y

n-.h.a'-.h.n-.n-.-|.n-.n-.h.l-ah.n-.n-.h.uah.n-.n-.h.l|.n-.h.n-.l-a'-.n-.h.n-.l-a'-.n-.h.n-.l|.h.n-.n-.h.a'-.h.n-.n-.h.a'-.h.n-.n-.-|.n-.n-.h.l-ah.n-.n-.h.uah.n-.n-.h.l|.n-.h.n-.l-a'-.n-.hh.b&-.h.mi.mh.h&-.mm&-.\mﬁm%\

ny
2
-

3

-
Py Py - -

-.:-.1h:f-.1h:-.1h!-uhuh!&iiifiiih&-uuuh!iﬂiifiiﬂ ek
= = = Aot R e

PT-ScorcH and LiIBPTScoTcH 6.0
User’s Guide

(version 6.0.5)

Francois Pellegrini
Université Bordeaux 1 & LaBRI, UMR CNRS 5800
Bacchus team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE
pelegrin@labri.fr

February 11, 2018

Abstract

This document describes the capabilities and operations of PT-SCOTCH
and LIBSCOTCH, a software package and a software library which compute par-
allel static mappings and parallel sparse matrix block orderings of distributed
graphs. It gives brief descriptions of the algorithms, details the input/output
formats, instructions for use, installation procedures, and provides a number
of examples.

PT-ScotcH is distributed as free/libre software, and has been designed
such that new partitioning or ordering methods can be added in a straight-
forward manner. It can therefore be used as a testbed for the easy and quick
coding and testing of such new methods, and may also be redistributed, as
a library, along with third-party software that makes use of it, either in its
original or in updated forms.

Contents

1

Introduction 4
1.1 Static mapping o 4
1.2 Sparse matrix ordering oL Lo 5
1.3 Contents of this document 5
The SCOTCH project 6
2.1 Description 6
2.2 Availability 6
Algorithms 6
3.1 Parallel static mapping by Dual Recursive Bipartitioning 6
3.1.1 Staticmapping 7
3.1.2 Cost function and performance criteria 7
3.1.3 The Dual Recursive Bipartitioning algorithm 8
3.1.4 Partial cost functiono oL 9
3.1.5 Parallel graph bipartitioning methods 10
3.1.6 Mapping onto variable-sized architectures 11
3.2 Parallel sparse matrix ordering by hybrid incomplete nested dissection 12
3.2.1 Hybrid incomplete nested dissection 12
3.2.2 Parallel ordering oL 13
3.2.3 Performance criteria oo 16
Updates 17
4.1 Changes from version 5.0 oL 17
4.2 Changes from version 5.1 Lo 17
Files and data structures 17
5.1 Distributed graph files Lo 17
Programs 19
6.1 Invocation 19
6.2 Filenames. 19
6.2.1 Sequential and parallel file opening 19
6.2.2 Using compressed files 20
6.3 Description L e 21
6.3.1 dgmap /dgpart. 21
6.3.2 dgord 22
6.3.3 dgpart 24
6.3.4 dgscat 24
6.3.5 dgtst 25
Library 25
7.1 Running at proper thread level 26
7.2 Calling the routines of LIBSCOTCH 26
7.2.1 CQalling from C o 26
7.2.2 Calling from Fortran 0oL 27
7.2.3 Compiling and linkingo 28
7.2.4 Machine word size issues 29
7.3 Dataformats 30
7.3.1 Distributed graph format 30

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.3.2 Block ordering format oo 35

Strategy strings L L 36
7.4.1 Using default strategy strings 36
7.4.2 Parallel mapping strategy strings 37
7.4.3 Parallel graph bipartitioning strategy strings 38
7.4.4 Parallel ordering strategy strings 41
7.4.5 Parallel node separation strategy strings 43
Distributed graph handling routines 46
7.5.1 SCOTCH.dgraphAlloc. 46
7.5.2 SCOTCH.dgraphBand 46
7.5.3 SCOTCH.dgraphBuild. 47
7.5.4 SCOTCH.dgraphCheck. 49
7.5.0 SCOTCH.dgraphCoarsen 50
7.5.6 SCOTCH.dgraphData 51
7.5.7 SCOTCH.dgraphExit 53
7.5.8 SCOTCH.dgraphFree 53
7.5.9 SCOTCH.dgraphGather 54
7.5.10 SCOTCH.dgraphInducePart 54
7.5.11 SCOTCH.dgraphInit 56
7.5.12 SCOTCH.dgraphRedist 56
7.5.13 SCOTCH_dgraphScatter 57
7.5.14 SCOTCH.dgraphSize o8
Distributed graph I/O routines 59
7.6.1 SCOTCH.dgraphLoad 59
7.6.2 SCOTCH.dgraphSave 60
Data handling and exchange routines 60
7.7.1 SCOTCH.dgraphGhst 60
7.7.2 SCOTCH.dgraphHalo 61
7.7.3 SCOTCH.dgraphHaloAsync 62
7.7.4 SCOTCH.dgraphHaloWait. 63
Distributed graph mapping and partitioning routines 63
7.8.1 SCOTCH.dgraphMap 63
7.8.2 SCOTCH.dgraphMapCompute 64
7.8.3 SCOTCH.dgraphMapExit 65
7.8.4 SCOTCH.dgraphMapInit 65
7.8.0 SCOTCH.dgraphMapSave 66
7.8.6 SCOTCH.dgraphPart 66
Distributed graph ordering routines. 67
7.9.1 SCOTCH.dgraphOrderCblkDist 67
7.9.2 SCOTCH_dgraphOrderCompute 67
7.9.3 SCOTCH.dgraphOrderExit 68
7.9.4 SCOTCH.dgraphOrderInit 68
7.9.5 SCOTCH.dgraphOrderSave 69
7.9.6 SCOTCH.dgraphOrderSaveMap 69
7.9.7 SCOTCH.dgraphOrderSaveTree 70
7.9.8 SCOTCH.dgraphOrderPerm 71
7.9.9 SCOTCH.dgraphOrderTreeDist 71
Centralized ordering handling routines 72
7.10.1 SCOTCH.dgraphCorderExit 72
7.10.2 SCOTCH.dgraphCorderInit 73
7.10.3 SCOTCH.dgraphOrderGather 74

7.11 Strategy handling routines 74

7.11.1 SCOTCH.stratExit 74
7.11.2 SCOTCH.stratInit 75
7.11.3 SCOTCH_stratSave o v v v v i v v 75
7.12 Strategy creation routines 76
7.12.1 SCOTCH._stratDgraphMap. 76
7.12.2 SCOTCH_stratDgraphMapBuild 76
7.12.3 SCOTCH_stratDgraphOrder 7
7.12.4 SCOTCH_stratDgraphOrderBuild 78
7.13 Other data structure routines 78
7.13.1 SCOTCH.dmapAlloc 78
7.13.2 SCOTCH.dorderAllocC. v v v i v v v vt 79
7.14 Error handling routines L oL 79
7.14.1 SCOTCH_errorPrint 79
7.14.2 SCOTCH_errorPrintW. 80
7.14.3 SCOTCH_errorProg 80
7.15 Miscellaneous routines Lo 80
7.15.1 SCOTCHmemCur« o v v v it et it 80
7.15.2 SCOTCHmemMax« v v v v i i ittt 81
7.15.3 SCOTCH.randomProc 81
7.15.4 SCOTCHrandomReset 82
7.15.5 SCOTCH.randomSeed v v i, 82
7.16 PARMEIDS compatibility library 83
7.16.1 ParMETIS. V3 NodeND v ... 83
7.16.2 ParMETIS V3 PartGeomKway 84
7.16.3 ParMETIS.V3 PartKway 85

8 Installation 86
8.1 Threadissues 86
8.2 File compressionissues Lo 86
8.3 Machine word size issueso 86
9 Examples 87

1 Introduction

1.1 Static mapping

The efficient execution of a parallel program on a parallel machine requires that
the communicating processes of the program be assigned to the processors of the
machine so as to minimize its overall running time. When processes have a limited
duration and their logical dependencies are accounted for, this optimization problem
is referred to as scheduling. When processes are assumed to coexist simultaneously
for the entire duration of the program, it is referred to as mapping. It amounts to
balancing the computational weight of the processes among the processors of the
machine, while reducing the cost of communication by keeping intensively inter-
communicating processes on nearby processors.

In most cases, the underlying computational structure of the parallel programs
to map can be conveniently modeled as a graph in which vertices correspond to
processes that handle distributed pieces of data, and edges reflect data dependencies.
The mapping problem can then be addressed by assigning processor labels to the

vertices of the graph, so that all processes assigned to some processor are loaded
and run on it. In a SPMD context, this is equivalent to the distribution across
processors of the data structures of parallel programs; in this case, all pieces of data
assigned to some processor are handled by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the program.
Static mapping is NP-complete in the general case [10]. Therefore, many studies
have been carried out in order to find sub-optimal solutions in reasonable time,
including the development of specific algorithms for common topologies such as the
hypercube [8, 16]. When the target machine is assumed to have a communication
network in the shape of a complete graph, the static mapping problem turns into the
partitioning problem, which has also been intensely studied [3, 17, 25, 26, 40]. How-
ever, when mapping onto parallel machines the communication network of which is
not a bus, not accounting for the topology of the target machine usually leads to
worse running times, because simple cut minimization can induce more expensive
long-distance communication [16, 43]; the static mapping problem is gaining pop-
ularity as most of the newer massively parallel machines have a strongly NUMA
architecture

1.2 Sparse matrix ordering

Many scientific and engineering problems can be modeled by sparse linear systems,
which are solved either by iterative or direct methods. To achieve efficiency with di-
rect methods, one must minimize the fill-in induced by factorization. This fill-in is a
direct consequence of the order in which the unknowns of the linear system are num-
bered, and its effects are critical both in terms of memory and of computation costs.

Because there always exist large problem graphs which cannot fit in the memory
of sequential computers and cost too much to partition, it is necessary to resort to
parallel graph ordering tools. PT-ScOTCH provides such features.

1.3 Contents of this document

This document describes the capabilities and operations of PT-SCOTCH, a software
package devoted to parallel static mapping and sparse matrix block ordering. It is
the parallel extension of SCOTCH, a sequential software package devoted to static
mapping, graph and mesh partitioning, and sparse matrix block ordering. While
both packages share a significant amount of code, because PT-SCOTCH transfers
control to the sequential routines of the LIBSCOTCH library when the subgraphs on
which it operates are located on a single processor, the two sets of routines have
a distinct user’s manual. Readers interested in the sequential features of SCOTCH
should refer to the ScoTcH User’s Guide [35].

The rest of this manual is organized as follows. Section 2 presents the goals
of the SCOTCH project, and section 3 outlines the most important aspects of the
parallel partitioning and ordering algorithms that it implements. Section 5 defines
the formats of the files used in PT-SCOTCH, section 6 describes the programs of
the PT-ScoTcH distribution, and section 7 defines the interface and operations of
the parallel routines of the LIBSCOTCH library. Section 8 explains how to obtain
and install the ScoTCH distribution. Finally, some practical examples are given in
section 9.

2 The ScoTCH project

2.1 Description

SCOTCH is a project carried out at the Laboratoire Bordelais de Recherche en Infor-
matique (LaBRI) of the Université Bordeaux I, and now within the Bacchus project
of INRIA Bordeaux Sud-Ouest. Its goal is to study the applications of graph theory
to scientific computing, using a “divide and conquer” approach.

It focused first on static mapping, and has resulted in the development of the
Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of
several graph bipartitioning heuristics [33], all of which have been implemented in
the SCOTCH software package [37]. Then, it focused on the computation of high-
quality vertex separators for the ordering of sparse matrices by nested dissection, by
extending the work that has been done on graph partitioning in the context of static
mapping [38, 39]. More recently, the ordering capabilities of SCOTCH have been
extended to native mesh structures, thanks to hypergraph partitioning algorithms.
New graph partitioning methods have also been recently added [6, 34]. Version 5.0
of SCOTCH was the first one to comprise parallel graph ordering routines [7], and
version 5.1 started offering parallel graph partitioning features, while parallel static
mapping will be available in the next release.

2.2 Availability

Starting from version 4.0, which has been developed at INRIA within the ScAlAp-
plix project, SCOTCH is available under a dual licensing basis. On the one hand, it
is downloadable from the SCOTCH web page as free/libre software, to all interested
parties willing to use it as a library or to contribute to it as a testbed for new
partitioning and ordering methods. On the other hand, it can also be distributed,
under other types of licenses and conditions, to parties willing to embed it tightly
into closed, proprietary software.

The free/libre software license under which ScoTcH 6.0 is distributed is
the CeCILL-C license [4], which has basically the same features as the GNU
LGPL (“Lesser General Public License”) [29]: ability to link the code as a
library to any free/libre or even proprietary software, ability to modify the
code and to redistribute these modifications. Version 4.0 of SCOTCH was dis-
tributed under the LGPL itself. This version did not comprise any parallel features.

Please refer to section 8 to see how to obtain the free/libre distribution of
SCOTCH.

3 Algorithms

3.1 Parallel static mapping by Dual Recursive Bipartitioning

For a detailed description of the sequential implementation of this mapping algo-
rithm and an extensive analysis of its performance, please refer to [33, 36]. In the
next sections, we will only outline the most important aspects of the algorithm.

3.1.1 Static mapping

The parallel program to be mapped onto the target architecture is modeled by a val-
uated unoriented graph S called source graph or process graph, the vertices of which
represent the processes of the parallel program, and the edges of which the commu-
nication channels between communicating processes. Vertex- and edge- valuations
associate with every vertex vg and every edge eg of S integer numbers wg(vg) and
wg(eg) which estimate the computation weight of the corresponding process and
the amount of communication to be transmitted on the channel, respectively.

The target machine onto which is mapped the parallel program is also modeled
by a valuated unoriented graph 7" called target graph or architecture graph. Vertices
vr and edges er of T are assigned integer weights wr(vr) and wr(er), which
estimate the computational power of the corresponding processor and the cost of
traversal of the inter-processor link, respectively.

A mapping from S to T consists of two applications 7¢ , : V(S) — V(T') and
psr : E(S) — P(E(T)), where P(E(T)) denotes the set of all simple loopless
paths which can be built from E(T'). 75,(vs) = vr if process vg of S is mapped
onto processor vr of T, and psr(es) = {ek, e, ..., el} if communication channel
es of S is routed through communication links e, €2, ..., e of T. |psr(es)]
denotes the dilation of edge eg, that is, the number of edges of E(T") used to route
es.

3.1.2 Cost function and performance criteria

The computation of efficient static mappings requires an a priori knowledge of the
dynamic behavior of the target machine with respect to the programs which are
run on it. This knowledge is synthesized in a cost function, the nature of which
determines the characteristics of the desired optimal mappings. The goal of our
mapping algorithm is to minimize some communication cost function, while keeping
the load balance within a specified tolerance. The communication cost function fo
that we have chosen is the sum, for all edges, of their dilation multiplied by their
weight:
fe (s, ps.r) = Z ws(es) |psr(es)| -

esEE(S)

This function, which has already been considered by several authors for hypercube
target topologies [8, 16, 20], has several interesting properties: it is easy to compute,
allows incremental updates performed by iterative algorithms, and its minimization
favors the mapping of intensively intercommunicating processes onto nearby pro-
cessors; regardless of the type of routage implemented on the target machine (store-
and-forward or cut-through), it models the traffic on the interconnection network
and thus the risk of congestion.

The strong positive correlation between values of this function and effective
execution times has been experimentally verified by Hammond [16] on the CM-2,
and by Hendrickson and Leland [21] on the nCUBE 2.

The quality of mappings is evaluated with respect to the criteria for quality that
we have chosen: the balance of the computation load across processors, and the
minimization of the interprocessor communication cost modeled by function fe.
These criteria lead to the definition of several parameters, which are described
below.

For load balance, one can define fimqp, the average load per computational
power unit (which does not depend on the mapping), and d,,qp, the load imbalance

ratio, as

> ws(vs)

def VSEV(S)

ma - T~ d
e = 5 (o)
vreV(T)
— > ws(vs)| — Hmap
vy |\ s S
5 det 78,7 (vs) = vr
mer > ws(vs)
vs€V(S)

However, since the maximum load imbalance ratio is provided by the user in input
of the mapping, the information given by these parameters is of little interest, since
what matters is the minimization of the communication cost function under this
load balance constraint.

For communication, the straightforward parameter to consider is fo. It can be
normalized as peqp, the average edge expansion, which can be compared to pgi,
the average edge dilation; these are defined as

> psx(es)
det es€E(S)

def 123
= and Hdil = S|

Hexp = Z wS(es)
esEE(S)

Seap = /Zedif is smaller than 1 when the mapper succeeds in putting heavily inter-

communicating processes closer to each other than it does for lightly communicating
processes; they are equal if all edges have same weight.

3.1.3 The Dual Recursive Bipartitioning algorithm

Our mapping algorithm uses a divide and conquer approach to recursively allocate
subsets of processes to subsets of processors [33].

It starts by considering a set of processors, also called domain, containing all
the processors of the target machine, and with which is associated the set of all
the processes to map. At each step, the algorithm bipartitions a yet unprocessed
domain into two disjoint subdomains, and calls a graph bipartitioning algorithm to
split the subset of processes associated with the domain across the two subdomains,
as sketched in the following.
mapping (D, P)

Set_0f_Processors D;

Set_0f_Processes P;

{
Set_0f_Processors DO, Di;
Set_0f_Processes PO, P1;

if (|P| == 0) return; /* If nothing to do. */

if (ID] == 1) { /* If one processor in D */
result (D, P); /* P is mapped onto it. */
return;

}

(DO, D1) = processor_bipartition (D);
(PO, P1) = process_bipartition (P, DO, D1);
mapping (DO, PO); /* Perform recursion. */
mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of
the process graph. As bipartitionings are performed, the subdomain sizes decrease,

up to give a complete mapping when all subdomains are of size one.

The above algorithm lies on the ability to define five main objects:

e a domain structure, which represents a set of processors in the target archi-
tecture;

e a domain bipartitioning function, which, given a domain, bipartitions it in
two disjoint subdomains;

e a domain distance function, which gives, in the target graph, a measure of the
distance between two disjoint domains. Since domains may not be convex nor
connected, this distance may be estimated. However, it must respect certain
homogeneity properties, such as giving more accurate results as domain sizes
decrease. The domain distance function is used by the graph bipartitioning
algorithms to compute the communication function to minimize, since it allows
the mapper to estimate the dilation of the edges that link vertices which belong
to different domains. Using such a distance function amounts to considering
that all routings will use shortest paths on the target architecture, which
is how most parallel machines actually do. We have thus chosen that our
program would not provide routings for the communication channels, leaving
their handling to the communication system of the target machine;

e a process subgraph structure, which represents the subgraph induced by a
subset of the vertex set of the original source graph;

e a process subgraph bipartitioning function, which bipartitions subgraphs in
two disjoint pieces to be mapped onto the two subdomains computed by the
domain bipartitioning function.

All these routines are seen as black boxes by the mapping program, which can thus
accept any kind of target architecture and process bipartitioning functions.

3.1.4 Partial cost function

The production of efficient complete mappings requires that all graph bipartition-
ings favor the criteria that we have chosen. Therefore, the bipartitioning of a
subgraph S’ of S should maintain load balance within the user-specified tolerance,
and minimize the partial communication cost function f(,, defined as

folrsapsa) B) ws({o,0'}) [psa({v, 0]

v e V(S
{v,v'} € B(9)

which accounts for the dilation of edges internal to subgraph S’ as well as for the
one of edges which belong to the cocycle of S/, as shown in Figure 1. Taking into
account the partial mapping results issued by previous bipartitionings makes it pos-
sible to avoid local choices that might prove globally bad, as explained below. This
amounts to incorporating additional constraints to the standard graph bipartition-
ing problem, turning it into a more general optimization problem termed as skewed
graph partitioning by some authors [23].

Do D

a. Initial position. b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when
bipartitioning the subgraph associated with domain D between the two subdomains
Dy and Dy of D. Dotted edges are of dilation zero, their two ends being mapped
onto the same subdomain. Thin edges are cocycle edges.

3.1.5 Parallel graph bipartitioning methods

The core of our parallel recursive mapping algorithm uses process graph parallel
bipartitioning methods as black boxes. It allows the mapper to run any type of
graph bipartitioning method compatible with our criteria for quality. Bipartitioning
jobs maintain an internal image of the current bipartition, indicating for every vertex
of the job whether it is currently assigned to the first or to the second subdomain. It
is therefore possible to apply several different methods in sequence, each one starting
from the result of the previous one, and to select the methods with respect to the
job characteristics, thus enabling us to define mapping strategies. The currently
implemented graph bipartitioning methods are listed below.

Band

Like the multi-level method which will be described below, the band method
is a meta-algorithm, in the sense that it does not itself compute partitions, but
rather helps other partitioning algorithms perform better. It is a refinement
algorithm which, from a given initial partition, extracts a band graph of given
width (which only contains graph vertices that are at most at this distance
from the separator), calls a partitioning strategy on this band graph, and
prolongs! back the refined partition on the original graph. This method was
designed to be able to use expensive partitioning heuristics, such as genetic
algorithms, on large graphs, as it dramatically reduces the problem space by
several orders of magnitude. However, it was found that, in a multi-level
context, it also improves partition quality, by coercing partitions in a problem
space that derives from the one which was globally defined at the coarsest
level, thus preventing local optimization refinement algorithms to be trapped
in local optima of the finer graphs [6].

Diffusion
This global optimization method, the sequential formulation of which is pre-
sented in [34], flows two kinds of antagonistic liquids, scotch and anti-scotch,
from two source vertices, and sets the new frontier as the limit between ver-
tices which contain scotch and the ones which contain anti-scotch. In order to

IWhile a projection is an application to a space of lower dimension, a prolongation refers to
an application to a space of higher dimension. Yet, the term projection is also commonly used to
refer to such a propagation, most often in the context of a multilevel framework.

10

add load-balancing constraints to the algorithm, a constant amount of liquid
disappears from every vertex per unit of time, so that no domain can spread
across more than half of the vertices. Because selecting the source vertices is
essential to the obtainment of useful results, this method has been hard-coded
so that the two source vertices are the two vertices of highest indices, since
in the band method these are the anchor vertices which represent all of the
removed vertices of each part. Therefore, this method must be used on band
graphs only, or on specifically crafted graphs.

