
Scotch and libScotch 6.0 User’s Guide

(version 6.0.5)

François Pellegrini

Université de Bordeaux & LaBRI, UMR CNRS 5800

TadAAM team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE

francois.pellegrini@labri.fr

February 11, 2018

Abstract

This document describes the capabilities and operations of Scotch and

libScotch, a software package and a software library devoted to static map-

ping, edge- and vertex-based graph partitioning, and sparse matrix block or-

dering of graphs and meshes/hypergraphs. It gives brief descriptions of the

algorithms, details the input/output formats, instructions for use, installation

procedures, and provides a number of examples.

Scotch is distributed as free/libre software, and has been designed such

that new partitioning or ordering methods can be added in a straightforward

manner. It can therefore be used as a testbed for the easy and quick coding

and testing of such new methods, and may also be redistributed, as a library,

along with third-party software that makes use of it, either in its original or

in updated forms.

1

Contents

1 Introduction 6

1.1 Static mapping . 6

1.2 Sparse matrix ordering . 7

1.3 Contents of this document . 7

2 The Scotch project 8

2.1 Description . 8

2.2 Availability . 8

3 Static mapping algorithms 9

3.1 Cost function and performance criteria 9

3.2 The Dual Recursive Bipartitioning algorithm 10

3.2.1 Partial cost function . 11

3.2.2 Execution scheme . 12

3.2.3 Clustering by mapping onto variable-sized architectures . . . 13

3.3 Static mapping methods . 13

3.4 Graph bipartitioning methods . 15

4 Sparse matrix ordering algorithms 17

4.1 Performance criteria . 17

4.2 Minimum Degree . 17

4.3 Nested dissection . 17

4.4 Hybridization . 18

4.5 Ordering methods . 18

4.6 Graph separation methods . 19

5 Updates 20

5.1 Changes in version 6.0 from version 5.1 20

5.2 Changes in version 5.1 from version 5.0 21

6 Files and data structures 21

6.1 Graph files . 21

6.2 Mesh files . 22

6.3 Geometry files . 24

6.4 Target files . 24

6.4.1 Decomposition-defined architecture files 25

6.4.2 Algorithmically-coded architecture files 26

6.4.3 Variable-sized architecture files 28

6.5 Mapping files . 29

6.6 Ordering files . 30

6.7 Vertex list files . 30

7 Programs 30

7.1 Invocation . 31

7.2 Using compressed files . 31

7.3 Description . 33

7.3.1 acpl . 33

7.3.2 amk * . 33

7.3.3 amk grf . 35

7.3.4 atst . 36

2

7.3.5 gcv . 36

7.3.6 gmap / gpart . 37

7.3.7 gmk * . 39

7.3.8 gmk msh . 40

7.3.9 gmtst . 41

7.3.10 gord . 41

7.3.11 gotst . 43

7.3.12 gout . 44

7.3.13 gtst . 46

7.3.14 mcv . 47

7.3.15 mmk * . 47

7.3.16 mord . 48

7.3.17 mtst . 49

8 Library 50

8.1 Calling the routines of libScotch 50

8.1.1 Calling from C . 50

8.1.2 Calling from Fortran . 51

8.1.3 Compiling and linking . 52

8.1.4 Dynamic library issues . 52

8.1.5 Machine word size issues . 52

8.2 Data formats . 53

8.2.1 Architecture format . 54

8.2.2 Graph format . 54

8.2.3 Mesh format . 56

8.2.4 Geometry format . 59

