Using the native mesh partitioning capabilities of Scotch 4.0 in a parallel industrial electro-magnetics code

François PELLEGRINI

INRIA Futurs, project ScAlApplix

David GOUDIN

Problem to solve (1)

Simulation of the electro-magnetic behavior of a 3D complex target in the frequency domain

 Numerical resolution of Maxwell's equations in the free space

Problem to solve (2)

- Hybrid method
 - Problem is partitioned into two subdomains
 - Exterior domain
 - Boundary Integral Equations method
 - Surfacic mesh, dense matrix
 - Interior domain
 - Partial Derivative Equations method
 - Volumic mesh, sparse matrix

Exterior domain

Interior domain

- Large linear system to solve by direct methods
 - Dense part → ScalAPack
 - Sparse part → Emilio

Solving the sparse system in parallel

- By means of the Emilio software chain :
 - Mesh reordering : sequential (Scotch)
 - Block symbolic factorization : sequential (Fax)
 - Block distribution and mapping : sequential (Blend)
 - Mapping of elements : parallel (Sacha)
 - Matrix and RHS vector assembly
 - Setting of boundary conditions
 - Factorization and triangular resolution : parallel (PaStix)

(See PP04 MS43)

Block symbolic factorization

- Performed based on the block ordering computed by Scotch
- $Q(G,P) \rightarrow Q(G,P) *=Q(G^*,P)$
- Linear time and space complexities
- Block data structures
 - Only a few pointers
 - Use of BLAS3 primitives
- Not the main bottleneck...

Graph block ordering

- By means of the Scotch software
- Originally based on graph heuristics
 - Tight coupling of Nested Dissection and Minimum Degree methods
 - Nested dissection → concurrency
 - Minimum degree → reduction of memory overhead
- All of the nodes of every element must be connected into cliques
 - Obligation to build a nodal graph in addition to the mesh
 - Huge memory overhead for 3D graphs

Mesh block ordering

- Works directly on the mesh structure rather than on the graph structure
 - Bipartite graph : nodes and elements
 - Node-node adjacency computed dynamically from node-element and element-node adjacencies (hashing)

Expected gains

- Let us assume :
 - δ : graph connectivity
 - ζ : number of nodes adjacent to a given element
 - η : number of elements adjacent to a given node
- Then, for some classical mesh topologies :

Mesh type	δ	ζ	η	Graph size	Mesh size	Ratio
2D triangles	6	3	6	7 n	15 n	2.14
2D grid, 8 points	8	4	4	9 n	10 n	1.11
3D grid, 26 points	26	8	8	27 n	17 n	0.62
Hexagons	12	6	3	13 n	7.5 n	0.57

Gains should be important for 3D meshes

Experimental results

Three representative test cases provided by CEA

Mesh name	δ	ζ	η	Nodes	Elements	Mesh edges	Graph edges	Ratio
altr4	12.5	6	3.8	26089	16638	99828	163038	0.75
chanel1m	13.1	6	4.0	80592	54899	329394	526860	0.77
conesphere	15.2	6	5.1	1055039	887428	5324568	8023236	0.80

Ordering results (Power3-based workstation, 8Gb)

Mesh name		Graph orde	ering	Mesh ordering				
	NNZ	OPC	Mem	CPU	NNZ	OPC	Mem	CPU
altr4	2.03E+06	3.94E+08	10673	1.7	1.94E+06	3.86E+08	11268	4.0
chanel1m	8.95E+06	2.63E+09	36869	6.4	8.80E+06	2.72E+09	20050	15.8
conesphere	5.58E+08	1.81E+12	155883	122.2	6.01E+08	2.07E+12	52125	402.2

Analysis of mesh ordering results

- Memory gains are very significant
 - One third of memory used for the 1M unknowns case with respect to graph ordering
- Quality is :
 - Better for smaller meshes
 - Becomes worse for larger meshes
 - Related to the quality of the mesh coarsening routine
- Time overhead is significant
 - 2.5 times more for medium case
 - Ratio increases for large graphs

Here again related to the quality of mesh coarsening INRIA

Partial conclusion

- Validation of the approach in this industrial context
 - Orderings of meshes of more than 2M unknowns have been computed on workstations with 2Gb of memory
 - Can be successfully applied to other domains
- The bottleneck is now the meshing of the test cases
 - Available meshing software can hardly mesh above 3M unknowns
- The Scotch 4.0 software distribution will soon be available as a LGPL'ed libre software package
 - Usable as a testbed for other partitioning and ordering methods

Ongoing work within the Scotch project

- Design of more efficient mesh coarsening methods
- Design of native minimum degree methods for meshes (collaboration with P. Amestoy, ENSEEITH)
- Efficient coupling of nested dissection and minimum degree methods
 - Criteria for switching between them based on topology
- Mesh static mapping
 - Reduce number of neighbor processors per subdomain
- Parallel graph and mesh partitioning
 - Towards the billion of unknowns...