Multi-level
This algorithm, which has been studied by several authors [3, 18, 25] and
should be considered as a strategy rather than as a method since it uses other
methods as parameters, repeatedly reduces the size of the graph to bipartition
by finding matchings that collapse vertices and edges, computes a partition for
the coarsest graph obtained, and prolongs the result back to the original graph,
as shown in Figure 2. The multi-level method, when used in conjunction with

Refined partitiol
O PrOJeCted partlt@

Coarsening Uncoarsening
phase phase

Initial partitioning

Figure 2: The multi-level partitioning process. In the uncoarsening phase, the light
and bold lines represent for each level the prolonged partition obtained from the
coarser graph, and the partition obtained after refinement, respectively.

the banded diffusion method to refine the prolonged partitions at every level,
usually stabilizes quality irrespective of the number of processors which run
the parallel static mapper.

3.1.6 Mapping onto variable-sized architectures

Several constrained graph partitioning problems can be modeled as mapping the
problem graph onto a target architecture, the number of vertices and topology of
which depend dynamically on the structure of the subgraphs to bipartition at each
step.

Variable-sized architectures are supported by the DRB algorithm in the follow-
ing way: at the end of each bipartitioning step, if any of the variable subdomains
is empty (that is, all vertices of the subgraph are mapped only to one of the sub-
domains), then the DRB process stops for both subdomains, and all of the vertices
are assigned to their parent subdomain; else, if a variable subdomain has only one
vertex mapped onto it, the DRB process stops for this subdomain, and the vertex
is assigned to it.

The moment when to stop the DRB process for a specific subgraph can be con-
trolled by defining a bipartitioning strategy that tests for the validity of a criterion

11

at each bipartitioning step, and maps all of the subgraph vertices to one of the
subdomains when it becomes false.

3.2 Parallel sparse matrix ordering by hybrid incomplete
nested dissection

When solving large sparse linear systems of the form Ax = b, it is common to
precede the numerical factorization by a symmetric reordering. This reordering is
chosen in such a way that pivoting down the diagonal in order on the resulting
permuted matrix PAPT produces much less fill-in and work than computing the
factors of A by pivoting down the diagonal in the original order (the fill-in is the
set of zero entries in A that become non-zero in the factored matrix).

3.2.1 Hybrid incomplete nested dissection

The minimum degree and nested dissection algorithms are the two most popular
reordering schemes used to reduce fill-in and operation count when factoring and
solving sparse matrices.

The minimum degree algorithm [42] is a local heuristic that performs its pivot
selection by iteratively selecting from the graph a node of minimum degree. It is
known to be a very fast and general purpose algorithm, and has received much
attention over the last three decades (see for example [1, 13, 31]). However, the
algorithm is intrinsically sequential, and very little can be theoretically proved
about its efficiency.

The nested dissection algorithm [14] is a global, recursive heuristic algorithm
which computes a vertex set S that separates the graph into two parts A and B, or-
dering S with the highest remaining indices. It then proceeds recursively on parts A
and B until their sizes become smaller than some threshold value. This ordering
guarantees that, at each step, no non zero term can appear in the factorization
process between unknowns of A and unknowns of B.

Many theoretical results have been obtained on nested dissection order-
ing [5, 30], and its divide and conquer nature makes it easily parallelizable.
The main issue of the nested dissection ordering algorithm is thus to find small
vertex separators that balance the remaining subgraphs as evenly as possible.
Provided that good vertex separators are found, the nested dissection algorithm
produces orderings which, both in terms of fill-in and operation count, compare
favorably [15, 25, 38] to the ones obtained with the minimum degree algorithm [31].
Moreover, the elimination trees induced by nested dissection are broader, shorter,
and better balanced, and therefore exhibit much more concurrency in the con-
text of parallel Cholesky factorization [2, 11, 12, 15, 38, 41, and included references].

Due to their complementary nature, several schemes have been proposed to
hybridize the two methods [24, 27, 38]. Our implementation is based on a tight
coupling of the nested dissection and minimum degree algorithms, that allows each
of them to take advantage of the information computed by the other [39].

However, because we do not provide a parallel implementation of the minimum
degree algorithm, this hybridization scheme can only take place after enough steps
of parallel nested dissection have been performed, such that the subgraphs to be
ordered by minimum degree are centralized on individual processors.

12

3.2.2 Parallel ordering

The parallel computation of orderings in PT-SCOTCH involves three different levels
of concurrency, corresponding to three key steps of the nested dissection process:
the nested dissection algorithm itself, the multi-level coarsening algorithm used to
compute separators at each step of the nested dissection process, and the refinement
of the obtained separators. Each of these steps is described below.

Nested dissection As said above, the first level of concurrency relates to the
parallelization of the nested dissection method itself, which is straightforward thanks
to the intrinsically concurrent nature of the algorithm. Starting from the initial
graph, arbitrarily distributed across p processors but preferably balanced in terms
of vertices, the algorithm proceeds as illustrated in Figure 3 : once a separator
has been computed in parallel, by means of a method described below, each of
the p processors participates in the building of the distributed induced subgraph
corresponding to the first separated part (even if some processors do not have any
vertex of it). This induced subgraph is then folded onto the first [§] processors, such
that the average number of vertices per processor, which guarantees efficiency as it
allows the shadowing of communications by a subsequent amount of computation,
remains constant. During the folding process, vertices and adjacency lists owned
by the |£] sender processors are redistributed to the [£] receiver processors so as
to evenly balance their loads.

The same procedure is used to build, on the [£] remaining processors, the
folded induced subgraph corresponding to the second part. These two constructions
being completely independent, the computations of the two induced subgraphs and
their folding can be performed in parallel, thanks to the temporary creation of an
extra thread per processor. When the vertices of the separated graph are evenly
distributed across the processors, this feature favors load balancing in the subgraph
building phase, because processors which do not have many vertices of one part
will have the rest of their vertices in the other part, thus yielding the same overall
workload to create both graphs in the same time. This feature can be disabled
when the communication system of the target machine is not thread-safe.

At the end of the folding process, every processor has a folded subgraph fragment
of one of the two folded subgraphs, and the nested dissection process car recursively
proceed independently on each subgroup of § (then %, &, etc.) processors, until
each subgroup is reduced to a single processor. From then on, the nested dissection
process will go on sequentially on every processor, using the nested dissection rou-
tines of the SCOTCH library, eventually ending in a coupling with minimum degree

methods [39], as described in the previous section.

Graph coarsening The second level of concurrency concerns the computation
of separators. The approach we have chosen is the now classical multi-level one [3,
22, 27]. Tt consists in repeatedly computing a set of increasingly coarser albeit
topologically similar versions of the graph to separate, by finding matchings which
collapse vertices and edges, until the coarsest graph obtained is no larger than a
few hundreds of vertices, then computing a separator on this coarsest graph, and
prolonging back this separator, from coarser to finer graphs, up to the original graph.
Most often, a local optimization algorithm, such as Kernighan-Lin [28] or Fiduccia-
Mattheyses [9] (FM), is used in the uncoarsening phase to refine the partition that
is prolonged back at every level, such that the granularity of the solution is the one
of the original graph and not the one of the coarsest graph.

13

- D —
/
P
R p) —
P2
A o
0

P %P3 e
P

Figure 3: Diagram of a nested dissection step for a (sub-)graph distributed across
four processors. Once the separator is known, the two induced subgraphs are built
and folded (this can be done in parallel for both subgraphs), yielding two subgraphs,
each of them distributed across two processors.

The main features of our implementation are outlined in Figure 4. Once the
matching phase is complete, the coarsened subgraph building phase takes place.
It can be parametrized so as to allow one to choose between two options. Either
all coarsened vertices are kept on their local processors (that is, processors that
hold at least one of the ends of the coarsened edges), as shown in the first steps
of Figure 4, which decreases the number of vertices owned by every processor and
speeds-up future computations, or else coarsened graphs are folded and duplicated,
as shown in the next steps of Figure 4, which increases the number of working copies
of the graph and can thus reduce communication and increase the final quality of
the separators.

As a matter of fact, separator computation algorithms, which are local heuristics,
heavily depend on the quality of the coarsened graphs, and we have observed with
the sequential version of SCOTCH that taking every time the best partition among
two ones, obtained from two fully independent multi-level runs, usually improved
overall ordering quality. By enabling the folding-with-duplication routine (which
will be referred to as “fold-dup” in the following) in the first coarsening levels, one
can implement this approach in parallel, every subgroup of processors that hold a
working copy of the graph being able to perform an almost-complete independent
multi-level computation, save for the very first level which is shared by all subgroups,
for the second one which is shared by half of the subgroups, and so on.

The problem with the fold-dup approach is that it consumes a lot of memory.
Consequently, a good strategy can be to resort to folding only when the number
of vertices of the graph to be considered reaches some minimum threshold. This
threshold allows one to set a trade off between the level of completeness of the
independent multi-level runs which result from the early stages of the fold-dup
process, which impact partitioning quality, and the amount of memory to be used
in the process.

Once all working copies of the coarsened graphs are folded on individual pro-
cessors, the algorithm enters a multi-sequential phase, illustrated at the bottom of
Figure 4: the routines of the sequential SCOTCH library are used on every processor
to complete the coarsening process, compute an initial partition, and prolong it
back up to the largest centralized coarsened graph stored on the processor. Then,
the partitions are prolonged back in parallel to the finer distributed graphs, select-
ing the best partition between the two available when prolonging to a level where
fold-dup had been performed. This distributed prolongation process is repeated
until we obtain a partition of the original graph.

14

4 \

R ,P] Py
& P (AD= O D == - @
»©»®+®®/ “'/
— OO
CozErorer e o=

/

Figure 4: Diagram of the parallel computation of the separator of a graph dis-
tributed across four processors, by parallel coarsening with folding-with-duplication
in the last stages, multi-sequential computation of initial partitions that are locally
prolonged back and refined on every processor, and then parallel uncoarsening of
the best partition encountered.

Band refinement The third level of concurrency concerns the refinement heuris-
tics which are used to improve the prolonged separators. At the coarsest levels of
the multi-level algorithm, when computations are restricted to individual proces-
sors, the sequential FM algorithm of SCOTCH is used, but this class of algorithms
does not parallelize well.

This problem can be solved in two ways: either by developing scalable and
efficient local optimization algorithms, or by being able to use the existing sequential
FM algorithm on very large graphs. In [6] has been proposed a solution which
enables both approaches, and is based on the following reasoning. Since every
refinement is performed by means of a local algorithm, which perturbs only in a
limited way the position of the prolonged separator, local refinement algorithms
need only to be passed a subgraph that contains the vertices that are very close to
the prolonged separator.

The computation and use of distributed band graphs is outlined in Figure 5.
Given a distributed graph and an initial separator, which can be spread across
several processors, vertices that are closer to separator vertices than some small
user-defined distance are selected by spreading distance information from all of
the separator vertices, using our halo exchange routine. Then, the distributed
band graph is created, by adding on every processor two anchor vertices, which are
connected to the last layers of vertices of each of the parts. The vertex weight of
the anchor vertices is equal to the sum of the vertex weights of all of the vertices
they replace, to preserve the balance of the two band parts. Once the separator of
the band graph has been refined using some local optimization algorithm, the new
separator is prolonged back to the original distributed graph.

Basing on these band graphs, we have implemented a multi-sequential refine-
ment algorithm, outlined in Figure 6. At every distributed uncoarsening step, a
distributed band graph is created. Centralized copies of this band graph are then
gathered on every participating processor, which serve to run fully independent in-
stances of our sequential FM algorithm. The perturbation of the initial state of the
sequential FM algorithm on every processor allows us to explore slightly different
solution spaces, and thus to improve refinement quality. Finally, the best refined

15

- -

Figure 5: Creation of a distributed band graph. Only vertices closest to the sep-
arator are kept. Other vertices are replaced by anchor vertices of equivalent total
weight, linked to band vertices of the last layer. There are two anchor vertices per
processor, to reduce communication. Once the separator has been refined on the
band graph using some local optimization algorithm, the new separator is prolonged

back to the original distributed graph.

e
Figure 6: Diagram of the multi-sequential refinement of a separator prolonged back
from a coarser graph distributed across four processors to its finer distributed graph.
Once the distributed band graph is built from the finer graph, a centralized version
of it is gathered on every participating processor. A sequential FM optimization

can then be run independently on every copy, and the best improved separator is
then distributed back to the finer graph.

}
E%
VAN

band separator is prolonged back to the distributed graph, and the uncoarsening
process goes on.

3.2.3 Performance criteria

The quality of orderings is evaluated with respect to several criteria. The first
one, NNZ, is the number of non-zero terms in the factored reordered matrix. The
second one, OPC, is the operation count, that is the number of arithmetic operations
required to factor the matrix. The operation count that we have considered takes
into consideration all operations (additions, subtractions, multiplications, divisions)
required by Cholesky factorization, except square roots; it is equal to) n?Z, where
n. is the number of non-zeros of column c of the factored matrix, diagonal included.

A third criterion for quality is the shape of the elimination tree; concurrency
in parallel solving is all the higher as the elimination tree is broad and short. To
measure its quality, several parameters can be defined: Amin, Amax, and hayg denote
the minimum, maximum, and average heights of the tree?, respectively, and hqy
is the variance, expressed as a percentage of hayg. Since small separators result in
small chains in the elimination tree, have should also indirectly reflect the quality

2We do not consider as leaves the disconnected vertices that are present in some meshes, since
they do not participate in the solving process.

16

of separators.

4 Updates

4.1 Changes from version 5.0

PT-ScoTcH now provides routines to compute in parallel partitions of distributed
graphs.

A new integer index type has been created in the Fortran interface, to address
array indices larger than the maximum value which can be stored in a regular
integer. Please refer to Section 8.3 for more information.

A new set of routines has been designed, to ease the use of the LIBSCOTCH as
a dynamic library. The SCOTCH_version routine returns the version, release and
patchlevel numbers of the library being used. The SCOTCH_*Alloc routines, which
are only available in the C interface at the time being, dynamically allocate storage
space for the opaque API SCOTCH structures, which frees application programs from
the need to be systematically recompiled because of possible changes of SCOTCH
structure sizes.

4.2 Changes from version 5.1

Unlike its sequential counterpart, version 6.0 of PT-ScOTCH does not bring major
algorithmic improvements with respect to the latest 5.1.12 release of the 5.1 branch.

In order to ease the work of people writing numerical solvers, it exposes in its
interface a new distributed graph handling routine, SCOTCH.dgraphRedist, that
builds a redistributed graph from an existing distributed graph and partition data.
See Section 7.5.12.

5 Files and data structures

For the sake of portability and readability, all the data files shared by the differ-
ent programs of the SCOTCH project are coded in plain ASCII text exclusively.
Although we may speak of “lines” when describing file formats, text-formatting
characters such as newlines or tabulations are not mandatory, and are not taken
into account when files are read. They are only used to provide better readabil-
ity and understanding. Whenever numbers are used to label objects, and unless
explicitely stated, numberings always start from zero, not one.

5.1 Distributed graph files

Because even very large graphs are most often stored in the form of centralized
files, the distributed graph loading routine of the PT-SCOTCH package, as well as
all parallel programs which handle distributed graphs, are able to read centralized
graph files in the ScOTCH format and to scatter them on the fly across the
available processors (the format of centralized SCOTCH graph files is described
in the ScorcH User’s Guide [35]). However, in order to reduce loading time, a
distributed graph format has been designed, so that the different file fragments
which comprise distributed graph files can be read in parallel and be stored on
local disks on the nodes of a parallel or grid cluster.

17

Distributed graph files, which usually end in “.dgr”, describe fragments of val-
uated graphs, which can be valuated process graphs to be mapped onto target
architectures, or graphs representing the adjacency structures of matrices to order.

In ScOTCH, graphs are represented by means of adjacency lists: the definition
of each vertex is accompanied by the list of all of its neighbors, i.e. all of its
adjacent arcs. Therefore, the overall number of edge data is twice the number of
edges. Distributed graphs are stored as a set of files which contain each a subset
of graph vertices and their adjacencies. The purpose of this format is to speed-up
the loading and saving of large graphs when working for some time with the same
number of processors: the distributed graph loading routine will allow each of the
processors to read in parallel from a different file. Consequently, the number of
files must be equal to the number of processors involved in the parallel loading phase.

The first line of a distributed graph file holds the distributed graph file version
number, which is currently 2. The second line holds the number of files across
which the graph data is distributed (referred to as procglbnbr in LIBSCOTCH; see
for instance Figure 8, page 33, for a detailed example), followed by the number of
this file in the sequence (ranging from 0 to (procglbnbr — 1), and analogous to
proclocnum in Figure 8). The third line holds the global number of graph vertices
(referred to as vertglbnbr), followed by the global number of arcs (inappropriately
called edgeglbnbr, as it is in fact equal to twice the actual number of edges). The
fourth line holds the number of vertices contained in this graph fragment (analogous
to vertlocnbr), followed by its local number of arcs (analogous to edgelocnbr).
The fifth line holds two figures: the graph base index value (baseval) and a numeric
flag.

The graph base index value records the value of the starting index used to
describe the graph; it is usually 0 when the graph has been output by C programs,
and 1 for Fortran programs. Its purpose is to ease the manipulation of graphs within
each of these two environments, while providing compatibility between them.

The numeric flag, similar to the one used by the CHACO graph format [19], is
made of three decimal digits. A non-zero value in the units indicates that vertex
weights are provided. A non-zero value in the tenths indicates that edge weights
are provided. A non-zero value in the hundredths indicates that vertex labels are
provided; if it is the case, vertices can be stored in any order in the file; else, natural
order is assumed, starting from the starting global index of each fragment.

This header data is then followed by as many lines as there are vertices in the
graph fragment, that is, vertlocnbr lines. Each of these lines begins with the vertex
label, if necessary, the vertex load, if necessary, and the vertex degree, followed by
the description of the arcs. An arc is defined by the load of the edge, if necessary,
and by the label of its other end vertex. The arcs of a given vertex can be provided
in any order in its neighbor list. If vertex labels are provided, vertices can also be
stored in any order in the file.

Figure 7 shows the contents of two complementary distributed graph files mod-
eling a cube with unity vertex and edge weights and base 0, distributed across two
Processors.

18

2 2

2 0 2 1

8 24 8 24

4 12 4 12

0 000 0 000

3 4 2 1 3 0 6 5
3 5 3 0 3 1 7 4
3 6 0 3 3 2 4 7
3 7 1 2 3 3 5 6

Figure 7: Two complementary distributed graph files representing a cube dis-
tributed across two processors.

6 Programs

6.1 Invocation

All of the programs comprised in the ScoTcH and PT-ScoTcH distributions have
been designed to run in command-line mode without any interactive prompting,
so that they can be called easily from other programs by means of “system ()”
or “popen ()” system calls, or be piped together on a single shell command line.
In order to facilitate this, whenever a stream name is asked for (either on input
or output), the user may put a single “~” to indicate standard input or output.
Moreover, programs read their input in the same order as stream names are given
in the command line. It allows them to read all their data from a single stream
(usually the standard input), provided that these data are ordered properly.

A brief on-line help is provided with all the programs. To get this help, use the
“~h” option after the program name. The case of option letters is not significant,
except when both the lower and upper cases of a letter have different meanings.
When passing parameters to the programs, only the order of file names is significant;
options can be put anywhere in the command line, in any order. Examples of use
of the different programs of the PT-SCOTCH project are provided in section 9.

Error messages are standardized, but may not be fully explanatory. However,
most of the errors you may run into should be related to file formats, and located in
“...Load” routines. In this case, compare your data formats with the definitions
given in section 5, and use the dgtst program of the PT-ScoTCH distribution to
check the consistency of your distributed source graphs.

According to your MPI environment, you may either run the programs directly,
or else have to invoke them by means of a command such as mpirun. Check your
local MPI documentation to see how to specify the number of processors on which
to run them.

6.2 File names
6.2.1 Sequential and parallel file opening

The programs of the PT-ScoTcCH distribution can handle either the classical cen-
tralized SCOTCH graph files, or the distributed PT-ScoTcH graph files described
in section 5.1.

In order to tell whether programs should read from, or write to, a single file
located on only one processor, or to multiple instances of the same file on all of
the processors, or else to distinct files on each of the processors, a special grammar
has been designed, which is based on the “%” escape character. Four such escape

19

sequences are defined, which are interpreted independently on every processor, prior
to file opening. By default, when a filename is provided, it is assumed that the file
is to be opened on only one of the processors, called the root processor, which is
usually process 0 of the communicator within which the program is run. Using any
of the first three escape sequences below will instruct programs to open in parallel
a file of name equal to the interpreted filename, on every processor on which they
are run.

%p Replaced by the number of processes in the global communicator in which the
program is run. Leads to parallel opening.

%r Replaced on each process running the program by the rank of this process in
the global communicator. Leads to parallel opening.

%- Discarded, but leads to parallel opening. This sequence is mainly used to
instruct programs to open on every processor a file of identical name. The
opened files can be, according whether the given path leads to a shared direc-
tory or to directories that are local to each processor, either to the opening
of multiple instances of the same file, or to the opening of distinct files which
may each have a different content, respectively (but in this latter case it is
much recommended to identify files by means of the “%r” sequence).

%% Replaced by a single “%” character. File names using this escape sequence are
not considered for parallel opening, unless one or several of the three other
escape sequences are also present.

For instance, filename “brol” will lead to the opening of file “brol” on the root
processor only, filename “%-brol” (or even “br¥%-o0l”) will lead to the parallel open-
ing of files called “brol” on every processor, and filename “brol¥p-%r” will lead
to the opening of files “brol2-0" and “brol2-1”, respectively, on each of the two
processors on which which would run a program of the PT-ScoTcH distribution.

6.2.2 Using compressed files

Starting from version 5.0.6, SCOTCH allows users to provide and retrieve data in
compressed form. Since this feature requires that the compression and decompres-
sion tasks run in the same time as data is read or written, it can only be done
on systems which support multi-threading (Posix threads) or multi-processing (by
means of fork system calls).

To determine if a stream has to be handled in compressed form, SCOTCH checks
its extension. If it is “.gz” (gzip format), “.bz2” (bzip2 format) or “.1zma” (1zma
format), the stream is assumed to be compressed according to the corresponding
format. A filter task will then be used to process it accordingly if the format is
implemented in SCOTCH and enabled on your system.

To date, data can be read and written in bzip2 and gzip formats, and can
also be read in the lzma format. Since the compression ratio of 1zma on SCOTCH
graphs is 30% better than the one of gzip and bzip2 (which are almost equivalent
in this case), the 1zma format is a very good choice for handling very large graphs.
To see how to enable compressed data handling in SCOTCH, please refer to Section 8.

When the compressed format allows it, several files can be provided on
the same stream, and be uncompressed on the fly. For instance, the
command “cat brol.grf.gz brol.xyz.gz | gout -.gz -.gz -Mn - brol.iv”
concatenates the topology and geometry data of some graph brol and feed them

20

as a single compressed stream to the standard input of program gout, hence the
”-.gz” to indicate a compressed standard stream.

