linearly disjoint over K if any finite set of elements
of L, that are K-linearly independent, are linearly independent over M . The field compositum
of L and M is the smallest subfield of Ω that contains L and M . Finally, we say that L|K is
a regular field extension if K is relatively algebraically closed in L and L|K is separable. We
recall that K is relatively algebraically closed in L if any element of L that is algebraic over
K belongs to K. Note that in our setting, all fields are in characteristic zero so L|K is always
separable.

Proof. The proof of the first two items is obvious. First, let us prove that C(x, Q(y))|C(P (x), Q(y))
is Galois with Galois group isomorphic to Hx. We remark that since x and y are algebraically
independent over C, the field extension C(P (x), Q(y))|C(P (x)) is purely transcendental of tran-
scendence degree one, hence regular. Since C(x)|C(P (x)) is an algebraic extension, the element
Q(y) remains transcendental over C(x). Thus, the field extensions C(x) and C(P (x), Q(y)) are
algebraically independent over C(P (x)). Thus, by Lemma 2.6.7 in [FJ23], the fields C(x) and
C(P (x), Q(y)) are linearly disjoint over C(P (x)). Then, the field C(x, Q(y)) that is the com-
positum of C(x) and C(P (x), Q(y)), is Galois over C(P (x), Q(y)) with Galois group isomorphic
to Hx (see page 35 in [FJ23]). Analogously, one can prove that C(y, P (x))|C(P (x)) is Galois
with Galois group Hy.

To conclude, we note that the field extension C(x)|C is regular of transcendence degree 1.
Since x is transcendental over C(y), the fields extensions C(x) and C(y) are algebraically in-
dependent over C and therefore linearly disjoint over C by Lemma 2.6.7 in [FJ23]. By the
tower property of the linear disjointness (Lemma 2.5.3 in [FJ23]), we find that C(x, Q(y)) is
linearly disjoint from C(y) over C(Q(y)). Using once again the tower property, we conclude
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that C(x, Q(y)) and C(y, P (x)) are linearly disjoint over kinv = C(P (x), Q(y)). Lemma 2.5.6 in
[FJ23] implies that the following restriction map is a group isomorphism:

G = Gal(C(x,y)|C(P (x), Q(y))) −→ Gal(C(x, Q(y))|C(P (x), Q(y)))×Gal(C(y, P (x))|C(P (x), Q(y)))
σ 7−→ (σ|C(x,Q(y)), σ|C(y,P (x))).

By the above, we conclude that G is isomorphic to Hx ×Hy. �

Appendix E. The stretched Gessel models

In the classification of models with small steps, four of them were proved algebraic. Among
them, the so called Gessel Model, given by the Laurent polynomial (1 + 1/Y )/X + (1 + Y )X.
It was a notoriously difficult model to study, and the first known proof of algebraicity of its
full generating function used heavy computer algebra (see [BK10]). Among other proofs of this
result, one relied on the general strategy developped in [BBMR21] as presented in Section 2. It
is noteworthy that no purely combinatorial proof of this result yet exists.

. . . ︸ ︷︷ ︸
n

H1 H2 Hn

Figure E.1. The stretched Gessel models

In a private communication, Mireille Bousquet-Mélou suggested that we explore with our
tools a new family of large steps models (Hn)n which she expected to have a finite orbit for
every non-negative integer n. These models are obtained from the Gessel model by stretching
the two rightmost steps (so that we may call the stretched Gessel models). More precisely, they
are defined through the following Laurent polynomial:

Hn(X,Y ) = (1 + 1/Y )/X + (1 + Y )Xn.

Unfortunately, unlike the Gessel model (H1), we checked that the regular fraction XY does not
admit a decoupling (for n ≤ 4), so it seems unlikely that the generating function counting walks
starting from the point (0, 0) for any of these larger models is algebraic.

We may however investigate other starting points (i, j) for the walks on these models for which
the associated generating function might be algebraic. This amounts to testing the decoupling
of the fraction Xi+1Y j+1. Proposition 7.3 in [BBMR21] implies that, for H1, the fractions of
the form XaY b with a, b ≥ 1 that admit a decoupling are those satisfying (a, b) = (k, k) or
(a, b) = (2k, k) for some k ≥ 0. This includes walks starting at (0, 0) (corresponding to the
fraction XY ), but also other starting points, lying on two lines. This result lead us to look for
such points, trying to recover a similar pattern for the higher Hn. To this end, we investigate
systematically the Galois decoupling of monomials XaY b with exponents (a, b) near the origin.
This leads to the following conjecture:

Conjecture E.1. (1) For n ≥ 2 and a, b ≥ 1, the orbit of Hn is finite and the fraction
XaY b admits a t-decoupling with respect to the model Hn if and only if (a, b) = (n, 1)
or (a, b) = ((n+ 1)k, k) for some k.

(2) For (a, b) as above, the generating functions for walks on Hn starting at (a − 1, b − 1)
are algebraic.
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Note that there is a discontinuity between the case n = 1 and the other cases. Mainly, for
n ≥ 2, there is only one conjectured line of algebraic starting points (the line ((n+1)k−1, k−1)))
while the diagonal (k+1, k+1) only exists for H1, being replaced by the single point (n− 1, 0)
for n ≥ 2.

Regarding part (1) of Conjecture E.1, it is easy to prove that XnY admits a decoupling with
respect to Hn for all n, through the following identity:

XnY = − 1

X
+

Y

t(Y + 1)
− XY (1− tHn(X,Y ))

tX(Y + 1)
.

For the decoupling of XaY b with (a, b) = ((n+ 1)k, k), we consider the extension k(x, y)/k(x)
as in § 3.2. This extension has degree 2 because K(x, y, 1/S(x, y)) = 0 and K(x,Z, 1/S(x, y)) is
irreducible of degree 2 over k(x) = Q(1/S(x, y))(x). Hence, k(x, y)/k(x) is automatically Galois
and we denote ιx the generator of Gal(k(x, y)|k(x)). From the relation K̃(x, y, 1/S(x, y)) = 0,
we see that ιx ·y = 1

xn+1y
. Now, let k ≥ 1, and consider the element yk+ιx ·(yk) = yk+ 1

ykxk(n+1) .
It is fixed by ιx, so the Galois correspondence implies that the element yk + 1

ykxk(n+1) is equal
to fk(x) for some fk ∈ k(x). It follows by multiplying the above identity by xk(n+1) that
xk(n+1)yk + 1

yk
= fk(x)x

k(n+1), and thus that (fk(X)Xk(n+1), −1
Y k ) is a Galois decoupling of

Xk(n+1)Y k.
However, we do not have yet a general argument for the only if part. We checked that no

other fraction admits a Galois decoupling for 2 ≤ n ≤ 4 and 0 ≤ a, b ≤ 10 (see the Sage
notebook).

Regarding part (2), we applied the strategy presented in Section 2 to prove the algebraicity
of the models Hn with starting points (n, 0) and (n− 1, 0) and n ∈ {2, 3} (four models, see the
Maple worksheet). This illustrates the robustness of the strategy and the significance of our
systematic method to test decoupling, allowing to formulate such conjectures.
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