8.2.5 Block ordering format . 59

8.3 Strategy strings . 60

8.3.1 Using default strategy strings 60

8.3.2 Mapping strategy strings . 62

8.3.3 Graph bipartitioning strategy strings 64

8.3.4 Vertex partitioning strategy strings 68

8.3.5 Ordering strategy strings . 70

8.3.6 Node separation strategy strings 73

8.4 Target architecture handling routines 77

8.4.1 SCOTCH archExit . 77

8.4.2 SCOTCH archInit . 77

8.4.3 SCOTCH archLoad . 77

8.4.4 SCOTCH archName . 78

8.4.5 SCOTCH archSave . 78

8.4.6 SCOTCH archSize . 79

8.5 Target architecture creation routines 79

8.5.1 SCOTCH archBuild0 / SCOTCH archBuild 79

8.5.2 SCOTCH archBuild2 . 80

8.5.3 SCOTCH archCmplt . 81

8.5.4 SCOTCH archCmpltw . 82

8.5.5 SCOTCH archHcub . 82

8.5.6 SCOTCH archLtleaf . 83

8.5.7 SCOTCH archMesh2 . 83

8.5.8 SCOTCH archMesh3 . 84

8.5.9 SCOTCH archMeshX . 84

3

8.5.10 SCOTCH archSub . 85

8.5.11 SCOTCH archTleaf . 85

8.5.12 SCOTCH archTorus2 . 86

8.5.13 SCOTCH archTorus3 . 86

8.5.14 SCOTCH archTorusX . 87

8.6 Graph handling routines . 87

8.6.1 SCOTCH graphAlloc . 87

8.6.2 SCOTCH graphBase . 88

8.6.3 SCOTCH graphBuild . 88

8.6.4 SCOTCH graphCheck . 89

8.6.5 SCOTCH graphCoarsen . 90

8.6.6 SCOTCH graphCoarsenBuild 91

8.6.7 SCOTCH graphCoarsenMatch 92

8.6.8 SCOTCH graphColor . 93

8.6.9 SCOTCH graphData . 93

8.6.10 SCOTCH graphExit . 95

8.6.11 SCOTCH graphFree . 95

8.6.12 SCOTCH graphInduceList . 95

8.6.13 SCOTCH graphInducePart . 96

8.6.14 SCOTCH graphInit . 96

8.6.15 SCOTCH graphLoad . 97

8.6.16 SCOTCH graphSave . 98

8.6.17 SCOTCH graphSize . 98

8.6.18 SCOTCH graphStat . 99

8.7 High-level graph partitioning, mapping and clustering routines . . . 100

8.7.1 SCOTCH graphMap . 100

8.7.2 SCOTCH graphMapFixed . 101

8.7.3 SCOTCH graphPart . 102

8.7.4 SCOTCH graphPartFixed . 102

8.7.5 SCOTCH graphPartOvl . 103

8.7.6 SCOTCH graphRemap . 104

8.7.7 SCOTCH graphRemapFixed . 105

8.7.8 SCOTCH graphRepart . 106

8.7.9 SCOTCH graphRepartFixed 107

8.8 Low-level graph partitioning, mapping and clustering routines 109

8.8.1 SCOTCH graphMapCompute . 109

8.8.2 SCOTCH graphMapExit . 109

8.8.3 SCOTCH graphMapFixedCompute 110

8.8.4 SCOTCH graphMapInit . 110

8.8.5 SCOTCH graphMapLoad . 111

8.8.6 SCOTCH graphMapSave . 112

8.8.7 SCOTCH graphMapView . 112

8.8.8 SCOTCH graphRemapCompute 113

8.8.9 SCOTCH graphRemapFixedCompute 114

8.8.10 SCOTCH graphTabLoad . 115

8.9 High-level graph ordering routines 115

8.9.1 SCOTCH graphOrder . 115

8.10 Low-level graph ordering routines . 117

8.10.1 SCOTCH graphOrderCheck . 117

8.10.2 SCOTCH graphOrderCompute 117

8.10.3 SCOTCH graphOrderComputeList 118

4

8.10.4 SCOTCH graphOrderExit . 119

8.10.5 SCOTCH graphOrderInit . 119

8.10.6 SCOTCH graphOrderLoad . 120

8.10.7 SCOTCH graphOrderSave . 120

8.10.8 SCOTCH graphOrderSaveMap 121

8.10.9 SCOTCH graphOrderSaveTree 122

8.11 Mesh handling routines . 122

8.11.1 SCOTCH meshAlloc . 122

8.11.2 SCOTCH meshBuild . 123

8.11.3 SCOTCH meshCheck . 124

8.11.4 SCOTCH meshData . 124