6.3 Description
6.3.1 dgmap / dgpart
Synopsis

dgmap [input_graph_file [input_target_file [output-mapping-file [output_log-
file]]]] options

dgpart number_of_-parts [input_graph_file [output_mapping_file [output_
log_filel]] options

Description

The dgmap program is the parallel static mapper. It uses a static mapping
strategy to compute a mapping of the given source graph to the given target
architecture. The implemented algorithms aim at assigning source graph ver-
tices to target vertices such that every target vertex receives a set of source
vertices of summed weight proportional to the relative weight of the target
vertex in the target architecture, and such that the communication cost func-
tion fco is minimized (see Section 3.1.2 for the definition and rationale of this
cost function).

Since its main purpose is to provide mappings that exhibit high concurrency
for communication minimization in the mapped application, it comprises a
parallel implementation of the dual recursive bipartitioning algorithm [33], as
well as all of the sequential static mapping methods used by its sequential
counterpart gmap, to be used on subgraphs located on single processors.

dgpart is a simplified interface to dgmap, which performs graph partitioning
instead of static mapping. Consequently, the desired number of parts has to
be provided, in lieu of the target architecture.

The -b and -c options allow the user to set preferences on the behavior of the
mapping strategy which is used by default. The -m option allows the user to
define a custom mapping strategy.

The input_graph_file filename can refer either to a centralized or to a dis-
tributed graph, according to the semantics defined in Section 6.2. The map-
ping file must be a centralized file.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

-brat
Set the maximum load imbalance ratio to rat, which should be a value
comprised between 0 and 1. This option can be used in conjunction with
option -c, but is incompatible with option -m.

-cflags
Tune the default mapping strategy according to the given preference

21

flags. Some of these flags are antagonistic, while others can be combined.
See Section 7.4.1 for more information. The currently available flags are
the following.

Enforce load balance as much as possible.

Privilege quality over speed. This is the default behavior.

b

q

s Privilege speed over quality.

t Use only safe methods in the strategy.
bq

Favor scalability.

This option can be used in conjunction with option -b, but is incompat-
ible with option -m. The resulting strategy string can be displayed by
means of the -vs option.

-h Display the program synopsis.

-mstrat
Apply parallel static mapping strategy strat. The format of parallel
mapping strategies is defined in section 7.4.2. This option is incompatible
with options -b and -c.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-sobj
Mask source edge and vertex weights. This option allows the user to “un-
weight” weighted source graphs by removing weights from edges and ver-
tices at loading time. obj may contain several of the following switches.
e Remove edge weights, if any.

v Remove vertex weights, if any.
-V Print the program version and copyright.

-vverb
Set verbose mode to werb, which may contain several of the following
switches.
Memory allocation information.

Mapping information, similar to the one displayed by the gmtst
program of the sequential SCOTCH distribution.

s Strategy information. This parameter displays the default mapping
strategy used by gmap.

t Timing information.
6.3.2 dgord
Synopsis
dgord [input_graph-file [output_ordering_file [output_log_file]]] options

Description

The dgord program is the parallel sparse matrix block orderer. It uses an
ordering strategy to compute block orderings of sparse matrices represented
as source graphs, whose vertex weights indicate the number of DOF's per node

22

(if this number is non homogeneous) and whose edges are unweighted, in order
to minimize fill-in and operation count.

Since its main purpose is to provide orderings that exhibit high concur-
rency for parallel block factorization, it comprises a parallel nested dissection
method [14], but sequential classical [31] and state-of-the-art [39] minimum
degree algorithms are implemented as well, to be used on subgraphs located
on single processors.

Ordering methods can be combined by means of selection, grouping, and
condition operators, so as to define ordering strategies, which can be passed
to the program by means of the -o option. The -c option allows the user
to set preferences on the behavior of the ordering strategy which is used by
default.

The input_graph_file filename can refer either to a centralized or to a dis-
tributed graph, according to the semantics defined in Section 6.2. The order-
ing file must be a centralized file.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

-cflags
Tune the default ordering strategy according to the given preference flags.
Some of these flags are antagonistic, while others can be combined. See
Section 7.4.1 for more information. The resulting strategy string can be
displayed by means of the -vs option.

Enforce load balance as much as possible.
Privilege quality over speed. This is the default behavior.

Privilege speed over quality.

+ wn Qo o

Use only safe methods in the strategy.

x Favor scalability.
-h Display the program synopsis.

-moutput_mapping_file

Write to output-mapping_file the mapping of graph vertices to column
blocks. All of the separators and leaves produced by the nested dissection
method are considered as distinct column blocks, which may be in turn
split by the ordering methods that are applied to them. Distinct integer
numbers are associated with each of the column blocks, such that the
number of a block is always greater than the ones of its predecessors
in the elimination process, that is, its descendants in the elimination
tree. The structure of mapping files is described in detail in the relevant
section of the SCOTCH User’s Guide [35].

When the geometry of the graph is available, this mapping file may be
processed by program gout to display the vertex separators and super-
variable amalgamations that have been computed.

—-ostrat
Apply parallel ordering strategy strat. The format of parallel ordering
strategies is defined in section 7.4.4.

23

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-t output_tree_file

Write to output_tree_file the structure of the separator tree. The data
that is written resembles much the one of a mapping file: after a first
line that contains the number of lines to follow, there are that many lines
of mapping pairs, which associate an integer number with every graph
vertex index. This integer number is the number of the column block
which is the parent of the column block to which the vertex belongs,
or —1 if the column block to which the vertex belongs is a root of the
separator tree (there can be several roots, if the graph is disconnected).
Combined to the column block mapping data produced by option -m, the
tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

-vverb
Set verbose mode to werb, which may contain several of the following
switches.

a Memory allocation information.

Strategy information. This parameter displays the default parallel
ordering strategy used by dgord.

t Timing information.

6.3.3 dgpart

Synopsis
dgpart [number_of-parts [input_graph_file [output-mapping-file [output_log-
file]]]] options

Description

The dgpart program is the parallel graph partitioner. It is in fact a shortcut
for the dgmap program, where the number of parts is turned into a complete
graph with same number of vertices which is passed to the static mapping
routine.

Save for the number_of-parts parameter which replaces the input_target_file,
the parameters of dgpart are identical to the ones of dgmap. Please refer
to its manual page, in Section 6.3.1, for a description of all of the available
options.

6.3.4 dgscat
Synopsis
dgscat [input_graph_file [output_graph_file]] options

Description

24

The dgscat program creates a distributed source graph, in the SCOTCH dis-
tributed graph format, from the given centralized source graph file.

The input_graph_file filename should therefore refer to a centralized graph,
while output_graph_file must refer to a distributed graph, according to the
semantics defined in Section 6.2.

Options

-c Check the consistency of the distributed graph at the end of the graph
loading phase.

-h Display the program synopsis.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-V Print the program version and copyright.

6.3.5 dgtst

Synopsis

dgtst [input_graph_file [output_data_file]] options

Description

The program dgtst is the source graph tester. It checks the consistency of
the input source graph structure (matching of arcs, number of vertices and
edges, etc.), and gives some statistics regarding edge weights, vertex weights,
and vertex degrees.

It produces the same results as the gtst program of the SCOTCH sequential
distribution.

Options

7

-h Display the program synopsis.

-rnum
Set the number of the root process which will be used for centralized file
accesses. Set to 0 by default.

-V Print the program version and copyright.

Library

All of the features provided by the programs of the PT-ScoTcCH distribution may
be directly accessed by calling the appropriate functions of the LIBSCOTCH library,
archived in files 1ibptscotch.aand 1ibptscotcherr.a. All of the existing parallel
routines belong to four distinct classes:

e distributed source graph handling routines, which serve to declare, build, load,

save, and check the consistency of distributed source graphs;

e strategy handling routines, which allow the user to declare and build parallel

mapping and ordering strategies;

25

e parallel graph partitioning and static mapping routines, which allow the user
to declare, compute, and save distributed static mappings of distributed source
graphs;

e parallel ordering routines, which allow the user to declare, compute, and save
distributed orderings of distributed source graphs.

Error handling is performed using the existing sequential routines of the ScoTcH
distribution, which are described in the ScoTcu User’s Guide [35]. Their use is
recalled in Section 7.14.

A PARMEINS compatibility library, called libptscotchparmetis.a, is also
available. It allows users who were previously using PARMEIIS in their software to
take advantage of the efficieny of PT-ScoTcH without having to modify their code.
The services provided by this library are described in Section 7.16.

7.1 Running at proper thread level

Since PT-ScoTCH is based on the MPI API, all processes must call some flavor
of MPI_Init before using any routine of the library that performs communication.
The thread support level of MPI has to be set in accordance to the level required
by the library.

If PT-ScoTcH has been compiled without the ~-DSCOTCH_PTHREAD flag, a call to
the simple MPI_Init routine will suffice, because no concurrent MPI calls will be
performed by library routines. Else, the extended MPI_Init_thread initialization
routine has to be used, to request the MPI_THREAD MULTIPLE level, and the provided
thread support level value returned by the routine must be checked carefully. If your
MPI implementation does not provide the MPT_THREAD_MULTIPLE level, you will have
to recompile PT-ScoTcH without the ~-DSCOTCH_PTHREAD flag. Else, library calls
may cause random bugs in the communication subsystem, resulting in program
crashes.

7.2 Calling the routines of LIBSCOTCH
7.2.1 Calling from C

All of the C routines of the LIBSCOTCH library are prefixed with “SCOTCH.”. The
remainder of the function names is made of the name of the type of object to which
the functions apply (e.g. “dgraph”, “dorder”, etc.), followed by the type of action
performed on this object: “Init” for the initialization of the object, “Exit” for the
freeing of its internal structures, “Load” for loading the object from one or several
streams, and so on.

Typically, functions that return an error code return zero if the function suc-
ceeds, and a non-zero value in case of error.

For instance, the SCOTCH.dgraphInit and SCOTCH_ dgraphLoad routines, de-
scribed in section 7.5, can be called from C by using the following code.

#include <stdio.h>
#include <mpi.h>
#include "ptscotch.h"

SCOTCH_Dgraph grafdat;
FILE * fileptr;

26

if (SCOTCH_dgraphInit (&grafdat) != 0) {
... /* Error handling */
}
if ((fileptr = fopen ("brol.grf", "r")) == NULL) {
... /* Error handling */
}
if (SCOTCH_dgraphLoad (&grafdat, fileptr, -1, 0) != 0) {
. /* Error handling */
}

Since “ptscotch.h” uses several system and communication objects which are
declared in “stdio.h” and “mpi.h”, respectively, these latter files must be included
beforehand in your application code.

Although the “scotch.h” and “ptscotch.h” files may look very similar on
your system, never mistake them, and always use the “ptscotch.h” file as the
right include file for compiling a program which uses the parallel routines of the
LIBSCOTCH library, whether it also calls sequential routines or not.

7.2.2 Calling from Fortran

The routines of the LIBSCOTCH library can also be called from Fortran. For any C
function named SCOTCH-typeAction() which is documented in this manual, there
exists a SCOTCHF TYPEACTION () Fortran counterpart, in which the separating
underscore character is replaced by an “F”. In most cases, the Fortran routines
have exactly the same parameters as the C functions, save for an added trailing
INTEGER argument to store the return value yielded by the function when the
return type of the C function is not void.

Since all the data structures used in LIBSCOTCH are opaque, equivalent declara-
tions for these structures must be provided in Fortran. These structures must there-
fore be defined as arrays of DOUBLEPRECISIONS, of sizes given in file ptscotchf.h,
which must be included whenever necessary.

For routines that read or write data using a FILE * stream in C, the Fortran
counterpart uses an INTEGER parameter which is the numer of the Unix file descrip-
tor corresponding to the logical unit from which to read or write. In most Unix
implementations of Fortran, standard descriptors 0 for standard input (logical unit
5), 1 for standard output (logical unit 6) and 2 for standard error are opened by
default. However, for files that are opened using OPEN statements, an additional
function must be used to obtain the number of the Unix file descriptor from the
number of the logical unit. This function is called PXFFILENO in the normalized
POSIX Fortran API, and files which use it should include the USE IFPOSIX direc-
tive whenever necessary. An alternate, non normalized, function also exists in most
Unix implementations of Fortran, and is called FNUM.

For instance, the SCOTCH.dgraphInit and SCOTCH_ dgraphLoad routines, de-
scribed in sections 7.5.11 and 7.6.1, respectively, can be called from Fortran by
using the following code.

INCLUDE "ptscotchf.h"
DOUBLEPRECISION GRAFDAT (SCOTCH_DGRAPHDIM)
INTEGER RETVAL

27

CALL SCOTCHFDGRAPHINIT (GRAFDAT (1), RETVAL)
IF (RETVAL .NE. O) THEN

OPEN (10, FILE=’brol.grf’)

CALL SCOTCHFDGRAPHLOAD (GRAFDAT (1), PXFFILENO (10), 1, O, RETVAL)
CLOSE (10)

IF (RETVAL .NE. O) THEN

Although the “scotchf.h” and “ptscotchf.h” files may look very similar on
your system, never mistake them, and always use the “ptscotchf.h” file as the
include file for compiling a Fortran program that uses the parallel routines of the
LIBSCOTCH library, whether it also calls sequential routines or not.

All of the Fortran routines of the LIBSCOTCH library are stubs which call their C
counterpart. While this poses no problem for the usual integer and double precision
data types, some conflicts may occur at compile or run time if your MPI implemen-
tation does not represent the MPI_Comm type in the same way in C and in Fortran.
Please check on your platform to see in the mpi.h include file if the MPI_Comm data
type is represented as an int. If it is the case, there should be no problem in using
the Fortran routines of the PT-ScoOTCH library.

7.2.3 Compiling and linking

The compilation of C or Fortran routines which use parallel routines of the LIB-
ScoTCH library requires that either ptscotch.h or ptscotchf.h be included, re-
spectively. Since some of the parallel routines of the LIBSCOTCH library must be
passed MPI communicators, it is necessary to include MPI files mpi.h or mpif.h,
respectively, before the relevant PT-ScOTCH include files, such that prototypes of
the parallel LIBSCOTCH routines are properly defined.

The parallel routines of the LIBSCOTCH library, along with taylored versions of
the sequential routines, are grouped in a library file called libptscotch.a. Default
error routines that print an error message and exit are provided in the classical
ScoTcH library file 1ibptscotcherr.a.

Therefore, the linking of applications that make use of the LiBScoTcH li-
brary with standard error handling is carried out by using the following options:
“~lptscotch -lptscotcherr -lmpi -1m”. The “~1mpi” option is most often not
necessary, as the MPI library is automatically considered when compiling with com-
mands such as mpicc.

If you want to handle errors by yourself, you should not link with library file
libptscotcherr.a, but rather provide a SCOTCH_errorPrint () routine. Please
refer to Section 7.14 for more information on error handling. Section 7.14 for more
information on error handling.

Programs that use both sequential and parallel routines of SCOTCH need only
be linked against the parallel version of the library, as it also contains an adapted
version of the sequential routines. The reason why the sequential routines are
duplicated in the parallel PT-ScoTcH library is because they are slightly modified
so as to keep track of the parallel environment. This allows one to create “multi-
sequential” routines that can exchange data with other processes, for instance.
Because the LIBSCOTCH data structures contain extra parameters, never mix the
scotch.h sequential include file and the libptscotch.a parallel library, as the
latter expects SCOTCH data structures to be larger than the ones defined in the
sequential include file. Consequently, when using only sequential routines in a

28

sequential program, include the scotch.h file only and link the program against
the sequential 1libscotch.a library only. When using only parallel routines, or
when using a mix of sequential and parallel routines, include the ptscotch.h file
only and link the program against the parallel 1ibptscotch.a library only. When
using only sequential routines in a parallel program, both options can be used.

7.2.4 Machine word size issues

Graph indices are represented in SCOTCH as integer values of type SCOTCH Num. By
default, this type equates to the int C type, that is, an integer type of size equal
to the one of the machine word. However, it can represent any other integer type.
Indeed, the size of the SCOTCH Num integer type can be coerced to 32 or 64 bits
by using the “~-DINTSIZE32” or “~-DINTSIZE64” compilation flags, respectively, or
else by using the “~DINT=" definition (see Section 8.3 for more information on the
setting of these compilation flags).

This may, however, pose a problem with MPI, the interface of which is based
on the regular int type. PT-SCcOTCH has been coded so as to avoid typecast bugs,
but overflow errors may result from the conversion of values of a larger integer type
into ints when handling communication buffer indices.

Consequently, the C interface of SCOTCH uses two types of integers. Graph-
related quantities are passed as SCOTCH Nums, while system-related values such as
file handles, as well as return values of LIBSCOTCH routines, are always passed as
ints.

Because of the variability of library integer type sizes, one must be careful when
using the Fortran interface of SCOTCH, as it does not provide any prototyping
information, and consequently cannot produce any warning at link time. In the
manual pages of the LIBSCOTCH routines, Fortran prototypes are written using
three types of INTEGERs. As for the C interface, the regular INTEGER type is used
for system-based values, such as file handles and MPI communicators, as well as for
return values of the LIBSCOTCH routines, while the INTEGER*num type should be
used for all graph-related values, in accordance to the size of the SCOTCH Num type, as
set by the “~-DINTSIZEz” compilation flags. Also, the INTEGER*idz type represents
an integer type of a size equivalent to the one of a SCOTCH._Idx, as set by the
“~DIDXSIZEz” compilation flags. Values of this type are used in the Fortran interface
to represent arbitrary array indices which can span across the whole address space,
and consequently deserve special treatment.

In practice, when ScOTCH is compiled on a 32-bit architecture so as
to use 64-bit SCOTCH Nums, graph indices should be declared as INTEGER*8,
while error return values should still be declared as plain INTEGER (that is,
INTEGER*4) values. On a 32_64-bit architecture, irrespective of whether SCOTCH-
Nums are defined as INTEGER*4 or INTEGER*8 quantities, the SCOTCH_Idx type
should always be defined as a 64-bit quantity, that is, an INTEGER*8, because
it stores differences between memory addresses, which are represented by 64-bit
values. The above is no longer a problem if SCOTCH is compiled such that ints
equate 64-bit integers. In this case, there is no need to use any type coercing
definition.

The MEDS v3 compatibility library provided by SCOTCH can also run on a
64-bit architecture. Yet, if you are willing to use it this way, you will have to
replace all int’s that are passed to the MEIIS routines by 64-bit integer SCOTCH-
Num values (even the option configuration values). However, in this case, you will no

29

longer be able to link against the service routines of the genuine MEIIS /PARMEIS
v3 library, as they are only available as a 32-bit implementation.

7.3 Data formats

All of the data used in the LIBSCOTCH interface are of integer type SCOTCH Num. To
hide the internals of PT-SCOTCH to callers, all of the data structures are opaque,
that is, declared within ptscotch.h as dummy arrays of double precision values,
for the sake of data alignment. Accessor routines, the names of which end in
“Size” and “Data”, allow callers to retrieve information from opaque structures.

In all of the following, whenever arrays are defined, passed, and accessed, it is
assumed that the first element of these arrays is always labeled as baseval, whether
baseval is set to 0 (for C-style arrays) or 1 (for Fortran-style arrays). PT-SCOTCH
internally manages with base values and array pointers so as to process these arrays
accordingly.

7.3.1 Distributed graph format

In PT-ScoTcCH, distributed source graphs are represented so as to distribute graph
data without any information duplication which could hinder scalability. The only
data which are replicated on every process are of a size linear in the number of pro-
cesses and small. Apart from these, the sum across all processes of all of the vertex
data is in O(v + p), where v is the overall number of vertices in the distributed
graph and p the number of processes, and the sum of all of the edge data is in O(e),
where e is the overall number of arcs (that is, twice the number of edges) in the
distributed graph. When graphs are ill-distributed, the overall halo vertex infor-
mation may also be in o(e) at worst, which makes the distributed graph structure
fully scalable.

Distributed source graphs are described by means of adjacency lists. The de-
scription of a distributed graph requires several SCOTCH Num scalars and arrays, as
shown for instance in Figures 8 and 9. Some of these data are said to be global,
and are duplicated on every process that holds part of the distributed graph; their
names contain the “glb” infix. Others are local, that is, their value may differ for
each process; their names contain the “loc” or “gst” infix. Global data have the
following meaning;:

baseval
Base value for all array indexings.

vertglbnbr
Overall number of vertices in the distributed graph.

edgeglbnbr
Overall number of arcs in the distributed graph. Since edges are represented
by both of their ends, the number of edge data in the graph is twice the
number of edges.

procglbnbr
Overall number of processes that share distributed graph data.

proccnttab
Array holding the current number of local vertices borne by every process.

30

procvrttab

Array holding the global indices from which the vertices of every process are
numbered. For optimization purposes, this array has an extra slot which
stores a number which must be greater than all of the assigned global in-
dices. For each process p, it must be ensured that procvrttablp 4+ 1] >
(procvrttab[p] + proccnttabl[p]), that is, that no process can have more
local vertices than allowed by its range of global indices. When the global
numbering of vertices is continuous, for each process p, procvrttab[p+ 1] =
(procvrttab[p] + proccnttabl[p]).

Local data have the following meaning:

vertlocnbr
Number of local vertices borne by the given process. In fact, on every process
p, vertlocnbr is equal to proccnttab[p].

vertgstnbr
Number of both local and ghost vertices borne by the given process. Ghost
vertices are local images of neighboring vertices located on distant processes.

vertloctab
Array of start indices in edgeloctab and edgegsttab of vertex adjacency
sub-arrays.

vendloctab
Array of after-last indices in edgeloctab and edgegsttab of vertex adja-
cency sub-arrays. For any local vertex ¢, with baseval < i < (baseval +
vertlocnbr), vendloctab[i] — vertloctabl[i] is the degree of vertex i.

When all vertex adjacency lists are stored in order in edgeloctab with-
out any empty space between them, it is possible to save memory by
not allocating the physical memory for vendloctab. In this case, illus-
trated in Figure 8, vertloctab is of size vertlocnbr + 1 and vendloctab
points to vertloctab + 1. For these graphs , called “compact edge array
graphs”, or “compact graphs” for short, vertloctab is sorted in ascend-
ing order, vertloctab[baseval]l = baseval and vertloctab[baseval +
vertlocnbr] = (baseval + edgelocnbr).

Since vertloctab and vendloctab only account for local vertices and not for
ghost vertices, the sum across all processes of the sizes of these arrays does
not depend on the number of ghost vertices; it is equal to (v + p) for compact
graphs and to 2v else.

veloloctab
Optional array, of size vertlocnbr, holding the integer load associated with
every vertex.

edgeloctab
Array, of a size equal at least to (max;(vendloctabl[i]) — baseval), hold-
ing the adjacency array of every local vertex. For any local vertex i, with
baseval < i < (baseval + vertlocnbr), the global indices of the neigh-
bors of ¢ are stored in edgeloctab from edgeloctab[vertloctab[i]] to
edgeloctab[vendloctab[z] — 1], inclusive.

Since ghost vertices do not have adjacency arrays, because only arcs from
local vertices to ghost vertices are recorded and not the opposite, the overall
sum of the sizes of all edgeloctab arrays is e.

31

edgegsttab
Optional array holding the local and ghost indices of neighbors of local ver-
tices. For any local vertex 4, with baseval < i < (baseval + vertlocnbr),
the local and ghost indices of the neighbors of i are stored in edgegsttab from
edgegsttab[vertloctab[:]] to edgegsttab[vendloctab[¢]—1], inclusive.

Local vertices are numbered in global vertex order, starting from baseval to
(baseval + vertlocnbr — 1), inclusive. Ghost vertices are also numbered in
global vertex order, from (baseval+vertlocnbr) to (baseval+vertgstnbr—
1), inclusive.

Only edgeloctab has to be provided by the user. edgegsttab is internally
computed by PT-ScoTCH whenever needed, or can be explicitey asked for
by the user by calling function SCOTCH_dgraphGhst. This array can serve
to index user-defined arrays of quantities borne by graph vertices, which can
be exchanged between neighboring processes thanks to the SCOTCH_dgraph
Halo routine documented in Section 7.7.2.

edloloctab
Optional array, of a size equal at least to (max;(vendloctab[i]) — baseval),
holding the integer load associated with every arc. Matching arcs should
always have identical loads.

Dynamic graphs can be handled elegantly by using the vendloctab and proc
vrttab arrays. In order to dynamically manage distributed graphs, one just has
to reserve index ranges large enough to create new vertices on each process, and to
allocate vertloctab, vendloctab and edgeloctab arrays that are large enough to
contain all of the expected new vertex and edge data. This can be done by passing
SCOTCH_graphBuild a maximum number of local vertices, vertlocmax, greater than
the current number of local vertices, vertlocnbr.

On every process p, vertices are globally labeled starting from procvrttab[p],
and locally labeled from baseval, leaving free space at the end of the local arrays.
To remove some vertex of local index 4, one just has to replace vertloctabl[:] and
vendloctabl[i] with the values of vertloctab[vertlocnbr — 1] and vendloctab
[vertlocnbr—1], respectively, and browse the adjacencies of all neighbors of former
vertex (vertlocmbr — 1) such that all (vertlocnbr — 1) indices are turned into
is. Then, vertlocnbr must be decremented, and SCOTCH_dgraphBuild () must be
called to account for the change of topology. If a graph building routine such as
SCOTCH_dgraphLoad () or SCOTCH.dgraphBuild() had already been called on the
SCOTCH Dgraph structure, SCOTCH_dgraphFree () has to be called first in order to
free the internal structures associated with the older version of the graph, else these
data would be lost, which would result in memory leakage.

To add a new vertex, one has to fill vertloctab[vertnbr-1] and vendloctab
[vertnbr-1] with the starting and end indices of the adjacency sub-array of the
new vertex. Then, the adjacencies of its neighbor vertices must also be updated to
account for it. If free space had been reserved at the end of each of the neighbors,
one just has to increment the vendloctab[i] values of every neighbor ¢, and add
the index of the new vertex at the end of the adjacency sub-array. If the sub-
array cannot be extended, then it has to be copied elsewhere in the edge array,
and both vertloctab[:] and vendloctab[:] must be updated accordingly. With
simple housekeeping of free areas of the edge array, dynamic arrays can be updated
with as little data movement as possible.

32

Duplicated data

baseval
vertgl bnbr
edgegl bnbr

procgl bnbr

w] o] B [[
N
[eo]

proccnttab

procvrttab

=]
N
E3
o]

Local data (0] 1 2

vert| ocnbr

vert gst nbr [6]

edgel ocnbr @ @

vendl oct ab — —

vert! octab [1] 3] 7[1g [1]6]9] [1]4]6]10

edgel octab | [3[2[3[5[4] 14]2[1] ELFEEHREE [a[7]8l e[84] 6 7 §
edgegsttab | [3[2[3[5] 4 14[2[1] (493 62[6[3[1] (4[2[3[1[4] 1 7 5§

Figure 8: Sample distributed graph and its description by LIBSCOTCH arrays using
a continuous numbering and compact edge arrays. Numbers within vertices are
vertex indices. Top graph is a global view of the distributed graph, labeled with
global, continuous, indices. Bottom graphs are local views labeled with local and
ghost indices, where ghost vertices are drawn in black. Since the edge array is
compact, all vertloctab arrays are of size vertlocnbr—+ 1, and vendloctab points
to vertloctab + 1. edgeloctab edge arrays hold global indices of end vertices,
while optional edgegsttab edge arrays hold local and ghost indices. edgelocnbr
is the local number of arcs (that is, twice the number of edges), including arcs
to local vertices as well as to ghost vertices veloloctab and edloloctab are not
represented.

33

Duplicated data

baseval
vertgl bnbr
edgegl bnbr
procgl bnbr
proccnttab

procvrttab

Local data

vertlocnbr

vert gst nbr

edgel ocnbr [9] [9]

vertloctab .E 1]4] 7]

edgel oct ab [3[12a1] 1] J11]2]1[3]2] [a9 2]11] [3]17] 21912 [12)1g2917]19] 11172812

edgegst t ab [3]5] 4] 1] Ta[2[1]3[2] | [[se[3]a] [a]s[3[6[2 | [4]2[3[1]d [4]1 73
—

vend| oct ab 11 5] 9] [11] 5]

Figure 9: Adjacency structure of the sample graph of Figure 8 with a disjoint edge
array and a discontinuous ordering. Both vertloctab and vendloctab are of size
vertlocnbr. This allows for the handling of dynamic graphs, the structure of which
can evolve with time.

34

perntab [2[3[10[6] 4[11] 8] 7] 112[5] 9]

1

N
w
~

peritab [9]1]2]5]11] 4] 8] 7]12[3] 6[10]
cbl knbr 5 6
rangtab [1[2[4]5]6] 81013 [[[[]

treetar [B[A[AE[O[71 [T[] @ U@ 0@y

8 [(4

~

Figure 10: Arrays resulting from the ordering by complete nested dissection of a 4
by 3 grid based from 1. Leftmost grid is the original grid, and righmost grid is the
reordered grid, with separators shown and column block indices written in bold.

7.3.2 Block ordering format

Block orderings associated with distributed graphs are described by means of block
and permutation arrays, made of SCOTCH Nums. In order for all orderings to have
the same structure, irrespective of whether they are centralized or distributed, or
whether they are created from graphs or meshes, all ordering data indices start from
baseval. Consequently, row indices are related to vertex indices in memory in the
following way: row i is associated with vertex ¢ of the SCOTCH Dgraph structure as
if the vertex numbering used for the graph was continuous.
Block orderings are made of the following data:

permtab
Array holding the permutation of the reordered matrix. Thus, if £k =
permtab[i], then row ¢ of the original matrix is now row k of the reordered

kth

matrix, that is, row 7 is the pivot.

peritab
Inverse permutation of the reordered matrix. Thus, if ¢ = peritab[k], then
row k of the reordered matrix was row ¢ of the original matrix.

cblknbr
Number of column blocks (that is, supervariables) in the block ordering.

rangtab

Array of ranges for the column blocks. Column block ¢, with baseval <
¢ < (cblknbr + baseval), contains columns with indices ranging from
rangtab[:] to rangtabl[i + 1], exclusive, in the reordered matrix. There-
fore, rangtab [baseval] is always equal to baseval, and rangtab[cblknbr
+ baseval] is always equal to vertglbnbr+baseval. In order to avoid mem-
ory errors when column blocks are all single columns, the size of rangtab must
always be one more than the number of columns, that is, vertglbnbr + 1.

treetab

Array of ascendants of permuted column blocks in the separators tree.
treetab[i] is the index of the father of column block 4 in the separators
tree, or —1 if column block ¢ is the root of the separators tree. Whenever sep-
arators or leaves of the separators tree are split into subblocks, as the block
splitting, minimum fill or minimum degree methods do, all subblocks of the
same level are linked to the column block of higher index belonging to the
closest separator ancestor. Indices in treetab are based, in the same way as
for the other blocking structures. See Figure 10 for a complete example.

35

7.4 Strategy strings

The behavior of the static mapping and block ordering routines of the LIBSCOTCH
library is parametrized by means of strategy strings, which describe how and when
given partitioning or ordering methods should be applied to graphs and subgraphs

7.4.1 Using default strategy strings

While strategy strings can be built by hand, according to the syntax given in the
next sections, users who do not have specific needs can take advantage of default
strategies already implemented in the LIBSCOTCH, which will yield very good results
in most cases. By doing so, they will spare themselves the hassle of updating their
strategies to comply to subsequent syntactic changes, and they will benefit from
the availability of new partitioning or ordering methods as soon as they are made
available.

The simplest way to use default strategy strings is to avoid specifying any. By
initializing a strategy object, by means of the SCOTCH_stratInit routine, and by
using the initialized strategy object as is, without further parametrization, this
object will be filled with a default strategy when passing it as a parameter to the
next partitioning or ordering routine to be called. On return, the strategy object
will contain a fully specified strategy, tailored for the type of operation which has
been requested. Consequently, a fresh strategy object that was used to partition a
graph cannot be used afterward as a default strategy for calling an ordering routine,
for instance, as partitioning and ordering strategies are incompatible.

The LIBSCOTCH also provides helper routines which allow users to express their
preferences on the kind of strategy that they need. These helper routines, which
are of the form SCOTCH_strat*Build, tune default strategy strings according to
parameters provided by the user, such as the requested number of parts (used
as a hint to select the most efficient partitioning routines), the desired maximum
load imbalance ratio, and a set of preference flags. While some of these flags are
antagonistic, most of them can be combined, by means of addition or “binary or”
operators. These flags are the following. They are grouped by application class.

Global flags

SCOTCH_STRATDEFAULT
Default behavior. No flags are set.

SCOTCH_STRATBALANCE
Enforce load balance as much as possible.

SCOTCH_STRATQUALITY
Privilege quality over speed.

SCOTCH_STRATSAFETY
Do not use methods that can lead to the occurrence of problematic events,
such as floating point exceptions, which could not be properly handled by the
calling software.

SCOTCH_STRATSPEED
Privilege speed over quality.

36

Ordering flags

SCOTCH_STRATLEVELMAX
Create at most the prescribed levels of nested dissection separators. If the
number of levels is less than the logarithm of the number of processing el-
ements used, distributed pieces of the separated subgraph may have to be
centralized so that the leaves can be ordered, which may result in memory
shortage.

SCOTCH_STRATLEVELMIN
Create at least the prescribed levels of nested dissection separators. When
used in conjunction with SCOTCH_STRATLEVELMAX, the exact number of nested
dissection levels will be performed, unless the graph to order is too small.

SCOTCH_STRATLEAFSIMPLE
Order nested dissection leaves as cheaply as possible.

SCOTCH_STRATSEPASIMPLE
Order nested dissection separators as cheaply as possible.

7.4.2 Parallel mapping strategy strings

A parallel mapping strategy is made of one or several parallel mapping methods,
which can be combined by means of strategy operators. The strategy operators
that can be used in mapping strategies are listed below, by increasing precedence.

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single mapping method.

/ cond?stratl [: strat?);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current mapping task, and can be built from
logical and relational operators. Conditional operators are listed below, by
increasing precedence.

condl | cond?2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

cond1&cond?2
Logical and operator. The result of the condition is true only if both
condl and cond?2 are true.

! cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a node variable, val is either a node
variable or a constant of the type of variable var, and relop is one of <,
'=?"and ’>’. The node variables are listed below, along with their types.

edge
The global number of arcs of the current subgraph. Integer.

37

levl
The level of the subgraph in the recursion tree, starting from zero
for the initial graph at the root of the tree. Integer.

load
The overall sum of the vertex loads of the subgraph. It is equal to
vert if the graph has no vertex loads. Integer.

mdeg
The maximum degree of the subgraph. Integer.

proc
The number of processes on which the current subgraph is dis-
tributed at this level of the separators tree. Integer.

rank
The rank of the current process among the group of processes on
which the current subgraph is distributed at this level of the sepa-
rators tree. Integer.

vert
The global number of vertices of the current subgraph. Integer.

method[{ parameters}|
Parallel graph mapping method. Available parallel mapping methods are
listed below.

The currently available parallel mapping methods are the following.

r Dual recursive bipartitioning method. The parameters of the dual recursive
bipartitioning method are given below.

seq=strat
Set the sequential mapping strategy that is used on every centralized
subgraph of the recursion tree, once the dual recursive bipartitioning
process has gone far enough such that the number of processes handling
some subgraph is restricted to one.

sep=strat
Set the parallel graph bipartitioning strategy that is used on every cur-
rent job of the recursion tree. Parallel graph bipartitioning strategies are
described below, in section 7.4.3.

7.4.3 Parallel graph bipartitioning strategy strings

A parallel graph bipartitioning strategy is made of one or several parallel graph
bipartitioning methods, which can be combined by means of strategy operators.
Strategy operators are listed below, by increasing precedence.

strat1 | strat2
Selection operator. The result of the selection is the best bipartition of the
two that are obtained by the distinct application of strat! and strat2 to the
current bipartition.

strat1 strat2
Combination operator. Strategy strat2 is applied to the bipartition resulting
from the application of strategy strat! to the current bipartition. Typically,
the first method used should compute an initial bipartition from scratch, and
every following method should use the result of the previous one at its starting
point.

38

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single bipartitioning method.

/ cond?stratl [: strat?);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current active graph, and can be built from logical
and relational operators. Conditional operators are listed below, by increasing
precedence.

condl | cond2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

cond1&cond?2
Logical and operator. The result of the condition is true only if both
condl and cond2 are true.

! cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a graph or node variable, val is either
a graph or node variable or a constant of the type of variable var, and
relop is one of '<’; '="_ and '>’. The graph and node variables are listed
below, along with their types.
edge
The global number of edges of the current subgraph. Integer.
levl
The level of the subgraph in the bipartition or multi-level tree, start-
ing from zero for the initial graph at the root of the tree. Integer.
load
The overall sum of the vertex loads of the subgraph. It is equal to
vert if the graph has no vertex loads. Integer.
loadO
The vertex load of the first subset of the current bipartition of the
current graph. Integer.
proc
The number of processes on which the current subgraph is dis-
tributed at this level of the nested dissection process. Integer.
rank
The rank of the current process among the group of processes on
which the current subgraph is distributed at this level of the nested
dissection process. Integer.
vert
The number of vertices of the current subgraph. Integer.

The currently available parallel vertex separation methods are the following.

b Band method. Basing on the current distributed graph and on its parti-
tion, this method creates a new distributed graph reduced to the vertices
which are at most at a given distance from the current frontier, runs a

39

parallel graph bipartitioning strategy on this graph, and prolongs back
the new bipartition to the current graph. This method is primarily used
to run bipartition refinement methods during the uncoarsening phase of
the multi-level parallel graph bipartitioning method. The parameters of
the band method are listed below.

bnd=strat
Set the parallel graph bipartitioning strategy to be applied to the
band graph.
org=strat
Set the parallel graph bipartitioning strategy to be applied to the
full distributed graph if the band graph could not be extracted.
width=val
Set the maximum distance from the current frontier of vertices to be
kept in the band graph. 0 means that only frontier vertices them-
selves are kept, 1 that immediate neighboring vertices are kept too,
and so on.

Parallel diffusion method. This method, presented in its sequential for-
mulation in [34], flows two kinds of antagonistic liquids, scotch and anti-
scotch, from two source vertices, and sets the new frontier as the limit
between vertices which contain scotch and the ones which contain anti-
scotch. Because selecting the source vertices is essential to the obtain-
ment of useful results, this method has been hard-coded so that the two
source vertices are the two vertices of highest indices, since in the band
method these are the anchor vertices which represent all of the removed
vertices of each part. Therefore, this method must be used on band
graphs only, or on specifically crafted graphs. Applying it to any other
graphs is very likely to lead to extremely poor results. The parameters
of the diffusion bipartitioning method are listed below.
dif=rat
Fraction of liquid which is diffused to neighbor vertices at each pass.
To achieve convergence, the sum of the dif and rem parameters must
be equal to 1, but in order to speed-up the diffusion process, other
combinations of higher sum can be tried. In this case, the number of
passes must be kept low, to avoid numerical overflows which would
make the results useless.
pass=nbr
Set the number of diffusion sweeps performed by the algorithm. This
number depends on the width of the band graph to which the diffu-
sion method is applied. Useful values range from 30 to 500 according
to chosen dif and rem coefficients.
rem=rat
Fraction of liquid which remains on vertices at each pass. See above.

Parallel multi-level method. The parameters of the multi-level method
are listed below.

asc=strat
Set the strategy that is used to refine the distributed bipartition ob-
tained at ascending levels of the uncoarsening phase by prolongation
of the bipartition computed for coarser graphs. This strategy is not
applied to the coarsest graph, for which only the low strategy is
used.

40

dlevl=nbr
Set the minimum level after which duplication is allowed in the fold-
ing process. A value of —1 results in duplication being always per-
formed when folding.

dvert=nbr
Set the average number of vertices per process under which the fold-
ing process is performed during the coarsening phase.

low=strat
Set the strategy that is used to compute the bipartition of the coars-
est distributed graph, at the lowest level of the coarsening process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs are
no longer coarsened. The ratio of any given coarsening cannot be
less that 0.5 (case of a perfect matching), and cannot be greater
than 1.0. Coarsening stops when either the coarsening ratio is above
the maximum coarsening ratio, or the graph has fewer node vertices
than the minimum number of vertices allowed.

vert=nbr
Set the threshold minimum size under which graphs are no longer
coarsened. Coarsening stops when either the coarsening ratio is
above the maximum coarsening ratio, or the graph has fewer node
vertices than the minimum number of vertices allowed.

q Multi-sequential method. The current distributed graph and its sep-
arator are centralized on every process that holds a part of it, and a
sequential graph bipartitioning method is applied independently to each
of them. Then, the best bipartition found is prolonged back to the dis-
tributed graph. This method is primarily designed to operate on band
graphs, which are orders of magnitude smaller than their parent graph.
Else, memory bottlenecks are very likely to occur. The parameters of
the multi-sequential method are listed below.

strat=strat
Set the sequential edge separation strategy that is used to refine
the bipartition of the centralized graph. For a description of all of
the available sequential bipartitioning methods, please refer to the
ScorcH User’s Guide [35].

x Load balance enforcement method. This method moves as many vertices
from the heaviest part to the lightest one so as to reduce load imbalance
as much as possible, without impacting communication load too nega-
tively. The only parameter of this method is listed below.

sbbt=nbr
Number of sub-buckets to sort communication gains. 5 is a common
value.

z Zero method. This method moves all of the vertices to the first part,
resulting in an empty frontier. Its main use is to stop the bipartitioning
process whenever some condition is true.

7.4.4 Parallel ordering strategy strings

A parallel ordering strategy is made of one or several parallel ordering methods,
which can be combined by means of strategy operators. The strategy operators

41

that can be used in ordering strategies are listed below, by increasing precedence.

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single ordering method.

/ cond?strat[: strat?);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current node of the separators tree, and can be
built from logical and relational operators. Conditional operators are listed
below, by increasing precedence.

condl | cond?2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

cond1&cond?2
Logical and operator. The result of the condition is true only if both
condl and cond?2 are true.

I cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where wvar is a node variable, val is either a node
variable or a constant of the type of variable var, and relop is one of '<’,
=" and ’>’. The node variables are listed below, along with their types.
edge
The global number of arcs of the current subgraph. Integer.
levl
The level of the subgraph in the separators tree, starting from zero
for the initial graph at the root of the tree. Integer.
load
The overall sum of the vertex loads of the subgraph. It is equal to
vert if the graph has no vertex loads. Integer.
mdeg
The maximum degree of the subgraph. Integer.
proc
The number of processes on which the current subgraph is dis-
tributed at this level of the separators tree. Integer.
rank
The rank of the current process among the group of processes on
which the current subgraph is distributed at this level of the sepa-
rators tree. Integer.
vert
The global number of vertices of the current subgraph. Integer.

method[{ parameters}|
Parallel graph ordering method. Available parallel ordering methods are listed
below.

The currently available parallel ordering methods are the following.

42

Nested dissection method. The parameters of the nested dissection method
are given below.

ole=strat
Set the parallel ordering strategy that is used on every distributed leaf of
the parallel separators tree if the node separation strategy sep has failed
to separate it further.

ose=strat
Set the parallel ordering strategy that is used on every distributed sep-
arator of the separators tree.

osqg=strat
Set the sequential ordering strategy that is used on every centralized sub-
graph of the separators tree, once the nested dissection process has gone
far enough such that the number of processes handling some subgraph is
restricted to one.

sep=strat
Set the parallel node separation strategy that is used on every current
leaf of the separators tree to make it grow. Parallel node separation
strategies are described below, in section 7.4.5.

Sequential ordering method. The distributed graph is gathered onto a single
process which runs a sequential ordering strategy. The only parameter of the
sequential method is given below.

strat=strat
Set the sequential ordering strategy that is applied to the centralized
graph. For a description of all of the available sequential ordering meth-
ods, please refer to the ScOTCH User’s Guide [35].

Simple method. Vertices are ordered in their natural order. This method is
fast, and should be used to order separators if the number of extra-diagonal
blocks is not relevant

7.4.5 Parallel node separation strategy strings

A parallel node separation strategy is made of one or several parallel node separation
methods, which can be combined by means of strategy operators. Strategy operators
are listed below, by increasing precedence.

stratl | strat2

Selection operator. The result of the selection is the best vertex separator of
the two that are obtained by the distinct application of strat! and strat2 to
the current separator.

stratl strat?

Combination operator. Strategy strat2 is applied to the vertex separator
resulting from the application of strategy strat! to the current separator.
Typically, the first method used should compute an initial separation from
scratch, and every following method should use the result of the previous one
as a starting point.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated
as a single separation method.

43

/ cond?stratl[: strat?);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current subgraph, and can be built from logical
and relational operators. Conditional operators are listed below, by increasing
precedence.

condl | cond?2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

cond1&cond?2
Logical and operator. The result of the condition is true only if both
condl and cond2 are true.

I cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a graph or node variable, val is either
a graph or node variable or a constant of the type of variable var, and

relop is one of '<’, ’=", and ’>’. The graph and node variables are listed
below, along with their types.

edge
The global number of edges of the current subgraph. Integer.

levl
The level of the subgraph in the separators tree, starting from zero
for the initial graph at the root of the tree. Integer.

load
The overall sum of the vertex loads of the subgraph. It is equal to
vert if the graph has no vertex loads. Integer.

proc
The number of processes on which the current subgraph is dis-
tributed at this level of the nested dissection process. Integer.

rank
The rank of the current process among the group of processes on
which the current subgraph is distributed at this level of the nested
dissection process. Integer.

vert
The number of vertices of the current subgraph. Integer.

The currently available parallel vertex separation methods are the following.

b Band method. Basing on the current distributed graph and on its parti-
tion, this method creates a new distributed graph reduced to the vertices
which are at most at a given distance from the current separator, runs
a parallel vertex separation strategy on this graph, and prolongs back
the new separator to the current graph. This method is primarily used
to run separator refinement methods during the uncoarsening phase of
the multi-level parallel graph separation method. The parameters of the
band method are listed below.

44

strat=strat
Set the parallel vertex separation strategy to be applied to the band
graph.

width=val
Set the maximum distance from the current separator of vertices to
be kept in the band graph. 0 means that only separator vertices
themselves are kept, 1 that immediate neighboring vertices are kept
too, and so on.

Parallel vertex multi-level method. The parameters of the vertex multi-
level method are listed below.

asc=strat
Set the strategy that is used to refine the distributed vertex sep-
arators obtained at ascending levels of the uncoarsening phase by
prolongation of the separators computed for coarser graphs. This
strategy is not applied to the coarsest graph, for which only the low
strategy is used.

dlevl=nbr
Set the minimum level after which duplication is allowed in the fold-
ing process. A value of —1 results in duplication being always per-
formed when folding.

dvert=nbr
Set the average number of vertices per process under which the fold-
ing process is performed during the coarsening phase.

low=strat
Set the strategy that is used to compute the vertex separator of
the coarsest distributed graph, at the lowest level of the coarsening
process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs are
no longer coarsened. The ratio of any given coarsening cannot be
less that 0.5 (case of a perfect matching), and cannot be greater
than 1.0. Coarsening stops when either the coarsening ratio is above
the maximum coarsening ratio, or the graph has fewer node vertices
than the minimum number of vertices allowed.

vert=nbr
Set the threshold minimum size under which graphs are no longer
coarsened. Coarsening stops when either the coarsening ratio is
above the maximum coarsening ratio, or the graph has fewer node
vertices than the minimum number of vertices allowed.

Multi-sequential method. The current distributed graph and its sep-
arator are centralized on every process that holds a part of it, and a
sequential vertex separation method is applied independently to each
of them. Then, the best separator found is prolonged back to the dis-
tributed graph. This method is primarily designed to operate on band
graphs, which are orders of magnitude smaller than their parent graph.
Else, memory bottlenecks are very likely to occur. The parameters of
the multi-sequential method are listed below.

strat=strat
Set the sequential vertex separation strategy that is used to refine

45

the separator of the centralized graph. For a description of all of
the available sequential methods, please refer to the SCOTCH User’s
Guide [35].
z Zero method. This method moves all of the node vertices to the first part,
resulting in an empty separator. Its main use is to stop the separation
process whenever some condition is true.

7.5 Distributed graph handling routines
7.5.1 SCOTCH._dgraphAlloc

Synopsis

SCOTCH Dgraph * SCOTCH.dgraphAlloc (void)

Description

The SCOTCH_dgraphAlloc function allocates a memory area of a size sufficient
to store a SCOTCH Dgraph structure. It is the user’s responsibility to free this
memory when it is no longer needed. The allocated space must be initialized
before use, by means of the SCOTCH_dgraphInit routine.

Return values

SCOTCH-dgraphAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

7.5.2 SCOTCH._dgraphBand

Synopsis
int SCOTCH_dgraphBand (SCOTCH Dgraph * const orggrafptr,
const SCOTCH_Num fronlocnbr,
const SCOTCH.Num * const fronloctab,
const SCOTCH_Num distval,
SCOTCH Dgraph * const bndgrafptr)
scotchfdgraphband (doubleprecision (*) orggrafdat,
integer*num seedlocnbr,
integer*num (*) seedloctab,
integer*xnum distval,

doubleprecision (*) bndgrafdat,
integer ierr)

Description

The SCOTCH_dgraphBand routine creates in the SCOTCH.Dgraph structure
pointed to by bndgrafptr a distributed band graph induced from the SCOTCH-
Dgraph pointed to by orggrafptr. The distributed band graph will contain
all the vertices of the original graph located at a distance smaller than or

46

equal to distval from any vertex provided in the seedloctab lists of seed
vertices.

On each process, the seedloctab array should contain the local indices of
the local vertices that will serve as seeds. The number of such local vertices
is passed to SCOTCH.dgraphBand in the seedlocnbr value. The size of the
seedloctab array should be at least equal to the number of local vertices of
the original graph, as it is internally used as a queue array. Hence, no user
data should be placed immediately after the seedlocnbr values in the array,
as they are most likely to be overwritten by SCOTCH_-dgraphBand.

bndgrafptr must have been initialized with the SCOTCH_dgraphInit routine
before SCOTCH_dgraphBand is called. The communicator that is passed to it
can either be the communicator used by the original graph orggrafptr, or
any congruent communicator created by using MPI_Comm_dup on this commu-
nicator. Using a distinct communicator for the induced band graph allows
subsequent library routines to be called in parallel on the two graphs after the
band graph is created.

Induced band graphs have vertex labels attached to each of their vertices, in
the vlblloctab array. If the original graph had vertex labels attached to
it, band graph vertex labels are the labels of the corresponding vertices in
the original graph. Else, band graph vertex labels are the global indices of
corresponding vertices in the original graph.

Depending on original graph vertex and seed distributions, the distribution of
induced band graph vertices may be highly imbalanced. In order for further
computations on this distributed graph to scale well, a redistribution of its
data may be necessary, using the SCOTCH_dgraphRedist routine.

Return values

SCOTCH_dgraphBand returns 0 if the band graph structure has been success-
fully created, and 1 else.

7.5.3 SCOTCH_dgraphBuild

Synopsis

int SCOTCH_dgraphBuild (SCOTCH_Dgraph * grafptr,
const SCOTCH_Num baseval,
const SCOTCH_Num vertlocnbr,
const SCOTCH_Num vertlocmax,
const SCOTCH Num * vertloctab,
const SCOTCH_Num * vendloctab,
const SCOTCH Num * veloloctab,
const SCOTCH Num * vlblocltab,
const SCOTCH_Num edgelocnbr,
const SCOTCH Num edgelocsiz,
const SCOTCHNum * edgeloctab,
const SCOTCHNum * edgegsttab,
const SCOTCH Num * edloloctab)

47

scotchfdgraphbuild (doubleprecision (*) grafdat,

integer*xnum baseval,
integer*num vertlocnbr,
integer*num vertlocmax,
integer*xnum (*) vertloctab,
integer*xnum (*) vendloctab,
integer*num (%) veloloctab,
integer*xnum (*) vlblloctab,
integer*xnum edgelocnbr,
integer*xnum edgelocsiz,
integer*num (*) edgeloctab,
integer*num (*) edgegsttab,
integer*num (%) edloloctab,
integer ierr)

Description

The SCOTCH_dgraphBuild routine fills the distributed source graph structure
pointed to by grafptr with all of the data that are passed to it.

baseval is the graph base value for index arrays (typically 0 for structures
built from C and 1 for structures built from Fortran). vertlocnbr is the
number of local vertices on the calling process, used to create the proccnttab
array. vertlocmax is the maximum number of local vertices to be created on
the calling process, used to create the procvrttab array of global indices, and
which must be set to vertlocnbr for graphs wihout holes in their global num-
bering. vertloctabis the local adjacency index array, of size (vertlocnbr+1)
if the edge array is compact (that is, if vendloctab equals vertloctab + 1
or NULL), or of size vertlocnbr else. vendloctab is the adjacency end index
array, of size vertlocnbr if it is disjoint from vertloctab. veloloctab is
the local vertex load array, of size vertlocnbr if it exists. vlblloctab is the
local vertex label array, of size vertlocnbr if it exists. edgelocnbr is the
local number of arcs (that is, twice the number of edges), including arcs to
local vertices as well as to ghost vertices. edgelocsiz is lower-bounded by
the minimum size of the edge array required to encompass all used adjacency
values; it is therefore at least equal to the maximum of the vendloctab en-
tries, over all local vertices, minus baseval; it can be set to edgelocnbr if
the edge array is compact. edgeloctab is the local adjacency array, of size at
least edgelocsiz, which stores the global indices of end vertices. edgegsttab
is the adjacency array, of size at least edgelocsiz, if it exists; if edgegsttab
is given, it is assumed to be a pointer to an empty array to be filled with ghost
vertex data computed by SCOTCH.dgraphGhst whenever needed by commu-
nication routines such as SCOTCH.dgraphHalo. edloloctab is the arc load
array, of size edgelocsiz if it exists.

The vendloctab, veloloctab, vlblloctab, edloloctab and edgegsttab ar-
rays are optional, and a null pointer can be passed as argument whenever they
are not defined.

Note that, for PT-SCOTCH to operate properly, either all the arrays of a kind
must be set to null on all processes, or else all of them must be non null. This
is mandatory because some algorithms require that collective communication
operations be performed when some kind of data is present. If some processes

48

considered that the arrays are present, and start such communications, while
others did not, a deadlock would occur. In most cases, this situation will be
anticipated and an error message will be issued, stating that graph data are
inconsistent.

The situation above may accidentally arise when some processes don’t own
any edge or vertex. In that case, depending on the implementation, a user
malloc of size zero may return a null pointer rather than a non null pointer
to an area of size zero, leading to the aforementioned inconsistencies. In order
to avoid this problem, it is necessary to ensure that no null pointer will be
returned, even in the case when zero bytes are requested. A workaround can
be to call malloc (z | 4) instead of malloc (z). The “| 4” will consume
only 4 extra bytes at most, depending on the value of z.

Since, in Fortran, there is no null reference, passing the scotchfdgraphbuild
routine a reference equal to vertloctab in the veloloctab or viblloctab
fields makes them be considered as missing arrays. The same holds for
edloloctab and edgegsttab when they are passed a reference equal to
edgeloctab. Setting vendloctab to refer to one cell after vertloctab yields
the same result, as it is the exact semantics of a compact vertex array.

To limit memory consumption, SCOTCH_dgraphBuild does not copy array
data, but instead references them in the SCOTCH Dgraph structure. Therefore,
great care should be taken not to modify the contents of the arrays passed to
SCOTCH_dgraphBuild as long as the graph structure is in use. Every update
of the arrays should be preceded by a call to SCOTCH_dgraphFree, to free
internal graph structures, and eventually followed by a new call to SCOTCH-
dgraphBuild to re-build these internal structures so as to be able to use the
new distributed graph.

To ensure that inconsistencies in user data do not result in an erroneous behav-
ior of the LIBSCOTCH routines, it is recommended, at least in the development
stage of your application code, to call the SCOTCH_-dgraphCheck routine on the
newly created SCOTCH Dgraph structure before calling any other LIBSCOTCH
routine.

Return values

SCOTCH_dgraphBuild returns 0 if the graph structure has been successfully
set with all of the input data, and 1 else.
7.5.4 SCOTCH_dgraphCheck

Synopsis

int SCOTCH._dgraphCheck (const SCOTCH Dgraph * grafptr)

scotchfdgraphcheck (doubleprecision (*) grafdat,
integer ierr)

Description

The SCOTCH_dgraphCheck routine checks the consistency of the given SCOTCH-
Dgraph structure. It can be used in client applications to determine if a graph

49

which has been created from user-generated data by means of the SCOTCH-
dgraphBuild routine is consistent, prior to calling any other routines of the
LIBSCOTCH library which would otherwise return internal error messages or
crash the program.

Return values

SCOTCH_dgraphCheck returns 0 if graph data are consistent, and 1 else.

7.5.5 SCOTCH_dgraphCoarsen

Synopsis

int SCOTCH_dgraphCoarsen (SCOTCH Dgraph * const finegrafptr,

const SCOTCH_Num coarnbr,

const double coarrat,

const SCOTCH Num flagval,

SCOTCH Dgraph * const coargrafptr,

SCOTCH.Num * const multloctab)

scotchfdgraphcoarsen (doubleprecision (*) finegrafdat,

integer*xnum coarnbr,
doubleprecision coarrat,
integer*num flagval,
doubleprecision (*) coargrafdat,
integer*num (%) multloctab,
integer ierr)

Description

The SCOTCH_dgraphCoarsen routine creates in the SCOTCH Dgraph structure
pointed to by coargrafptr a distributed coarsened graph from the SCOTCH-
Dgraph pointed to by finegrafptr. The coarsened graph is created only if
it is comprises more than coarnbr vertices, or if the coarsening ratio is lower
than coarrat. Valid coarsening ratio values range from 0.5 (in the case of a
perfect matching) to 1.0 (if no vertex could be coarsened). Classical threshold
values range from 0.7 to 0.8.

The flagval flag specifies the type of coarsening. Several groups of flags
can be combined, by means of addition or “binary or” operators. When
SCOTCH_COARSENNOMERGE is set, isolated vertices are never merged with other
vertices. This preserves the topology of the graph, at the expense of a higher
coarsening ratio. When SCOTCH_COARSENFOLD or SCOTCH_COARSENFOLDDUP are
set, if a coarsened graph is created, it is folded onto half of the processes of
the initial communicator. In the case of SCOTCH_.COARSENFOLDDUP, a second
copy is created (duplicated) onto the other half. The two copies may not be
identical, if the number of processors of the finer graph is odd.

The multloctab array must be of a size that is big enough to store multin-
ode data for the resulting coarsened graph. This array will contain pairs of
consecutive SCOTCH Num values, representing the global indices of the two fine
vertices that have been coarsened into each of the local coarse vertices. In

50

case of plain coarsening, the size of the array must be at least twice the max-
imum expected number of local coarse vertices, that is, on each processor,
twice the value of vertlocnbr of the finer graph, because in the worst case no
coarsening may happen on some processor. In case of folding, a redistribution
of vertices is performed. Hence, the maximum number of coarse vertices on
some processor is upper-bounded by the expected maximum global number
of coarse vertices, divided by the resulting number of processors, that is, the
integer floor value of half of the number of processors of the finer graph.

coargrafptr must have been initialized with the SCOTCH_dgraphInit routine
before SCOTCH_dgraphCoarsen is called. The communicator that is passed to
it can either be the communicator used by the fine graph finegrafptr, or
any congruent communicator created by using MPI_Comm_dup on this commu-
nicator. Using a distinct communicator for the coarsened subgraph allows
subsequent library routines to be called in parallel on the two graphs after the
coarse graph is created.

Depending on the way vertex mating is performed, the distribution of coars-
ened graph vertices may be imbalanced. In order for further computations
on this distributed graph to scale well, a redistribution of its data might be
necessary, using the SCOTCH_dgraphRedist routine.

Return values

SCOTCH_dgraphCoarsen returns 0 if the coarse graph structure has been suc-
cessfully created, 1 if the coarse graph was not created because it did not
enforce the threshold parameters, and 2 on error.

7.5.6 SCOTCH_dgraphData

Synopsis

void SCOTCH.dgraphData (const SCOTCH Graph * grafptr,

SCOTCH Num =* baseptr,
SCOTCH Num =* vertglbptr,
SCOTCH Num * vertlocptr,
SCOTCH Num * vertlocptz,
SCOTCH Num =* vertgstptr,
SCOTCH_Num ** vertloctab,
SCOTCH_Num ** vendloctab,
SCOTCH_Num *x* veloloctab,
SCOTCH_Num ** vlblloctab,
SCOTCH Num * edgeglbptr,
SCOTCH Num =* edgelocptr,
SCOTCH Num =* edgelocptz,
SCOTCH Num *3* edgeloctab,
SCOTCH Num ** edgegsttab,
SCOTCH_Num *x* edloloctab,
MPI Comm * comm)

51

scotchfdgraphdata (doubleprecision (*) grafdat,
integer*num (*) indxtab,
integer*xnum baseval,
integer*xnum vertglbnbr,
integer*num vertlocnbr,
integer*xnum vertlocmax,
integer*xnum vertgstnbr,
integerxidr vertlocidx,
integerxidr vendlocidx,
integerx*idz velolocidx,
integerx*idz vlbllocidx,
integer*num edgeglbnbr,
integer*xnum edgelocnbr,
integer*xnum edgelocsiz,
integerxidr edgelocidx,
integerxidr edgegstidx,
integerx*idz edlolocidx,
integer comm)

Description

The SCOTCH_dgraphData routine is the dual of the SCOTCH_dgraphBuild rou-
tine. It is a multiple accessor that returns scalar values and array references.

baseptr is the pointer to a location that will hold the graph base value for
index arrays (typically 0 for structures built from C and 1 for structures built
from Fortran). vertglbptr is the pointer to a location that will hold the global
number of vertices. vertlocptr is the pointer to a location that will hold the
number of local vertices. vertlocptz is the pointer to a location that will
hold the maximum allowed number of local vertices, that is, (procvrttab[p+
1] —procvrttab[p]), where p is the rank of the local process. vertgstptr is
the pointer to a location that will hold the number of local and ghost vertices
if it has already been computed by a prior call to SCOTCH_dgraphGhst, and
—1 else. vertloctab is the pointer to a location that will hold the reference
to the adjacency index array, of size *vertlocptr+1 if the adjacency array is
compact, or of size *vertlocptr else. vendloctab is the pointer to a location
that will hold the reference to the adjacency end index array, and is equal
to vertloctab + 1 if the adjacency array is compact. veloloctab is the
pointer to a location that will hold the reference to the vertex load array, of
size *vertlocptr. vlblloctab is the pointer to a location that will hold the
reference to the vertex label array, of size vertlocnbr. edgeglbptr is the
pointer to a location that will hold the global number of arcs (that is, twice
the number of global edges). edgelocptr is the pointer to a location that
will hold the number of local arcs (that is, twice the number of local edges).
edgelocptz is the pointer to a location that will hold the declared size of
the local edge array, which must encompass all used adjacency values; it is
at least equal to *edgelocptr. edgeloctab is the pointer to a location that
will hold the reference to the local adjacency array of global indices, of size
at least *edgelocptz. edgegsttab is the pointer to a location that will hold
the reference to the ghost adjacency array, of size at least *edgelocptz; if it
is non null, its data are valid if vertgstnbr is non-negative. edloloctab is

52

the pointer to a location that will hold the reference to the arc load array, of
size *edgelocptz. comm is the pointer to a location that will hold the MPI
communicator of the distributed graph.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow
users to access graph arrays. The scotchfdgraphdata routine is passed an
integer array, the first element of which is used as a base address from which all
other array indices are computed. Therefore, instead of returning references,
the routine returns integers, which represent the starting index of each of the
relevant arrays with respect to the base input array, or vertlocidx, the index
of vertloctab, if they do not exist. For instance, if some base array myarray
(1) is passed as parameter indxtab, then the first cell of array vertloc
tab will be accessible as myarray(vertlocidx). In order for this feature
to behave properly, the indxtab array must be word-aligned with the graph
arrays. This is automatically enforced on most systems, but some care should
be taken on systems that allow to access data that is not word-aligned. On
such systems, declaring the array after a dummy doubleprecision array can
coerce the compiler into enforcing the proper alignment. The integer value
returned in comm is the communicator itself, not its index with respect to
indxtab. Also, on 3264 architectures, such indices can be larger than the
size of a regular INTEGER. This is why the indices to be returned are defined
by means of a specific integer type. See Section 7.2.4 for more information on
this issue.

7.5.7 SCOTCH_dgraphExit

Synopsis

void SCOTCH.-dgraphExit (SCOTCHDgraph * grafptr)
scotchfdgraphexit (doubleprecision (*) grafdat)

Description

The SCOTCH_dgraphExit function frees the contents of a SCOTCH Dgraph struc-
ture previously initialized by SCOTCH.dgraphInit. All subsequent calls to
SCOTCH_dgraph routines other than SCOTCH_dgraphInit, using this structure
as parameter, may yield unpredictable results.

If SCOTCH_dgraphInit was called with a communicator that is not a predefined
MPI communicator, it is the user’s responsibility to free this communicator
after all graphs that use it have been freed by means of the SCOTCH_dgraph
Exit routine.

7.5.8 SCOTCH_dgraphFree

Synopsis

93

void SCOTCH_-dgraphFree (SCOTCHDgraph * grafptr)
scotchfdgraphfree (doubleprecision (%) grafdat)

Description

The SCOTCH-dgraphFree function frees the graph data of a SCOTCH.Dgraph
structure previously initialized by SCOTCH.dgraphInit, but preserves its in-
ternal communication data structures. This call is equivalent to a call to
SCOTCH.dgraphExit immediately followed by a call to SCOTCH.dgraphInit
with the same communicator as in the previous SCOTCH.dgraphInit call. Con-
sequently, the given SCOTCH Dgraph structure remains ready for subsequent
calls to any distributed graph handling routine of the LIBSCOTCH library.

7.5.9 SCOTCH.dgraphGather

Synopsis

int SCOTCH_dgraphGather (SCOTCHDDgraph * const dgrfptr,
const SCOTCH_Graph * const cgrfptr)

scotchfdgraphgather (doubleprecision (*) dgrfdat,
doubleprecision (*) cgrfdat,
integer ierr)

Description

The SCOTCH_dgraphGather routine gathers the contents of the distributed
SCOTCH Dgraph structure pointed to by dgrfptr to the centralized SCOTCH_
Graph structure(s) pointed to by cgrfptr.

If only one of the processes has a non-null cgrfptr pointer, it is considered
as the root process to which distributed graph data is sent. Else, all of the
processes must provide a valid cgrfptr pointer, and each of them will receive
a copy of the centralized graph.

Return values

SCOTCH_dgraphGather returns 0 if the graph structure has been successfully
gathered, and 1 else.

7.5.10 SCOTCH_dgraphInducePart

Synopsis
int SCOTCH_dgraphInducePart (SCOTCH Dgraph * const orggrafptr,
const SCOTCHNum * const orgpartloctab,
const SCOTCH Num indpartval,
const SCOTCH_Num indvertlocnbr,
SCOTCHDgraph * const indgrafptr)

o4

scotchfdgraphinducepart (doubleprecision (*) orggrafdat,

integer*xnum (*) orgpartloctab,
integer*num indpartval,
integer*num indvertlocnbr,

doubleprecision (*) indgrafdat,
integer ierr)

Description

The SCOTCH_dgraphInducePart routine creates in the SCOTCH Dgraph struc-
ture pointed to by indgrafptr a distributed induced subgraph of the SCOTCH-
Dgraph pointed to by orggrafptr. The local vertices of every processor that
are kept in the induced subgraph are the ones for which the values contained
in the orgpartloctab array cells are equal to indpartval.