8.11.5 SCOTCH meshExit . 126

8.11.6 SCOTCH meshGraph . 126

8.11.7 SCOTCH meshInit . 127

8.11.8 SCOTCH meshLoad . 127

8.11.9 SCOTCH meshSave . 128

8.11.10SCOTCH meshSize . 128

8.11.11SCOTCH meshStat . 129

8.12 High-level mesh ordering routines . 130

8.12.1 SCOTCH meshOrder . 130

8.13 Low-level mesh ordering routines . 132

8.13.1 SCOTCH meshOrderCheck . 132

8.13.2 SCOTCH meshOrderCompute 132

8.13.3 SCOTCH meshOrderExit . 133

8.13.4 SCOTCH meshOrderInit . 133

8.13.5 SCOTCH meshOrderSave . 134

8.13.6 SCOTCH meshOrderSaveMap 134

8.13.7 SCOTCH meshOrderSaveTree 135

8.14 Strategy handling routines . 136

8.14.1 SCOTCH stratAlloc . 136

8.14.2 SCOTCH stratExit . 136

8.14.3 SCOTCH stratInit . 136

8.14.4 SCOTCH stratSave . 137

8.15 Strategy creation routines . 137

8.15.1 SCOTCH stratGraphBipart 137

8.15.2 SCOTCH stratGraphClusterBuild 138

8.15.3 SCOTCH stratGraphMap . 139

8.15.4 SCOTCH stratGraphMapBuild 139

8.15.5 SCOTCH stratGraphPartOvl 140

8.15.6 SCOTCH stratGraphPartOvlBuild 140

8.15.7 SCOTCH stratGraphOrder . 141

8.15.8 SCOTCH stratGraphOrderBuild 141

8.15.9 SCOTCH stratMeshOrder . 142

8.15.10SCOTCH stratMeshOrderBuild 142

8.16 Geometry handling routines . 143

8.16.1 SCOTCH geomAlloc . 143

8.16.2 SCOTCH geomInit . 144

8.16.3 SCOTCH geomExit . 144

8.16.4 SCOTCH geomData . 144

8.16.5 SCOTCH graphGeomLoadChac 145

8.16.6 SCOTCH graphGeomSaveChac 146

5

8.16.7 SCOTCH graphGeomLoadHabo 146

8.16.8 SCOTCH graphGeomLoadScot 147

8.16.9 SCOTCH graphGeomSaveScot 148

8.16.10SCOTCH meshGeomLoadHabo 148

8.16.11SCOTCH meshGeomLoadScot 149

8.16.12SCOTCH meshGeomSaveScot 150

8.17 Other data structure handling routines 150

8.17.1 SCOTCH mapAlloc . 150

8.17.2 SCOTCH orderAlloc . 151

8.18 Error handling routines . 151

8.18.1 SCOTCH errorPrint . 151

8.18.2 SCOTCH errorPrintW . 152

8.18.3 SCOTCH errorProg . 152

8.19 Miscellaneous routines . 152

8.19.1 SCOTCH memCur . 152

8.19.2 SCOTCH memFree . 153

8.19.3 SCOTCH memMax . 153

8.19.4 SCOTCH numSizeof . 154

8.19.5 SCOTCH randomReset . 154

8.19.6 SCOTCH randomSeed . 154

8.19.7 SCOTCH version . 155

8.20 MeTiS compatibility library . 155

8.20.1 METIS EdgeND . 155

8.20.2 METIS NodeND . 156

8.20.3 METIS NodeWND . 157

8.20.4 METIS PartGraphKway . 157

8.20.5 METIS PartGraphRecursive 158

8.20.6 METIS PartGraphVKway . 159

9 Installation 160

9.1 Thread issues . 160

9.2 File compression issues . 160

9.3 Machine word size issues . 161

10 Examples 161

11 Adding new features to Scotch 163

11.1 Graphs and meshes . 163

11.2 Methods and partition data . 164

11.3 Adding a new method to Scotch 164

11.4 Licensing of new methods and of derived works 166

1 Introduction

1.1 Static mapping

The efficient execution of a parallel program on a parallel machine requires that

the communicating processes of the program be assigned to the processors of the

machine so as to minimize its overall running time. When processes have a lim-

ited duration and their logical dependencies are accounted for, this optimization