The orgpartloctab array must be of a size at least equal to the number
of local vertices of the original graph. It may be larger, e.g. equal to the
number of local plus ghost vertices, if needed by the user, but only the area
corresponding to the local vertices will be used by SCOTCH_dgraphInducePart.

indvertlocnbr is the number of local vertices in the induced subgraph. It
must therefore be equal to the number of local vertices that have their associ-
ated orgpartloctab cell value equal to indpartval. This value is necessary
to internal array allocations. While it could have been easily computed by
SCOTCH, by traversing the orgpartgsttab array, making it used-provided
spares such a traversal if the user already knows the value. If it is not the
case, setting this value to -1 will make SCOTCH compute it automatically.

indgrafptr must have been initialized with the SCOTCH_dgraphInit routine
before SCOTCH_dgraphInducePart is called. The communicator that is passed
to it can either be the communicator used by the original graph orggraf
ptr, or any congruent communicator created by using MPI_Comm_dup on this
communicator. Using a distinct communicator for the induced subgraph al-
lows subsequent library routines to be called in parallel on the two graphs
after the induced graph is created.

Induced band graphs have vertex labels attached to each of their vertices, in
the vlblloctab array. If the original graph had vertex labels attached to
it, induced graph vertex labels are the labels of the corresponding vertices in
the original graph. Else, induced graph vertex labels are the global indices of
corresponding vertices in the original graph.

Depending on the partition array, the distribution of induced graph vertices
may be highly imbalanced. In order for further computations on this dis-
tributed graph to scale well, a redistribution of its data may be necessary,
using the SCOTCH_dgraphRedist routine.

Return values

SCOTCH_dgraphInducePart returns 0 if the induced graph structure has been
successfully created, and 1 else.

95

7.5.11 SCOTCH_dgraphInit

Synopsis

int SCOTCH.dgraphInit (SCOTCHDgraph * grafptr,
MPI_Comm comm)

scotchfdgraphinit (doubleprecision (%) grafdat,
integer comm,
integer ierr)

Description

The SCOTCH_dgraphInit function initializes a SCOTCH Dgraph structure so
as to make it suitable for future parallel operations. It should be the first
function to be called upon a SCOTCHDgraph structure. By accessing the
communicator handle which is passed to it, SCOTCH_dgraphInit can know
how many processes will be used to manage the distributed graph and can
allocate its private structures accordingly.

SCOTCH_dgraphInit does not make a duplicate of the communicator which
is passed to it, but instead keeps a reference to it, so that all future com-
munications needed by LIBSCOTCH to process this graph will be performed
using this communicator. Therefore, it is the user’s responsibility, whenever
several LIBSCOTCH routines might be called in parallel, to create appropriate
duplicates of communicators so as to avoid any potential interferences between
concurrent communications.

When the distributed graph is no longer of use, the SCOTCH_dgraphExit func-
tion must be called, to free its internal data arrays.

If SCOTCH_dgraphInit was called with a communicator that is not a predefined
MPI communicator (such as MPI_COMM_WORLD or MPI_COMM_SELF), it is the
user’s responsibility to free this communicator after all graphs that use it
have been freed by means of the SCOTCH_dgraphExit routine.

Return values

SCOTCH.dgraphInit returns 0 if the graph structure has been successfully
initialized, and 1 else.
7.5.12 SCOTCH.dgraphRedist

Synopsis

int SCOTCH._dgraphRedist (SCOTCHDDgraph * const orggrafptr,
const SCOTCH Num * const partloctab,
const SCOTCHNum * const permgsttab,

const SCOTCH_Num vertlocdlt,
const SCOTCH Num edgelocdlt,
SCOTCH Dgraph * const redgrafptr)

56

scotchfdgraphredist (doubleprecision (*) orggrafdat,

integer*num (*) partloctab,
integer*num (*) permgsttab,
integer*num vertlocdlt,
integer*xnum edgelocdlt,

doubleprecision (*) redgrafptr)

Description

The SCOTCH_dgraphRedist routine initializes and fills the redistributed graph
structure pointed to by redgrafptr with a new distributed graph made from
data redistributed from the original graph pointed to by orggrafptr.

The partition array, partloctab, must always be provided. It holds the part
number associated with each local vertex. Part indices are not based: target
vertices are numbered from 0 to the number of parts minus 1.

Whenever provided, the permutation array permgsttab must be of a size equal
to the number of local and ghost vertices of the source graph (that is, vert
gstnbr, see Section 7.3.1). Its contents must be based, that is, permutation
global indices start at baseval. Both its local and ghost contents must be
valid. Consequently, it is the user’s responsibility to call SCOTCH_dgraphHalo
whenever necessary so as to propagate part values of the local vertices to
their ghost counterparts on other processes. SCOTCH_dgraphRedist does not
perform this halo exchange itself because users may already have computed
these values by themselves when computing the new partition. If permgst
tab is not provided by the user, vertices in each part are reordered according
to their global indices in the source graph.

redgrafptr must have been initialized with the SCOTCH_dgraphInit routine
before SCOTCH_dgraphRedist is called. The communicator that is passed
to it can either be the communicator used by the original graph orggraf
ptr, or any congruent communicator created by using MPI_Comm_dup on this
communicator. Using a distinct communicator for the redistributed graph
allows subsequent library routines to be called in parallel on the two graphs
after the redistributed graph is created.

Redistributed graphs have vertex labels attached to each of their vertices, in
the vlblloctab array. If the original graph had vertex labels attached to it,
redistributed graph vertex labels are the labels of the corresponding vertices
in the original graph. Else, redistributed graph vertex labels are the global
indices of corresponding vertices in the original graph.

Return values

SCOTCH_dgraphRedist returns 0 if the redistributed graph has been success-
fully created, and 1 else.

7.5.13 SCOTCH.dgraphScatter

Synopsis

int SCOTCH_dgraphScatter (SCOTCH Dgraph * const dgrfptr,
const SCOTCH_Graph * const cgrfptr)

o7

scotchfdgraphscatter (doubleprecision (*) dgrfdat,
doubleprecision (*) cgrfdat,
integer ierr)

Description

The SCOTCH_dgraphScatter routine scatters the contents of the centralized
SCOTCH_Graph structure pointed to by cgrfptr across the processes of the
distributed SCOTCH_Dgraph structure pointed to by dgrfptr.

Only one of the processes should provide a non-null cgrfptr parameter. This
process is considered the root process for the scattering operation. Since,
in Fortran, there is no null reference, processes which are not the root must
indicate it by passing a pointer to the distributed graph structure equal to
the pointer to their centralized graph structure.

The scattering is performed such that graph vertices are evenly spread across

the processes of the communicator associated with the distributed graph, in
vertglbnbr '| L vertglbnbr J

procglbnbr | °* | procglbnbr

vertices, according to its rank: processes of lower ranks are filled first, even-

tually with one more vertex than processes of higher ranks.

ascending order. Every process receives either {

Return values

SCOTCH_dgraphScatter returns 0 if the graph structure has been successfully
scattered, and 1 else.

7.5.14 SCOTCH.dgraphSize

Synopsis

void SCOTCH.dgraphSize (const SCOTCHDgraph * grafptr,

SCOTCH Num * vertglbptr,
SCOTCH Num =* vertlocptr,
SCOTCH Num * edgeglbptr,
SCOTCH Num * edgelocptr)
scotchfdgraphsize (doubleprecision (*) grafdat,
integer*num vertglbnbr,
integer*xnum vertlocnbr,
integer*xnum edgeglbnbr,
integer*num edgelocnbr)

Description

The SCOTCH_dgraphSize routine fills the four areas of type SCOTCH_Num
pointed to by vertglbptr, vertlocptr, edgeglbptr and edgelocptr with
the number of global vertices and arcs (that is, twice the number of edges) of
the given graph pointed to by grafptr, as well as with the number of local
vertices and arcs borne by each of the calling processes.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

o8

This routine is useful to get the size of a graph read by means of the SCOTCH_
dgraphLoad routine, in order to allocate auxiliary arrays of proper sizes. If the
whole structure of the graph is wanted, function SCOTCH_dgraphData should
be preferred.

7.6 Distributed graph I/O routines
7.6.1 SCOTCH_dgraphLoad

Synopsis

int SCOTCH._dgraphLoad (SCOTCHDgraph * grafptr,

FILE =* stream,
SCOTCH Num baseval,
SCOTCH_Num flagval)
scotchfdgraphload (doubleprecision (*) grafdat,
integer fildes,
integer*xnum baseval,
integer*num flagval,
integer ierr)

Description

The SCOTCH_dgraphLoad routine fills the SCOTCH Dgraph structure pointed
to by grafptr with the centralized or distributed source graph description
available from one or several streams stream in the SCOTCH graph formats
(please refer to section 5.1 for a description of the distributed graph format,
and to the SCOTCH User’s Guide [35] for the centralized graph format).

When only one stream pointer is not null, the associated source graph file
must be a centralized one, the contents of which are spread across all of the
processes. When all stream pointers are non null, they can either refer to
multiple instances of the same centralized graph, or to the distinct fragments
of a distributed graph. In the first case, all processes read all of the contents
of the centralized graph files but keep only the relevant part. In the second
case, every process reads its fragment in parallel.

To ease the handling of source graph files by programs written in C as well as
in Fortran, the base value of the graph to read can be set to 0 or 1, by setting
the baseval parameter to the proper value. A value of -1 indicates that the
graph base should be the same as the one provided in the graph description
that is read from stream.

The flagval value is a combination of the following integer values, that may
be added or bitwise-ored:
0 Keep vertex and edge weights if they are present in the stream data.

1 Remove vertex weights. The graph read will have all of its vertex weights
set to one, regardless of what is specified in the stream data.

2 Remove edge weights. The graph read will have all of its edge weights
set to one, regardless of what is specified in the stream data.

99

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
ber of the Unix file descriptor fildes associated with the logical unit of the
graph file. Processes which would pass a NULL stream pointer in C must pass
descriptor number -1 in Fortran.

Return values

SCOTCH_dgraphLoad returns 0 if the distributed graph structure has been suc-
cessfully allocated and filled with the data read, and 1 else.

7.6.2 SCOTCH_dgraphSave

Synopsis

int SCOTCH.dgraphSave (const SCOTCH Dgraph * grafptr,
FILE * stream)

scotchfdgraphsave (doubleprecision (*) grafdat,
integer fildes,
integer ierr)

Description

The SCOTCH_dgraphSave routine saves the contents of the SCOTCHDgraph
structure pointed to by grafptr to streams stream, in the SCOTCH distributed
graph format (see section 5.1).

Fortran users must use the PXFFILENO or FNUM functions to obtain the number
of the Unix file descriptor fildes associated with the logical unit of the graph
file.

Return values

SCOTCH_dgraphSave returns 0 if the graph structure has been successfully
written to stream, and 1 else.

7.7 Data handling and exchange routines
7.7.1 SCOTCH_dgraphGhst

Synopsis

int SCOTCH_dgraphGhst (SCOTCH Dgraph * const grafptr)

scotchfdgraphghst (doubleprecision (%) grafdat,
integer ierr)

Description

The SCOTCH_dgraphGhst routine fills the edgegsttab arrays of the distributed
graph structure pointed to by grafptr with the local and ghost vertex indices
corresponding to the global vertex indices contained in its edgeloctab arrays,
according to the semantics described in Section 7.3.1.

60

If memory areas had not been previously reserved by the user for the edge
gsttab arrays and linked to the distributed graph structure through a call to
SCOTCH_dgraphBuild, they are allocated. Their references can be retrieved
on every process by means of a call to SCOTCH.dgraphData, which will also
return the number of local and ghost vertices, suitable for allocating vertex
data arrays for SCOTCH_dgraphHalo.

Return values

SCOTCH_dgraphGhst returns 0 if ghost vertex data has been successfully com-
puted, and 1 else.

7.7.2 SCOTCH._dgraphHalo

Synopsis

int SCOTCH_dgraphHalo (SCOTCH Dgraph * const grafptr,
void * datatab,
MPI Datatype typeval)

scotchfdgraphhalo (doubleprecision (*) grafdat,
doubleprecision (*) datatab,
integer typeval,
integer ierr)

Description

The SCOTCH_dgraphHalo routine propagates the data borne by local vertices
to all of the corresponding halo vertices located on neighboring processes,
in a synchronous way. On every process, datatab should point to a data
array of a size sufficient to hold vertgstnbr elements of the data type to
be exchanged, the first vertlocnbr slots of which must already be filled
with the information associated with the local vertices. On completion, the
(vertgstnbr — vertlocnbr) remaining slots are filled with copies of the cor-
responding remote data obtained from the local parts of the data arrays of
neighboring processes.

When the MPI data type to be used is not a collection of contiguous en-
tries, great care should be taken in the definition of the upper bound of the
type (by using the MPI_UB pseudo-datatype), such that when asking MPI to
send a certain number of elements of the said type located at some address,
contiguous areas in memory will be considered. Please refer to the MPI docu-
mentation regarding the creation of derived datatypes [32, Section 3.12.3] for
more information.

To perform its data exchanges, the SCOTCH_dgraphHalo routine requires ghost
vertex management data provided by the SCOTCH_dgraphGhst routine. There-
fore, the edgegsttab array returned by the SCOTCH.dgraphData routine will
always be valid after a call to SCOTCH_dgraphHalo, if it was not already.

In case useful computation can be carried out during the halo exchange, an
asynchronous version of this routine is available, called SCOTCH_dgraphHalo
Async.

61

Return values

SCOTCH_dgraphHalo returns O if halo data has been successfully exchanged,
and 1 else.

7.7.3 SCOTCH.dgraphHaloAsync

Synopsis
int SCOTCH_dgraphHaloAsync (SCOTCHDgraph * const grafptr,
void * datatab,
MPI Datatype typeval,

SCOTCH DgraphHaloReq * const requptr)

scotchfdgraphhaloasync (doubleprecision (*) grafdat,
doubleprecision (*) datatab,
integer typeval,
doubleprecision (*) requptr,
integer ierr)

Description

The SCOTCH_dgraphHaloAsync routine propagates the data borne by local
vertices to all of the corresponding halo vertices located on neighboring pro-
cesses, in an asynchronous way. On every process, datatab should point to a
data array of a size sufficient to hold vertgstnbr elements of the data type
to be exchanged, the first vertlocnbr slots of which must already be filled
with the information associated with the local vertices. On completion, the
(vertgstnbr — vertlocnbr) remaining slots are filled with copies of the cor-
responding remote data obtained from the local parts of the data arrays of
neighboring processes.

The semantics of SCOTCH_dgraphHaloAsync is similar to the one of
SCOTCH_dgraphHalo, except that it returns as soon as possible, while ef-
fective communication may not have started nor completed. Also, it pos-
sesses an additional parameter, requptr, which must point to a SCOTCH-
DgraphHaloReq data structure. Similarly to asynchronous MPI calls, users
can wait for the completion of a SCOTCH_dgraphHaloAsync routine by call-
ing the SCOTCH_dgraphHaloWait routine, passing it a pointer to this request
structure. In Fortran, the request structure must be defined as an array of
DOUBLEPRECISIONS, of size SCOTCH_DGRAPHHALOREQDIM. This constant is de-
fined in file ptscotchf.h, which must be included whenever necessary.

The effective means for SCOTCH_dgraphHaloAsync to perform its task may
vary at compile time, depending on the presence of a thread-safe MPI library
or on the existence of asynchronous collective communication routines such
as MPE_Talltoallv. In case no method for performing asynchronous collec-
tive communication is available, SCOTCH_dgraphHaloAsync will internally call
SCOTCH_dgraphHalo to perform synchronous communication.

Because of possible limitations in the implementation of third-party com-
munication routines, it is not recommended to perform simultaneous
SCOTCH_dgraphHaloAsync calls on the same communicator.

62

Return values

SCOTCH_dgraphHaloAsync returns 0 if the halo data exchange has been suc-

cessfully started, and 1 else.

7.7.4 SCOTCH.dgraphHaloWait

Synopsis

int SCOTCH.dgraphHaloWait (SCOTCH DgraphHaloReq * const

scotchfdgraphhalowait (doubleprecision (*) requptr,

integer

Description

ierr)

requptr)

The SCOTCH_dgraphHaloWait routine waits for the termination of an asyn-
chronous halo exchange process, started by a call to SCOTCH_dgraphHalo
Async, and represented by its request, pointed to by requptr.

In Fortran, the request structure must be defined as an array of
DOUBLEPRECISIONS, of size SCOTCH_DGRAPHHALOREQDIM. This constant is de-
fined in file ptscotchf .h, which must be included whenever necessary.

Return values

SCOTCH.dgraphHaloWait returns 0 if halo data has been successfully ex-

changed, and 1 else.

7.8 Distributed graph mapping and partitioning routines

SCOTCH_dgraphMap and SCOTCH_dgraphPart provide high-level functionalities and
free the user from the burden of calling in sequence several of the low-level routines

also described in this section.

7.8.1 SCOTCH_dgraphMap

Synopsis

int SCOTCH_dgraphMap (const SCOTCHDgraph * grafptr,
const SCOTCH_Arch * archptr,
const SCOTCH Strat * straptr,

SCOTCH Num *

scotchfdgraphmap (doubleprecision (*)
doubleprecision (*)
doubleprecision (*)
integer*num (*)
integer

Description

63

partloctab)

grafdat,
archdat,
stradat,
partloctab,
ierr)

The SCOTCH_dgraphMap routine computes a mapping of the distributed source
graph structure pointed to by grafptr onto the target architecture pointed
to by archptr, using the mapping strategy pointed to by straptr, and re-
turns distributed fragments of the partition data in the array pointed to by
partloctab.

The partloctab array should have been previously allocated, of a size suffi-
cient to hold as many SCOTCH Num integers as there are local vertices of the
source graph on each of the processes.

On return, every cell of the mapping array holds the number of the target
vertex to which the corresponding source vertex is mapped. The numbering
of target values is not based: target vertices are numbered from 0 to the
number of target vertices minus 1.

Attention: version 6.0 of SCOTCH does not allow yet to map distributed
graphs onto target architectures which are not complete graphs. This restric-
tion will be removed in the next release.

Return values

SCOTCH_dgraphMap returns 0 if the partition of the graph has been successfully
computed, and 1 else. In this last case, the partloctab arrays may however
have been partially or completely filled, but their contents is not significant.

7.8.2 SCOTCH_dgraphMapCompute

Synopsis

int SCOTCH_dgraphMapCompute (const SCOTCH Dgraph * grafptr,
SCOTCH Dmapping * mappptr,
const SCOTCH.Strat * straptr)

scotchfdgraphmapcompute (doubleprecision (*) grafdat,
doubleprecision (*) mappdat,
doubleprecision (*) stradat,
integer ierr)

Description

The SCOTCH_dgraphMapCompute routine computes a mapping on the given
SCOTCH Dmapping structure pointed to by mappptr using the parallel mapping
strategy pointed to by stratptr.

On return, every cell of the distributed mapping array (see section 7.8.4) holds
the number of the target vertex to which the corresponding source vertex is
mapped. The numbering of target values is mot based: target vertices are
numbered from 0 to the number of target vertices, minus 1.

Attention: version 6.0 of SCOTCH does not allow yet to map distributed
graphs onto target architectures which are not complete graphs. This restric-
tion will be removed in the next release.

Return values

SCOTCH_dgraphMapCompute returns 0 if the mapping has been successfully
computed, and 1 else. In this latter case, the local mapping arrays may

64

however have been partially or completely filled, but their contents is not
significant.
7.8.3 SCOTCH_dgraphMapExit

Synopsis

void SCOTCH.-dgraphMapExit (const SCOTCHDgraph * grafptr,
SCOTCH Dmapping * mappptr)

scotchfdgraphmapexit (doubleprecision (*) grafdat,
doubleprecision (*) mappdat)

Description

The SCOTCH_dgraphMapExit function frees the contents of a SCOTCH Dmapping
structure previously initialized by SCOTCH.dgraphMapInit. All subsequent
calls to SCOTCH_dgraphMap* routines other than SCOTCH_-dgraphMapInit, us-
ing this structure as parameter, may yield unpredictable results.

7.8.4 SCOTCH.dgraphMapInit

Synopsis

int SCOTCH._dgraphMapInit (const SCOTCH Dgraph * grafptr,

SCOTCH Dmapping * mappptr,
const SCOTCH_Arch * archptr,
SCOTCH Num * partloctab)

scotchfdgraphmapinit (doubleprecision (*) grafdat,
doubleprecision (*) mappdat,
doubleprecision (*) archdat,
integer*num (%) partloctab,
integer ierr)

Description

The SCOTCH.dgraphMapInit routine fills the distributed mapping structure
pointed to by mappptr with all of the data that is passed to it. Thus, all sub-
sequent calls to ordering routines such as SCOTCH_dgraphMapCompute, using
this mapping structure as parameter, will place mapping results in field part
loctab.

partloctab is the pointer to an array of as many SCOTCH Nums as there are
local vertices in each local fragment of the distributed graph pointed to by
grafptr, and which will receive the indices of the vertices of the target archi-
tecture pointed to by archptr.

It should be the first function to be called upon a SCOTCH Dmapping structure.
When the distributed mapping structure is no longer of use, call function
SCOTCH_dgraphMapExit to free its internal structures.

65

Return values

SCOTCH.dgraphMapInit returns O if the distributed mapping structure has
been successfully initialized, and 1 else.

7.8.5 SCOTCH_dgraphMapSave

Synopsis

int SCOTCH._dgraphMapSave (const SCOTCH Dgraph * grafptr,
const SCOTCH Dmapping * mappptr,
FILE = stream)

scotchfdgraphmapsave (doubleprecision (*) grafdat,
doubleprecision (*) mappdat,
integer fildes,
integer ierr)

Description

The SCOTCH_dgraphMapSave routine saves the contents of the SCOTCH-
Dmapping structure pointed to by mappptr to stream stream, in the SCOTCH
mapping format. Please refer to the SCOTCH User’s Guide [35] for more
information about this format.

Since the mapping format is centralized, only one process should provide a
valid output stream; other processes must pass a null pointer.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
ber of the Unix file descriptor fildes associated with the logical unit of the
mapping file.

Return values

SCOTCH_dgraphMapSave returns 0 if the mapping structure has been success-
fully written to stream, and 1 else.

7.8.6 SCOTCH._dgraphPart

Synopsis

int SCOTCH_dgraphPart (const SCOTCH Dgraph * grafptr,

const SCOTCH_Num partnbr,

const SCOTCH_Strat =* straptr,

SCOTCH Num * partloctab)

scotchfdgraphpart (doubleprecision (*) grafdat,

integer*xnum partnbr,
doubleprecision (*) stradat,
integer*num (*) partloctab,
integer ierr)

Description

66

The SCOTCH_dgraphPart routine computes a partition into partnbr parts
of the distributed source graph structure pointed to by grafptr, using the
graph partitioning strategy pointed to by stratptr, and returns distributed
fragments of the partition data in the array pointed to by partloctab.