6

problem is referred to as scheduling. When processes are assumed to coexist simul-

taneously for the entire duration of the program, it is referred to as mapping. It

amounts to balancing the computational weight of the processes among the proces-

sors of the machine, while reducing the cost of communication by keeping intensively

inter-communicating processes on nearby processors. In most cases, the underlying

computational structure of the parallel programs to map can be conveniently mod-

eled as a graph in which vertices correspond to processes that handle distributed

pieces of data, and edges reflect data dependencies. The mapping problem can then

be addressed by assigning processor labels to the vertices of the graph, so that all

processes assigned to some processor are loaded and run on it. In a SPMD con-

text, this is equivalent to the distribution across processors of the data structures

of parallel programs; in this case, all pieces of data assigned to some processor are

handled by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the program.

Static mapping is NP-complete in the general case [14]. Therefore, many studies

have been carried out in order to find sub-optimal solutions in reasonable time,

including the development of specific algorithms for common topologies such as the

hypercube [11, 22]. When the target machine is assumed to have a communication

network in the shape of a complete graph, the static mapping problem turns into the

partitioning problem, which has also been intensely studied [4, 23, 32, 34, 51]. How-

ever, when mapping onto parallel machines the communication network of which is

not a bus, not accounting for the topology of the target machine usually leads to

worse running times, because simple cut minimization can induce more expensive

long-distance communication [22, 58].

1.2 Sparse matrix ordering

Many scientific and engineering problems can be modeled by sparse linear systems,

which are solved either by iterative or direct methods. To achieve efficiency with

direct methods, one must minimize the fill-in induced by factorization. This fill-in

is a direct consequence of the order in which the unknowns of the linear system are

numbered, and its effects are critical both in terms of memory and computation

costs.

An efficient way to compute fill reducing orderings of symmetric sparse matrices

is to use recursive nested dissection [18]. It amounts to computing a vertex set S

that separates the graph into two parts A and B, ordering S with the highest indices

that are still available, and proceeding recursively on parts A and B until their sizes

become smaller than some threshold value. This ordering guarantees that, at each

step, no non-zero term can appear in the factorization process between unknowns

of A and unknowns of B.

The main issue of the nested dissection ordering algorithm is thus to find small

vertex separators that balance the remaining subgraphs as evenly as possible, in

order to minimize fill-in and to increase concurrency in the factorization process.

1.3 Contents of this document

This document describes the capabilities and operations of Scotch, a software

package devoted to static mapping, graph and mesh partitioning, and sparse matrix

block ordering. Scotch allows the user to map efficiently any kind of weighted

process graph onto any kind of weighted architecture graph, and provides high-

quality block orderings of sparse matrices. The rest of this manual is organized

7

as follows. Section 2 presents the goals of the Scotch project. Sections 3 and 4

outline the most important aspects of the mapping and ordering algorithms that

it implements, respectively. Section 5 summarizes the most important changes

between version 5.0 and previous versions. Section 6 defines the formats of the files

used in Scotch, section 7 describes the programs of the Scotch distribution, and

section 8 defines the interface and operations of the libScotch library. Section 9

explains how to obtain and install the Scotch distribution. Finally, some practical

examples are given in section 10, and instructions on how to implement new methods

in the libScotch library are provided in section 11.

2 The Scotch project

2.1 Description

Scotch is a project carried out at the Laboratoire Bordelais de Recherche en In-

formatique (LaBRI) of the Université de Bordeaux and within the Tadaam team-

project of INRIA Bordeaux Sud-Ouest. Its goal is to study the application of graph

theory to scientific computing.

It focused first on static mapping, and has resulted in the development of the

Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of

several graph bipartitioning heuristics [42], all of which have been implemented in

the Scotch software package [46]. Then, it focused on the computation of high-

quality vertex separators for the ordering of sparse matrices by nested dissection,

by extending the work that has been done on graph partitioning in the context

of static mapping [47, 48]. The ordering capabilities of Scotch have then been

extended to native mesh structures, thanks to hypergraph partitioning algorithms.