The partloctab array should have been previously allocated, of a size suffi-
cient to hold as many SCOTCH Num integers as there are local vertices of the
source graph on each of the processes.

On return, every array cell holds the number of the part to which the corre-
sponding vertex is mapped. Parts are numbered from 0 to partnbr — 1.
Return values

SCOTCH_dgraphPart returns 0 if the partition of the graph has been success-
fully computed, and 1 else. In this latter case, the partloctab array may
however have been partially or completely filled, but its content is not signif-
icant.

7.9 Distributed graph ordering routines
7.9.1 SCOTCH.dgraphOrderCblkDist

Synopsis

SCOTCH Num SCOTCH_dgraphOrderCblkDist (const SCOTCHDgraph * grafptr,
SCOTCH Dordering * ordeptr)

scotchfdgraphordercblkdist (doubleprecision (%) grafdat,
doubleprecision (*) ordedat,
integer*num cblkglbnbr)

Description

The SCOTCH_dgraphOrderCblkDist routine returns on all processes the global
number of distributed elimination tree (super-)nodes possessed by the given
distributed ordering. Distributed elimination tree nodes are produced for in-
stance by parallel nested dissection, before the ordering process goes sequen-
tial. Subsequent sequential nodes generated locally afterwards on individual
processes are not accounted for in this figure.

This routine is used to allocate space for the tree structure arrays to be filled
by the SCOTCH_dgraphOrderTreeDist routine.

Return values

SCOTCH_dgraphOrderCblkDist returns a positive number if the number of
distributed elimination tree nodes has been successfully computed, and a neg-
ative value else.

7.9.2 SCOTCH._dgraphOrderCompute

Synopsis

67

int SCOTCH_dgraphOrderCompute (const SCOTCHDgraph * grafptr,
SCOTCH Dordering * ordeptr,
const SCOTCH_Strat * straptr)

scotchfdgraphordercompute (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
doubleprecision (*) stradat,
integer ierr)

Description

The SCOTCH_dgraphOrderCompute routine computes in parallel a distributed
block ordering of the distributed graph structure pointed to by grafptr, using
the distributed ordering strategy pointed to by stratptr, and stores its result
in the distributed ordering structure pointed to by ordeptr.

Return values

SCOTCH_dgraphOrderCompute returns 0 if the ordering has been successfully
computed, and 1 else. In this latter case, the ordering arrays may however
have been partially or completely filled, but their contents are not significant.

7.9.3 SCOTCH.dgraphOrderExit

Synopsis

void SCOTCH_-dgraphOrderExit (const SCOTCHDgraph * grafptr,
SCOTCH Dordering * ordeptr)

scotchfgraphdorderexit (doubleprecision (*) grafdat,
doubleprecision (*) ordedat)

Description

The SCOTCH.dgraphOrderExit function frees the contents of a SCOTCH-
Dordering structure previously initialized by SCOTCH_dgraphOrderInit. All
subsequent calls to SCOTCH_dgraphOrder* routines other than SCOTCH_dgraph
OrderInit, using this structure as parameter, may yield unpredictable results.

7.9.4 SCOTCH_dgraphOrderInit

Synopsis

int SCOTCH.dgraphOrderInit (const SCOTCHDDgraph * grafptr,
SCOTCH Dordering * ordeptr)

scotchfdgraphorderinit (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
integer ierr)

Description

68

The SCOTCH_dgraphOrderInit routine initializes the distributed ordering
structure pointed to by ordeptr so that it can be used to store the results of
the parallel ordering of the associated distributed graph, to be computed by
means of the SCOTCH_dgraphOrderCompute routine.

The SCOTCH_dgraphOrderInit routine should be the first function to be called
upon a SCOTCH Dordering structure for ordering distributed graphs. When
the ordering structure is no longer of use, the SCOTCH_dgraphOrderExit func-
tion must be called, in order to to free its internal structures.

Return values

SCOTCH_dgraphOrderInit returns 0 if the distributed ordering structure has
been successfully initialized, and 1 else.

7.9.5 SCOTCH_dgraphOrderSave

Synopsis
int SCOTCH_dgraphOrderSave (const SCOTCHDgraph * grafptr,
const SCOTCH Dordering * ordeptr,
FILE = stream)

scotchfdgraphordersave (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
integer fildes,
integer ierr)

Description

The SCOTCH_dgraphOrderSave routine saves the contents of the SCOTCH-
Dordering structure pointed to by ordeptr to stream stream, in the SCOTCH
ordering format. Please refer to the SCOTCH User’s Guide [35] for more in-
formation about this format.

Since the ordering format is centralized, only one process should provide a
valid output stream; other processes must pass a null pointer.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
ber of the Unix file descriptor fildes associated with the logical unit of the
ordering file. Processes which would pass a NULL stream pointer in C must
pass descriptor number -1 in Fortran.

Return values

SCOTCH_dgraphOrderSave returns 0 if the ordering structure has been suc-
cessfully written to stream, and 1 else.

7.9.6 SCOTCH._dgraphOrderSaveMap

Synopsis
int SCOTCH._dgraphOrderSaveMap (const SCOTCHDgraph * grafptr,
const SCOTCH Dordering * ordeptr,
FILE * stream)

69

scotchfgraphdordersavemap (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
integer fildes,
integer ierr)

Description

The SCOTCH_dgraphOrderSaveMap routine saves the block partitioning data
associated with the SCOTCH Dordering structure pointed to by ordeptr to
stream stream, in the SCOTCH mapping format. A target domain number
is associated with every block, such that all node vertices belonging to the
same block are shown as belonging to the same target vertex. The resulting
mapping file can be used by the gout program to produce pictures showing
the different separators and blocks. Please refer to the SCOTCH User’s Guide
for more information on the SCOTCH mapping format and on gout.

Since the block partitioning format is centralized, only one process should
provide a valid output stream; other processes must pass a null pointer.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
ber of the Unix file descriptor fildes associated with the logical unit of the
ordering file. Processes which would pass a NULL stream pointer in C must
pass descriptor number -1 in Fortran.

Return values

SCOTCH_dgraphOrderSaveMap returns 0 if the ordering structure has been suc-
cessfully written to stream, and 1 else.

7.9.7 SCOTCH.dgraphOrderSaveTree

Synopsis
int SCOTCH_dgraphOrderSaveTree (const SCOTCH Dgraph * grafptr,
const SCOTCH Dordering * ordeptr,
FILE = stream)

scotchfdgraphordersavetree (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
integer fildes,
integer ierr)

Description

The SCOTCH_dgraphOrderSaveTree routine saves the tree hierarchy informa-
tion associated with the SCOTCH_Dordering structure pointed to by ordeptr
to stream stream.

The format of the tree output file resembles the one of a mapping or ordering
file: it is made up of as many lines as there are vertices in the ordering. Each
of these lines holds two integer numbers. The first one is the index or the
label of the vertex, and the second one is the index of its parent node in the
separators tree, or —1 if the vertex belongs to a root node.

70

Since the tree hierarchy format is centralized, only one process should provide
a valid output stream; other processes must pass a null pointer.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
ber of the Unix file descriptor fildes associated with the logical unit of the
ordering file. Processes which would pass a NULL stream pointer in C must
pass descriptor number -1 in Fortran.

Return values

SCOTCH_dgraphOrderSaveTree returns 0 if the ordering structure has been
successfully written to stream, and 1 else.

7.9.8 SCOTCH.dgraphOrderPerm

Synopsis

int SCOTCH._dgraphOrderPerm (const SCOTCHDDgraph * grafptr,
SCOTCH Dordering * ordeptr,
SCOTCH Num * permloctab)

scotchfdgraphorderperm (doubleprecision (*) grafdat,
doubleprecision (*) ordedat,
integer*num (*) permloctab,
integer ierr)

Description

The SCOTCH_dgraphOrderPermroutine fills the distributed direct permutation
array permloctab according to the ordering provided by the given distributed
ordering pointed to by ordeptr. Each permloctab local array must be of size
vertlocnbr.

Return values

SCOTCH_dgraphOrderPerm returns 0 if the distributed permutation has been
successfully computed, and 1 else.

7.9.9 SCOTCH_dgraphOrderTreeDist

Synopsis

int SCOTCH_dgraphOrderTreeDist (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr,
SCOTCH Num * treeglbtab
SCOTCH Num * sizeglbtab)

scotchfdgraphordertreedist (doubleprecision (%) grafdat,
doubleprecision (*) ordedat,

integer*num (*) treeglbtab,
integer*num (*) sizeglbtab,
integer ierr)

71

Description

The SCOTCH_dgraphOrderTreeDist routine fills on all processes the arrays
representing the distributed part of the elimination tree structure associated
with the given distributed ordering. This structure describes the sizes and
relations between all distributed elimination tree (super-)nodes. These nodes
are mainly the result of parallel nested dissection, before the ordering process
goes sequential. Sequential nodes generated locally on individual processes
are not represented in this structure.

A node can either be a leaf column block, which has no descendants, or a
nested dissection node, which has most often three sons: its two separated
sub-parts and the separator. A nested dissection node may have two sons
only if the separator is empty; it cannot have only one son. Sons are indexed
such that the separator of a block, if any, is always the son of highest index.
Hence, the order of the indices of the two sub-parts matches the one of the
direct permutation of the unknowns.

For any column block ¢, treeglbtab [¢] holds the index of the father of node @
in the elimination tree, or —1 if 7 is the root of the tree. All node indices start
from baseval. sizeglbtabl[i] holds the number of graph vertices possessed
by node i, plus the ones of all of its descendants if it is not a leaf of the tree.
Therefore, the sizeglbtab value of the root vertex is always equal to the
number of vertices in the distributed graph.

Each of the treeglbtab and sizeglbtab arrays must be large enough to
hold a number of SCOTCH_Nums equal to the number of distributed elimination
tree nodes and column blocks, as returned by the SCOTCH_dgraphOrderCblk
Dist routine.

Return values

SCOTCH.dgraphOrderTreeDist returns 0 if the arrays describing the dis-
tributed part of the distributed tree structure have been successfully filled,
and 1 else.

7.10 Centralized ordering handling routines

Since distributed ordering structures maintain scattered information which cannot
be easily collated, the only practical way to access this information is to centralize it
in a sequential SCOTCH_Ordering structure. Several routines are provided to create
and destroy sequential orderings attached to a distributed graph, and to gather
the information contained in a distributed ordering on such a sequential ordering
structure.

Since the arrays which represent centralized ordering must be of a size equal to
the global number of vertices, these routines are not scalable and may require much
memory for very large graphs.

7.10.1 SCOTCH.dgraphCorderExit

Synopsis

72

void SCOTCH_-dgraphCorderExit (const SCOTCHDgraph * grafptr,
SCOTCH Ordering * cordptr)

scotchfdgraphcorderexit (doubleprecision (*) grafdat,
doubleprecision (*) corddat)

Description

The SCOTCH_dgraphCorderExit function frees the contents of a centralized
SCOTCHOrdering structure previously initialized by SCOTCH_dgraphCorder
Init.

7.10.2 SCOTCH.dgraphCorderInit

Synopsis

int SCOTCH_dgraphCorderInit (const SCOTCH Dgraph * grafptr,

SCOTCH Ordering * cordptr,
SCOTCH Num * permtab,
SCOTCH Num * peritab,
SCOTCH Num =* cblkptr,
SCOTCH Num * rangtab,
SCOTCH Num * treetab)

scotchfdgraphcorderinit (doubleprecision (*) grafdat,
doubleprecision (*) corddat,

integer*xnum (*) permtab,
integer*xnum (*) peritab,
integer*num cblknbr,
integer*num (*) rangtab,
integer*xnum (*) treetab,
integer ierr)

Description

The SCOTCH_dgraphCorderInit routine fills the centralized ordering structure
pointed to by cordptr with all of the data that are passed to it. This routine
is the equivalent of the SCOTCH_graphOrderInit routine of the SCOTCH se-
quential library, except that it takes a distributed graph as input. It is used to
initialize a centralized ordering structure on which a distributed ordering will
be centralized by means of the SCOTCH_dgraphOrderGather routine. Only the
process on which distributed ordering data is to be centralized has to handle
a centralized ordering structure.

permtab is the ordering permutation array, of size vertglbnbr, peritab is
the inverse ordering permutation array, of size vertglbnbr, cblkptr is the
pointer to a SCOTCH.Num that will receive the number of produced column
blocks, rangtab is the array that holds the column block span information,
of size vertglbnbr + 1, and treetab is the array holding the structure of
the separators tree, of size vertglbnbr. Please refer to Section 7.3.2 for an
explanation of their semantics. Any of these five output fields can be set to

73

NULL if the corresponding information is not needed. Since, in Fortran, there
is no null reference, passing a reference to grafptr will have the same effect.

The SCOTCH_dgraphCorderInit routine should be the first function to be
called upon a SCOTCH_Ordering structure to be used for gathering distributed
ordering data. When the centralized ordering structure is no longer of use,
the SCOTCH_-dgraphCorderExit function must be called, in order to to free its
internal structures.

Return values

SCOTCH.dgraphCorderInit returns 0 if the ordering structure has been suc-
cessfully initialized, and 1 else.

7.10.3 SCOTCH.dgraphOrderGather

Synopsis

int SCOTCH_dgraphOrderGather (const SCOTCH Dgraph * grafptr,
SCOTCH Dordering * cordptr,
SCOTCH Ordering * cordptr)

scotchfdgraphordergather (doubleprecision (*) grafdat,
doubleprecision (*) dorddat,
doubleprecision (*) corddat,
integer ierr)

Description

The SCOTCH.dgraphOrderGather routine gathers the distributed ordering
data borne by dordptr to the centralized ordering structure pointed to by
cordptr.

Return values

SCOTCH_dgraphOrderGather returns 0 if the centralized ordering structure
has been successfully updated, and 1 else.

7.11 Strategy handling routines

This section presents basic strategy handling routines which are also described in
the SCOTCH User’s Guide but which are duplicated here for the sake of readability,
as well as a strategy declaration routine which is specific to the PT-ScoTcH library.

7.11.1 SCOTCH_stratExit

Synopsis

void SCOTCH._stratExit (SCOTCH-Strat * archptr)

scotchfstratexit (doubleprecision (*) stradat)

74

Description

The SCOTCH_stratExit function frees the contents of a SCOTCH_Strat struc-
ture previously initialized by SCOTCH_stratInit. All subsequent calls to
SCOTCH_strat routines other than SCOTCH_stratInit, using this structure
as parameter, may yield unpredictable results.

7.11.2 SCOTCH_stratInit

Synopsis

int SCOTCH_stratInit (SCOTCH_Strat * straptr)

scotchfstratinit (doubleprecision (%) stradat,
integer ierr)

Description

The SCOTCH_stratInit function initializes a SCOTCH_Strat structure so as to
make it suitable for future operations. It should be the first function to be
called upon a SCOTCH_Strat structure. When the strategy data is no longer
of use, call function SCOTCH_stratExit to free its internal structures.

Return values

SCOTCH_stratInit returns 0 if the strategy structure has been successfully
initialized, and 1 else.

7.11.3 SCOTCH_stratSave

Synopsis

int SCOTCH_stratSave (const SCOTCH Strat * straptr,
FILE * stream)

scotchfstratsave (doubleprecision (*) stradat,
integer fildes,
integer ierr)

Description

The SCOTCH_stratSave routine saves the contents of the SCOTCH_Strat struc-
ture pointed to by straptr to stream stream, in the form of a text string.
The methods and parameters of the strategy string depend on the type of the
strategy, that is, whether it is a bipartitioning, mapping, or ordering strategy,
and to which structure it applies, that is, graphs or meshes.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number
of the Unix file descriptor £ildes associated with the logical unit of the output
file.

75

Return values

SCOTCH_stratSave returns 0 if the strategy string has been successfully writ-
ten to stream, and 1 else.

7.12 Strategy creation routines

Strategy creation routines parse the user-provided strategy string and populate the
given opaque strategy object with a tree-shaped structure that represents the parsed
expression. It is this structure that will be later traversed by the generic routines for
partitioning, mapping or ordering, so as to determine which specific partitioning,
mapping or ordering method to be called on a subgraph being considered.

Because strategy creation routines call third-party lexical analyzers that may
have been implemented in a non-reentrant way, no guarantee is given on the reen-
trance of these routines. Consequently, strategy creation routines that might be
called simultaneously by multiple threads should be protected by a mutex.

7.12.1 SCOTCH_stratDgraphMap

Synopsis

int SCOTCH_stratDgraphMap (SCOTCH_Strat * straptr,
const char * string)

scotchfstratdgraphmap (doubleprecision (*) stradat,
character (%) string,
integer ierr)

Description

The SCOTCH_stratDgraphMap routine fills the strategy structure pointed to
by straptr with the distributed graph mapping strategy string pointed to by
string. The format of this strategy string is described in Section 7.4.2. From
this point, strategy strat can only be used as a distributed graph mapping
strategy, to be used by functions SCOTCH_dgraphPart, SCOTCH_dgraphMap or
SCOTCH_dgraphMapCompute. This routine must be called on every process
with the same strategy string.

When using the C interface, the array of characters pointed to by string
must be null-terminated.

Return values

SCOTCH_stratDgraphMap returns 0 if the strategy string has been successfully
set, and 1 else.

7.12.2 SCOTCH_stratDgraphMapBuild

Synopsis

76

int SCOTCH_stratDgraphMapBuild (SCOTCH_Strat * straptr,
const SCOTCHNum flagval,
const SCOTCH Num procnbr,
const SCOTCH Num partnbr,
const double balrat)

scotchfstratdgraphmapbuild (doubleprecision (*) stradat,

integer*xnum flagval,
integer*xnum procnbr,
integer*xnum partnbr,
doubleprecision balrat,
integer ierr)

Description

The SCOTCH_stratDgraphMapBuild routine fills the strategy structure pointed
to by straptr with a default mapping strategy tuned according to the prefer-
ence flags passed as flagval and to the desired number of parts partnbr and
imbalance ratio balrat, to be used on procnbr processes. From this point,
the strategy structure can only be used as a parallel mapping strategy, to
be used by function SCOTCH_dgraphMap, for instance. See Section 7.4.1 for a
description of the available flags.

Return values

SCOTCH_stratDgraphMapBuild returns 0 if the strategy string has been suc-
cessfully set, and 1 else.

7.12.3 SCOTCH_stratDgraphOrder

Synopsis

int SCOTCH_stratDgraphOrder (SCOTCH_Strat * straptr,
const char * string)

scotchfstratdgraphorder (doubleprecision (*) stradat,
character (*) string,
integer ierr)

Description

The SCOTCH_stratDgraphOrder routine fills the strategy structure pointed to
by straptr with the distributed graph ordering strategy string pointed to by
string. The format of this strategy string is described in Section 7.4.4. From
this point, strategy strat can only be used as a distributed graph ordering
strategy, to be used by function SCOTCH_dgraphOrderCompute. This routine
must be called on every process with the same strategy string.

When using the C interface, the array of characters pointed to by string
must be null-terminated.

Return values

7

SCOTCH_stratDgraphOrder returns 0 if the strategy string has been success-
fully set, and 1 else.

7.12.4 SCOTCH_stratDgraphOrderBuild

Synopsis

int SCOTCH_stratDgraphOrderBuild (SCOTCH_Strat * straptr,
const SCOTCHNum flagval,
const SCOTCHNum procnbr,
const SCOTCHNum levlnbr,

const double balrat)
scotchfstratdgraphorderbuild (doubleprecision (*) stradat,
integer*xnum flagval,
integer*xnum procnbr,
integer*xnum levlnbr,
doubleprecision balrat,
integer ierr)

Description

The SCOTCH_stratDgraphOrderBuild routine fills the strategy structure
pointed to by straptr with a default parallel ordering strategy tuned ac-
cording to the preference flags passed as flagval and to the desired nested
dissection imbalance ratio balrat, to be used on procnbr processes. From this
point, the strategy structure can only be used as a parallel ordering strategy,
to be used by function SCOTCH_dgraphOrder, for instance.

See Section 7.4.1 for a description of the available flags. When any of the
SCOTCH_STRATLEVELMIN or SCOTCH_STRATLEVELMAX flags is set, the levlnbr
parameter is taken into account.

Return values
SCOTCH_stratDgraphOrderBuild returns 0 if the strategy string has been
successfully set, and 1 else.

7.13 Other data structure routines
7.13.1 SCOTCH_dmapAlloc

Synopsis

SCOTCH Dmapping * SCOTCH_dmapAlloc (void)

Description

The SCOTCH_dmapAlloc function allocates a memory area of a size sufficient
to store a SCOTCH Dmapping structure. It is the user’s responsibility to free
this memory when it is no longer needed.

78

Return values

SCOTCH_dmapAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

7.13.2 SCOTCH_dorderAlloc

Synopsis

SCOTCH Dordering * SCOTCH_dorderAlloc (void)

Description

The SCOTCH_dorderAlloc function allocates a memory area of a size sufficient
to store a SCOTCH Dordering structure. It is the user’s responsibility to free
this memory when it is no longer needed.

Return values

SCOTCH_dorderAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

7.14 Error handling routines

The handling of errors that occur within library routines is often difficult, because
library routines should be able to issue error messages that help the application
programmer to find the error, while being compatible with the way the application
handles its own errors.

To match these two requirements, all the error and warning messages pro-
duced by the routines of the LIBSCOTCH library are issued using the user-definable
variable-length argument routines SCOTCH_errorPrint and SCOTCH_errorPrintW.
Thus, one can redirect these error messages to his own error handling routines, and
can choose if he wants his program to terminate on error or to resume execution
after the erroneous function has returned.

In order to free the user from the burden of writing a basic error handler from
scratch, the libptscotcherr.a library provides error routines that print error
messages on the standard error stream stderr and return control to the appli-
cation. Application programmers who want to take advantage of them have to
add -lptscotcherr to the list of arguments of the linker, after the -1ptscotch
argument.

7.14.1 SCOTCH_errorPrint

Synopsis

void SCOTCH_errorPrint (const char * const errstr, ...)

Description

The SCOTCH_errorPrint function is designed to output a variable-length ar-
gument error string to some stream.

79

7.14.2 SCOTCH_errorPrintW

Synopsis

void SCOTCH_errorPrintW (const char * const errstr, ...)

Description

The SCOTCH_errorPrintW function is designed to output a variable-length
argument warning string to some stream.

7.14.3 SCOTCH_errorProg

Synopsis

void SCOTCH_errorProg (const char * progstr)

Description

The SCOTCH_errorProg function is designed to be called at the beginning of a
program or of a portion of code to identify the place where subsequent errors
take place. This routine is not reentrant, as it is only a minor help function.
It is defined in libscotcherr.a and is used by the standalone programs of
the ScoTcH distribution.

7.15 Miscellaneous routines
7.15.1 SCOTCH_.memCur

Synopsis

SCOTCH_Idx SCOTCH.memCur (void)

scotchfmemcur (integer*idr memcur)

Description

When ScoTcH is compiled with the COMMON_MEMORY_TRACE flag set, the
SCOTCH_memCur routine returns the amount of memory, in bytes, that is cur-
rently allocated by SCOTCH on the current processing element, either by itself
or on the behalf of the user. Else, the routine returns -1.

The returned figure does not account for the memory that has been allocated
by the user and made visible to SCOTCH by means of routines such as SCOTCH_
dgraphBuild calls. This memory is not under the control of SCOTCH, and
it is the user’s responsibility to free it after calling the relevant SCOTCH_x
Exit routines.

Some third-party software used by SCOTCH, such as the strategy string parser,
may allocate some memory for internal use and never free it. Consequently,

80

there may be small discrepancies between memory occupation figures returned
by ScoTcH and those returned by third-party tools. However, these discrep-
ancies should not exceed a few kilobytes.

While memory occupation is internally recorded in a variable of type intptr_
t, it is output as a SCOTCH_Idx for the sake of interface homogeneity, especially
for Fortran. It is therefore the installer’s responsibility to make sure that
the support integer type of SCOTCH_Idx is large enough to not overflow. See
section 7.2.4 for more information.

7.15.2 SCOTCH_memMax

Synopsis

SCOTCH_Idx SCOTCH.memMax (void)

scotchfmemmax (integer*idr memcur)

Description

When ScoTcH is compiled with the COMMON_MEMORY_TRACE flag set, the
SCOTCH-memMax routine returns the maximum amount of memory, in bytes,
ever allocated by SCOTCH on the current processing element, either by itself
or on the behalf of the user. Else, the routine returns -1.

The returned figure does not account for the memory that has been allocated
by the user and made visible to SCOTCH by means of routines such as SCOTCH_
dgraphBuild calls. This memory is not under the control of SCoTCH, and
it is the user’s responsibility to free it after calling the relevant SCOTCH_x
Exit routines.

Some third-party software used by SCOTCH, such as the strategy string parser,
may allocate some memory for internal use and never free it. Consequently,
there may be small discrepancies between memory occupation figures returned
by SCOTCH and those returned by third-party tools. However, these discrep-
ancies should not exceed a few kilobytes.

While memory occupation is internally recorded in a variable of type intptr-
t, it is output as a SCOTCH_Idx for the sake of interface homogeneity, especially
for Fortran. It is therefore the installer’s responsibility to make sure that
the support integer type of SCOTCH_Idx is large enough to not overflow. See
section 7.2.4 for more information.

7.15.3 SCOTCH_randomProc

Synopsis

void SCOTCH.randomProc (int procnum)

scotchfrandomproc (integer procnum)

Description

81

The SCOTCH_randomProc routine records internally the provided number,
which contributes to the initialization of the pseudo-random generator. Hence,
providing different values for each process, e.g. process rank, will result in
different random seeds across processors. This allows processes to compute
concurrently different initial partitions, in the course of the parallel multilevel
framework with folding and duplication.

In order for the provided number to be taken into account, SCOTCH_random
Proc must be called before any other routine of the LIBSCOTCH that is likely
to use (and consequently to initialize) the pseudo-random number generator.
By default, it is set to zero.

7.15.4 SCOTCH_randomReset

Synopsis

void SCOTCH_randomReset (void)

scotchfrandomreset ()

Description

The SCOTCH_randomReset routine resets the seed of the pseudo-random gener-
ator used by the graph partitioning routines of the LIBSCOTCH library. Two
consecutive calls to the same LIBSCOTCH partitioning or ordering routines,
separated by a call to SCOTCH_randomReset, will always yield the same re-
sults.

7.15.5 SCOTCH_randomSeed

Synopsis

void SCOTCH_randomSeed (SCOTCHNum seedval)

scotchfrandomseed (integer*num seedval)

Description

The SCOTCH_randomSeed routine sets to seedval the seed of the pseudo-
random generator used internally by several algorithms of ScoTcH. All sub-
sequent calls to SCOTCH_randomReset will use this value to reset the pseudo-
random generator.

This routine needs only to be used by users willing to evaluate the robustness
and quality of partitioning algorithms with respect to the variability of random
seeds. Else, depending whether SCOTCH has been compiled with any of the
flags COMMON_RANDOM_FIXED_SEED or SCOTCH.DETERMINISTIC set or not, either
the same pseudo-random seed will be always used, or a process-dependent seed
will be used, respectively.

82

7.16 PARMEIS compatibility library

The PARMEINS compatibility library provides stubs which redirect some calls to
PARMEIS routines to the corresponding PT-SCOTCH counterparts. In order to
use this feature, the only thing to do is to re-link the existing software with the 1ib
ptscotchparmetis library, and eventually with the original PARMEIS library if
the software uses PARMEIIS routines which do not need to have PT-SCOTCH equiv-
alents, such as graph transformation routines. In that latter case, the “~1ptscotch
parmetis” argument must be placed before the “~-lparmetis” one (and of course
before the “-lptscotch” one too), so that routines that are redefined by PT-
SCOTCH are chosen instead of their PARMEIS counterpart. Routines of PARMEIS
which are not redefined by PT-SCOTCH may also require that the sequential MEITS
library be linked too. When no other PARMEIIS routines than the ones redefined by
PT-ScoTcCH are used, the “~lparmetis” argument can be omitted. See Section 9
for an example.

7.16.1 ParMETIS_V3_NodeND

Synopsis

void ParMETIS_V3_NodeND (const SCOTCHNum * const vtxdist,
const SCOTCHNum * const =xadj,
const SCOTCHNum * const adjncy,
const SCOTCH Num *
const SCOTCHNum *

const numflag,
const options,

SCOTCH Num * const order,
SCOTCH_Num * const sizes,
MPI_Comm * comm)

parmetis_v3_nodend (integer*num (*) vtxdist,
integer*num (*) xadj,
integer*num (*) adjncy,
integer*xnum numflag,
integer*num (*) options,
integer*num (*) order,
integer*num (*) sizes,
integer comm)

Description

The ParMETIS V3 NodeND function performs a nested dissection ordering of
the distributed graph passed as arrays vtxdist, xadj and adjncy, using the
default PT-ScoOTCH ordering strategy. Unlike for PARMEIS, this routine
will compute an ordering even when the number of processors on which it is
run is not a power of two. The options array is not used. When the number
of processors is a power of two, the contents of the sizes array is equivalent to
the one returned by the original ParMETIS_V3_NodeND routine, else it is filled
with —1 values.

Users willing to get the tree structure of orderings computed on numbers of
processors which are not power of two should use the native PT-ScoTCH
ordering routine, and extract the relevant information from the distributed

83

ordering with the SCOTCH_dgraphOrderCblkDist and SCOTCH_dgraphOrder

TreeDist routines.

Similarly, as there is no ParMETIS_V3_NodeWND routine in PARMEIS, users
willing to order distributed graphs with node weights should directly call the

PT-SCOTCH routines.

7.16.2 ParMETIS V3_PartGeomKway

Synopsis

void ParMETIS V3_PartGeomKway (const SCOTCH _Num

* const
const SCOTCHNum * const
const SCOTCHNum * const
const SCOTCH Num * const
const SCOTCHNum * const
const SCOTCHNum * const
const SCOTCH Num * const

const SCOTCH Num * const
const float * const
const SCOTCH Num * const
const SCOTCH Num * const
const float * const
const float * const
const SCOTCH Num * const
SCOTCH Num * const
SCOTCH Num * const
MPI_Comm *

parmetis_v3_partgeomkway (integer*num (x) vtxdist,

Description

integer*num (*) xadj,
integer*num (%) adjncy,
integer*num (*) vugt,
integer*num (*) adjwgt,

integer*xnum wgtflag,
integer*num numflag,
integer*num ndims,
float (%) xyz,
integer*xnum ncon,
integer*xnum nparts,
float (%) tpwgts,
float (%) ubvec,

integer*num (*) options,

integer*xnum edgecut,
integer*num (*) part,

integer

comm)

vtxdist,
xadj,
adjncy,
vwgt,
adjwgt,
wgtflag,
numflag,
ndims,
Xyz,
ncon,
nparts,
tpwgts,
ubvec,
options,
edgecut,
part,
comm)

The ParMETIS V3_PartGeomKway function computes a partition into nparts

parts of the distributed graph passed as arrays vtxdist, xadj and adjncy,

84

using the default PT-SCOTCH mapping strategy. The partition is returned in
the form of the distributed vector part, which holds the indices of the parts
to which every vertex belongs, from 0 to (nparts — 1).

Since SCOTCH does not handle geometry, the ndims and xyz arrays are not
used, and this routine directly calls the ParMETIS_V3_PartKway stub.

7.16.3 ParMETIS_V3_PartKway

Synopsis

void ParMETIS V3_PartKway (const SCOTCH Num
const SCOTCH_Num
const SCOTCH_Num
const SCOTCH_Num
const SCOTCH_Num
const SCOTCH_Num
const SCOTCH Num * const numflag,
const SCOTCH_Num const ncon,
const SCOTCHNum * const nparts,

const vtxdist,
const xadj,
const adjncy,
const vwgt,
const adjwgt,
const wgtflag,

* K X X X X X ¥

const float * const tpwgts,
const float * const ubvec,
const SCOTCHNum * const options,
SCOTCH Num * const edgecut,
SCOTCH Num * const part,
MPI_Comm * comm)

parmetis_v3_partkway (integer*mnum (*) vtxdist,
integer*num (%) xadj,
integer*num (*) adjncy,
integer*num (%) vwgt,
integer*num (%) adjwgt,

integer*num wgtflag,
integer*num numflag,
integer*xnum ncon,
integer*xnum nparts,
float (%) tpwgts,
float (%) ubvec,
integer*num (*) options,
integer*xnum edgecut,
integer*num (*) part,
integer comm)

Description

The ParMETIS V3 PartKway function computes a partition into nparts parts
of the distributed graph passed as arrays vtxdist, xadj and adjncy, using
the default PT-ScOTCH mapping strategy. The partition is returned in the
form of the distributed vector part, which holds the indices of the parts to
which every vertex belongs, from 0 to (nparts — 1).

85

Since SCOTCH does not handle multiple constraints, only the first constraint is
taken into account to define the respective weights of the parts. Consequently,
only the first nparts cells of the tpwgts array are considered. The ncon, ubvec
and options parameters are not used.

8 Installation

Version 6.0 of the SCOTCH software package, which contains the PT-ScoTcH
routines, is distributed as free/libre software under the CeCILL-C free/libre
software license [4], which is very similar to the GNU LGPL license. There-
fore, it is not distributed as a set of binaries, but instead in the form of a
source distribution, which can be downloaded from the SCOTCH web page at
http://www.labri.fr/~pelegrin/scotch/ .

All ScoTCH users are welcome to send an e-mail to the author so that they
can be added to the SCOTCH mailing list, and be automatically informed of new
releases and publications.

The extraction process will create a scotch_6.0.5 directory, containing several
subdirectories and files. Please refer to the files called LICENSE_EN. txt or LICENCE_
FR.txt, as well as file INSTALL_EN.txt, to see under which conditions your distri-
bution of SCOTCH is licensed and how to install it.

8.1 Thread issues

To enable the use of POSIX threads in some routines, the SCOTCH_PTHREAD flag
must be set. If your MPI implementation is not thread-safe, make sure this flag is
not defined at compile time. If the flag is defined, make sure to use the MPI_Init_
thread MPI routine to initialize the communication subsystem, at the MPI_THREAD_
MULTIPLE level (see Section 7.1).

8.2 File compression issues

To enable on-the-fly compression and decompression of various formats, the rel-
evant flags must be defined. These flags are COMMON_FILE COMPRESS BZ2 for
bzip2 (de)compression, COMMON_FILE_COMPRESS_GZ for gzip (de)compression, and
COMMON_FILE_COMPRESS_LZMA for lzma decompression. Note that the correspond-
ing development libraries must be installed on your system before compile time,
and that compressed file handling can take place only on systems which support
multi-threading or multi-processing. In the first case, you must set the SCOTCH-
PTHREAD flag in order to take advantage of these features.

On Linux systems, the development libraries to install are 1ibbzip2_1-devel for
the bzip2 format, zlibl-devel for the gzip format, and 1iblzmaO-devel for the
1zma format. The names of the libraries may vary according to operating systems
and library versions. Ask your system engineer in case of trouble.

8.3 Machine word size issues

The integer values handled by SCOTCH are based on the SCOTCH Num type, which
equates by default to the int C type, corresponding to the INTEGER Fortran type,
both of which being of machine word size. To coerce the length of the SCOTCH-

86

Num integer type to 32 or 64 bits, one can use the “~-DINTSIZE32” or “~-DINTSIZE64”
flags, respectively, or else use the “~DINT=" definition, at compile time. For instance,
adding “-DINT=long” to the CFLAGS variable in the Makefile.inc file to be placed
at the root of the source tree will make all SCOTCH Num integers become long C
integers.

Whenever doing so, make sure to use integer types of equivalent length to declare
variables passed to SCOTCH routines from caller C and Fortran procedures. Also,
because of API conflicts, the MEITIS compatibility library will not be usable. It is
usually safer and cleaner to tune your C and Fortran compilers to make them inter-
pret int and INTEGER types as 32 or 64 bit values, than to use the aforementioned
flags and coerce type lengths in your own code.

Fortran users also have to take care of another size issue: since there are no
pointers in Fortran 77, the Fortran interface of some routines converts pointers to
be returned into integer indices with respect to a given array (e.g. see Section 7.5.6).
For 32_64 architectures, such indices can be larger than the size of a regular INTEGER.
This is why the indices to be returned are defined by means of a specific integer
type, SCOTCH_Idx. To coerce the length of this index type to 32 or 64 bits, one
can use the “~-DIDXSIZE32” or “-~DIDXSIZE64” flags, respectively, or else use the
“~DIDX=" definition, at compile time. For instance, adding “-DIDX="long long"”
to the CFLAGS variable in the Makefile. inc file to be placed at the root of the source
tree will equate all SCOTCH_Idx integers to C long long integers. By default, when
the size of SCOTCH_Idx is not explicitly defined, it is assumed to be the same as the
size of SCOTCH _Num.

9 Examples

This section contains chosen examples destined to show how the programs of the
PT-ScoTCH project interoperate and can be combined. It is assumed that parallel
programs are launched by means of the mpirun command, which comprises a -np
option to set the number of processes on which to run them. Character “%” in
bold represents the shell prompt.

e Create a distributed source graph file of 7 fragments from the centralized
source graph file brol.grf stored in the current directory of process 0 of the
MPI environment, and stores the resulting fragments in files labeled with the
proper number of processors and processor ranks.

% mpirun -np 7 dgscat brol.grf brol-%p-Y%r.dgr
e Compute on 3 processors the ordering of graph brol.grf, to be saved in a
file called brol.ord written by process 0 of the MPI environment.

% mpirun -np 7 dgord brol.grf brol.ord

e Compute on 4 processors the first three levels of nested dissection of graph
brol.grf, and create an OPEN INVENTOR file called brol.iv to show the
resulting separators and leaves.

% mpirun -np 4 dgord brol.grf /dev/mull ’-On{sep=/(1lev1<3)?m{
asc=b{strat=q{strat=f}},low=q{strat=h},seq=q{strat=m{low=h,asc=
b{strat=f}}}};,ole=s,o0se=s,0sq=n{sep=/(1levl<3)?m{asc=b{strat=£f},

87

low=h};}}’ -mbrol.map
% gout brol.grf brol.xyz brol.map brol.iv

Compute on 4 processors an ordering of the compressed graph brol.grf.
gz, and output the resulting ordering on compressed form.

% mpirun -np 4 dgord brol.grf.gz brol.ord.gz

Recompile a program that used PARMEINS so that it uses PT-ScoTCH
instead.

% mpicc brol.c -o brol -I${parmetisdir} -lptscotchparmetis
-lptscotch -lptscotcherr -lparmetis -lmetis -1m

Note that the “-lptscotchparmetis” option must be placed before the
“~lparmetis” one, so that routines that are redefined by PT-SCOTCH are
selected instead of their PARMEIIS counterpart. When no other PARMEDNS
routines than the ones redefined by PT-SCOTCH are used, the “-~lparmetis
-lmetis” options can be omitted. The “-I${parmetisdir} option may be
necessary to provide the path to the original parmetis.h include file, which
contains the prototypes of all of the PARMEIIS routines.

Credits

I wish to thank all of the following people:

e (Cédric Chevalier, during his PhD at LaBRI, did research on efficient paral-

lel matching algorithms and coded the parallel multi-level algorithm of PT-
ScoTcH. He also studied parallel genetic refinement algorithms. Many thanks
to him for the great job!

e Yves Secretan contributed to the MinGW32 port.

References

[1]

2]

P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matriz Anal. and Appl., 17:886-905, 1996.

C. Ashcraft, S. Eisenstat, J. W.-H. Liu, and A. Sherman. A comparison of
three column based distributed sparse factorization schemes. In Proc. Fifth
SIAM Conf. on Parallel Processing for Scientific Computing, 1991.

S. T. Barnard and H. D. Simon. A fast multilevel implementation of recur-
sive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6(2):101-117, 1994.

CeCILL: “CEA-CNRS-INRIA Logiciel Libre” free/libre software license. Avail-
able from http://www.cecill.info/licenses.en.html.

P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un
solveur de type dissections emboitées. Numerische Mathematik, 55:463-476,
1989.

88

[6]

[13]

[14]

[15]

[16]

C. Chevalier and F. Pellegrini. Improvement of the efficiency of genetic algo-
rithms for scalable parallel graph partitioning in a multi-level framework. In
Proc. FuroPar, Dresden, LNCS 4128, pages 243-252, September 2006.

C. Chevalier and F. Pellegrini. PT-SCOTCH: A tool for efficient parallel graph
ordering. Parallel Computing, jan 2008. http://www.labri.fr/ pelegrin/
papers/scotch parallelordering parcomp.pdf.

F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hyper-
cube by recursive mincut bipartitionning. Journal of Parallel and Distributed
Computing, 10:35-44, 1990.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th Design Automation Conference,
pages 175-181. IEEE, 1982.

M. R. Garey and D. S. Johnson. Computers and Intractablility: A Guide to
the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky
factorization. International Journal of Parallel Programming, 18(4):291-314,
1989.

A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky
factorization on a local memory multiprocessor. SIAM Journal on Scientific
and Statistical Computing, 9:327-340, 1988.

A. George and J. W.-H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31:1-19, 1989.

J. A. George and J. W.-H. Liu. Computer solution of large sparse positive
definite systems. Prentice Hall, 1981.

A. Gupta, G. Karypis, and V. Kumar. Scalable parallel algorithms for sparse
linear systems. In Proc. Stratagem’96, Sophia-Antipolis, pages 97-110. INRIA,
July 1996.

S. W. Hammond. Mapping unstructured grid computations to massively parallel
computers. PhD thesis, Rensselaer Polytechnic Institute, Troy, New-York,
February 1992.

B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Tech-
nical Report SAND93-0074, Sandia National Laboratories, January 1993.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Technical Report SAND93-1301, Sandia National Laboratories, June 1993.

B. Hendrickson and R. Leland. The CHACO user’s guide. Technical Report
SAND93-2339, Sandia National Laboratories, November 1993.

B. Hendrickson and R. Leland. The CHACO user’s guide — version 2.0. Technical
Report SAND94-2692, Sandia National Laboratories, 1994.

B. Hendrickson and R. Leland. An empirical study of static load balancing
algorithms. In Proc. SHPCC"94, Knozville, pages 682-685. IEEE, May 1994.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
In Proc. ACM/IEEE conference on Supercomputing (CDROM), dec 1995.

89

[23]

[26]

[27]

B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning.
In Proceedings of the 8" SIAM Conference on Parallel Processing for Scientific
Computing. IEEE, March 1997.

B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested
dissection ordering. SIAM J. Sci. Comput., 20(2):468-489, 1998.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report 95-035, University of Minnesota,
June 1995.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Technical Report 95-064, University of Minnesota, August 1995.

G. Karypis and V. Kumar. MENS - A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices — Version 4.0. University of Minnesota, September
1998.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning
graphs. BELL System Technical Journal, pages 291-307, February 1970.

GNU Lesser General Public License. Available from http://www.gnu.org/
copyleft/lesser.html.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM Journal of Numerical Analysis, 16(2):346-358, April 1979.

J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elim-
ination. ACM Trans. Math. Software, 11(2):141-153, 1985.

MPI: A Message Passing Interface Standard, version 1.1, jun 1995. Awvailable
from http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.

F. Pellegrini. Static mapping by dual recursive bipartitioning of process and
architecture graphs. In Proc. SHPCC’94, Knozville, pages 486-493. IEEE,
May 1994.

F. Pellegrini. A parallelisable multi-level banded diffusion scheme for comput-
ing balanced partitions with smooth boundaries. In Proc. EuroPar, Rennes,
LNCS 4641, pages 191-200, August 2007.

F. Pellegrini. ScorcH 5.1 User’s Guide. Technical report, LaBRI, Université
Bordeaux I, August 2008. Available from http://www.labri.fr/~pelegrin/
scotch/.

F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bipar-
titioning algorithm for static mapping. Research Report, LaBRI, Université
Bordeaux I, August 1996. Available from http://www.labri.fr/~pelegrin/
papers/scotch_expanalysis.ps.gz.

F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In Proc.
HPCN’96, Brussels, LNCS 1067, pages 493-498, April 1996.

F. Pellegrini and J. Roman. Sparse matrix ordering with scoTcH. In Proc.
HPCN’97, Vienna, LNCS 1225, pages 370-378, April 1997.

90

[39]

[40]

[41]

[42]

F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and
halo approximate minimum degree for efficient sparse matrix ordering. Con-
currency: Practice and Fzxperience, 12:69-84, 2000.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matriz Analysis, 11(3):430-452, July
1990.

R. Schreiber. Scalability of sparse direct solvers. Technical Report TR 92.13,
RIACS, NASA Ames Research Center, May 1992.

W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations
by optimally ordered triangular factorization. J. Proc. IEEE, 55:1801-1809,
1967.

C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Parti-
tioning & mapping of unstructured meshes to parallel machine topologies. In
Proc. Irregular’95, LNCS 980, pages 121-126, 1995.

91