Diffusion-based graph partitioning methods have also been added [8, 43].

Version 5.0 of Scotch was the first one to comprise parallel graph ordering

routines. The parallel features of Scotch are referred to as PT-Scotch (“Parallel

Threaded Scotch”). While both packages share a significant amount of code,

because PT-Scotch transfers control to the sequential routines of the libScotch

library when the subgraphs on which it operates are located on a single processor,

the two sets of routines have a distinct user’s manual. Readers interested in the

parallel features of Scotch should refer to the PT-Scotch 6.0 User’s Guide [44].

Version 6.0 of Scotch is oriented towards the development of new features.,

namely graph repartitioning and remapping [13]. A whole set of direct k-way graph

partitioning and mapping algorithms has also been implemented. Also, new target

architectures have been created, to allow Scotch to map efficiently onto parts of

regular target architectures [49], as it is the case when considering a potentially

non-connected partition of a big machine, as provided by a batch scheduler.

2.2 Availability

Starting from version 4.0, which has been developed at INRIA within the ScAlAp-

plix project, Scotch is available under a dual licensing basis. On the one hand, it

is downloadable from the Scotch web page as free/libre software, to all interested

parties willing to use it as a library or to contribute to it as a testbed for new

partitioning and ordering methods. On the other hand, it can also be distributed,

under other types of licenses and conditions, to parties willing to embed it tightly

into closed, proprietary software.

8

The free/libre software license under which Scotch 6.0 is distributed is

the CeCILL-C license [6], which has basically the same features as the GNU

LGPL (“Lesser General Public License”): ability to link the code as a library

to any free/libre or even proprietary software, ability to modify the code and to

redistribute these modifications. Version 4.0 of Scotch was distributed under the

LGPL itself.

Please refer to section 9 to see how to obtain the free/libre distribution of

Scotch.

3 Static mapping algorithms

The parallel program to be mapped onto the target architecture is modeled by a val-

uated unoriented graph S called source graph or process graph, the vertices of which

represent the processes of the parallel program, and the edges of which the commu-

nication channels between communicating processes. Vertex- and edge- valuations

associate with every vertex vS and every edge eS of S integer numbers wS(vS) and

wS(eS) which estimate the computation weight of the corresponding process and

the amount of communication to be transmitted on the channel, respectively.

The target machine onto which is mapped the parallel program is also modeled

by a valuated unoriented graph T called target graph or architecture graph. Vertices

vT and edges eT of T are assigned integer weights wT (vT) and wT (eT), which

estimate the computational power of the corresponding processor and the cost of

traversal of the inter-processor link, respectively.

A mapping from S to T consists of two applications τS,T : V (S) −→ V (T) and

ρS,T : E(S) −→ P(E(T)), where P(E(T)) denotes the set of all simple loopless

paths which can be built from E(T). τS,T (vS) = vT if process vS of S is mapped

onto processor vT of T , and ρS,T (eS) = {e1T , e
2
T , . . . , e

n
T } if communication channel

eS of S is routed through communication links e1T , e
2
T , . . . , e

n
T of T . |ρS,T (eS)|

denotes the dilation of edge eS , that is, the number of edges of E(T) used to route

eS .

3.1 Cost function and performance criteria

The computation of efficient static mappings requires an a priori knowledge of the

dynamic behavior of the target machine with respect to the programs which are

run on it. This knowledge is synthesized in a cost function, the nature of which

determines the characteristics of the desired optimal mappings. The goal of our

mapping algorithm is to minimize some communication cost function, while keeping

the load balance within a specified tolerance. The communication cost function fC
that we have chosen is the sum, for all edges, of their dilation multiplied by their

weight:

fC(τS,T , ρS,T)
def
=

∑

eS∈E(S)

wS(eS) |ρS,T (eS)| .

This function, which has already been considered by several authors for hyper-

cube target topologies [11, 22, 26], has several interesting properties: it is easy

to compute, allows incremental updates performed by iterative algorithms, and its

minimization favors the mapping of intensively intercommunicating processes onto

nearby processors; regardless of the type of routing implemented on the target

machine (store-and-forward or cut-through), it models the traffic on the intercon-

nection network and thus the risk of congestion.

9

The strong positive correlation between values of this function and effective

execution times has been experimentally verified by Hammond [22] on the CM-2,

and by Hendrickson and Leland [27] on the nCUBE 2.

The quality of mappings is evaluated with respect to the criteria for quality that

we have chosen: the balance of the computation load across processors, and the

minimization of the inter-processor communication cost modeled by function fC .

These criteria lead to the definition of several parameters, which are described

below.

For load balance, one can define µmap, the average load per computational

power unit (which does not depend on the mapping), and δmap, the load imbalance

ratio, as

µmap
def
=

∑

vS∈V (S)

wS(vS)

∑

vT∈V (T)

wT (vT)
and

δmap
def
=

∑

vT∈V (T)

∣

∣

∣

∣

∣

∣

∣







1
wT (vT)

∑

vS ∈ V (S)
τS,T (vS) = vT

wS(vS)






− µmap

∣

∣

∣

∣

∣

∣

∣

∑

vS∈V (S)

wS(vS)
.

However, since the maximum load imbalance ratio is provided by the user in input

of the mapping, the information given by these parameters is of little interest, since

what matters is the minimization of the communication cost function under this

load balance constraint.

For communication, the straightforward parameter to consider is fC . It can be

normalized as µexp, the average edge expansion, which can be compared to µdil,

the average edge dilation; these are defined as

µexp
def
=

fC
∑

eS∈E(S)

wS(eS)
and µdil

def
=

∑

eS∈E(S)

|ρS,T (eS)|

|E(S)|
.

δexp
def
=

µexp
µdil

is smaller than 1 when the mapper succeeds in putting heavily inter-

communicating processes closer to each other than it does for lightly communicating

processes; they are equal if all edges have same weight.

3.2 The Dual Recursive Bipartitioning algorithm

This mapping algorithm, which is the primary way to compute initial static map-

pings, uses a divide and conquer approach to recursively allocate subsets of processes

to subsets of processors [42, 45]. It starts by considering a set of processors, also

called domain, containing all the processors of the target machine, and with which

is associated the set of all the processes to map. At each step, the algorithm bipar-

titions a yet unprocessed domain into two disjoint subdomains, and calls a graph

bipartitioning algorithm to split the subset of processes associated with the domain

across the two subdomains, as sketched in the following.

mapping (D, P)
Set_Of_Processors D;
Set_Of_Processes P;
{

Set_Of_Processors D0, D1;
Set_Of_Processes P0, P1;

10

if (|P| == 0) return; /* If nothing to do. */
if (|D| == 1) { /* If one processor in D */
result (D, P); /* P is mapped onto it. */
return;

}

(D0, D1) = processor_bipartition (D);
(P0, P1) = process_bipartition (P, D0, D1);
mapping (D0, P0); /* Perform recursion. */
mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of the

process graph. As bipartitionings are performed, the subdomain sizes decrease, up

to give a complete mapping when all subdomains are of size one.

The above algorithm lies on the ability to define five main objects:

• a domain structure, which represents a set of processors in the target archi-

tecture;

• a domain bipartitioning function, which, given a domain, bipartitions it in two

disjoint subdomains;

• a domain distance function, which gives, in the target graph, a measure of the

distance between two disjoint domains. Since domains may not be convex nor

connected, this distance may be estimated. However, it must respect certain

homogeneity properties, such as giving more accurate results as domain sizes

decrease [45, 49]. The domain distance function is used by the graph biparti-

tioning algorithms to compute the communication function to minimize, since

it allows the mapper to estimate the dilation of the edges that link vertices

which belong to different domains. Using such a distance function amounts

to considering that all routings will use shortest paths on the target architec-

ture, which is how most parallel machines actually do. We have thus chosen

that our program would not provide routings for the communication channels,

leaving their handling to the communication system of the target machine;

• a process subgraph structure, which represents the subgraph induced by a

subset of the vertex set of the original source graph;

• a process subgraph bipartitioning function, which bipartitions subgraphs in

two disjoint pieces to be mapped onto the two subdomains computed by the

domain bipartitioning function.

All these routines are seen as black boxes by the mapping program, which can thus

accept any kind of target architecture and process bipartitioning functions.

3.2.1 Partial cost function

The production of efficient complete mappings requires that all graph bipartition-

ings favor the criteria that we have chosen. Therefore, the bipartitioning of a

subgraph S′ of S should maintain load balance within the user-specified tolerance,

and minimize the partial communication cost function f ′
C , defined as

f ′
C(τS,T , ρS,T)

def
=

∑

v ∈ V (S′)

{v, v′} ∈ E(S)

wS({v, v
′}) |ρS,T ({v, v

′})| ,

11

which accounts for the dilation of edges internal to subgraph S′ as well as for the

one of edges which belong to the cocycle of S′, as shown in Figure 1. Taking into

account the partial mapping results issued by previous bipartitionings makes it pos-

sible to avoid local choices that might prove globally bad, as explained below. This

amounts to incorporating additional constraints to the standard graph bipartition-

ing problem, turning it into a more general optimization problem termed skewed

graph partitioning by some authors [28].

D0 D1

D

a. Initial position.

D0 D1

D

b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when

bipartitioning the subgraph associated with domain D between the two subdomains

D0 and D1 of D. Dotted edges are of dilation zero, their two ends being mapped

onto the same subdomain. Thin edges are cocycle edges.

3.2.2 Execution scheme

From an algorithmic point of view, our mapper behaves as a greedy algorithm, since

the mapping of a process to a subdomain is never reconsidered, and at each step

of which iterative algorithms can be applied. The double recursive call performed

at each step induces a recursion scheme in the shape of a binary tree, each vertex

of which corresponds to a bipartitioning job, that is, the bipartitioning of both a

domain and its associated subgraph.

In the case of depth-first sequencing, as written in the above sketch, biparti-

tioning jobs run in the left branches of the tree have no information on the dis-

tance between the vertices they handle and neighbor vertices to be processed in

the right branches. On the contrary, sequencing the jobs according to a by-level

(breadth-first) travel of the tree allows any bipartitioning job of a given level to

have information on the subdomains to which all the processes have been assigned

at the previous level. Thus, when deciding in which subdomain to put a given pro-

cess, a bipartitioning job can account for the communication costs induced by its

neighbor processes, whether they are handled by the job itself or not, since it can

estimate in f ′
C the dilation of the corresponding edges. This results in an interesting

feedback effect: once an edge has been kept in a cut between two subdomains, the

distance between its end vertices will be accounted for in the partial communication

cost function to be minimized, and following jobs will be more likely to keep these

vertices close to each other, as illustrated in Figure 2. The relative efficiency of

depth-first and breadth-first sequencing schemes with respect to the structure of

the source and target graphs is discussed in [45].

12

D

CL2

CL0

CL1

a. Depth-first sequencing.

D

CL1

CL2CL0

CL1

CL2

b. Breadth-first sequencing.

Figure 2: Influence of depth-first and breadth-first sequencings on the bipartitioning

of a domain D belonging to the leftmost branch of the bipartitioning tree. With

breadth-first sequencing, the partial mapping data regarding vertices belonging to

the right branches of the bipartitioning tree are more accurate (C.L. stands for “Cut

Level”).

3.2.3 Clustering by mapping onto variable-sized architectures

Several constrained graph partitioning problems can be modeled as mapping the

problem graph onto a target architecture, the number of vertices and topology of

which depend dynamically on the structure of the subgraphs to bipartition at each

step.

Variable-sized architectures are supported by the DRB algorithm in the follow-

ing way: at the end of each bipartitioning step, if any of the variable subdomains

is empty (that is, all vertices of the subgraph are mapped only to one of the sub-

domains), then the DRB process stops for both subdomains, and all of the vertices

are assigned to their parent subdomain; else, if a variable subdomain has only one

vertex mapped onto it, the DRB process stops for this subdomain, and the vertex

is assigned to it.

The moment when to stop the DRB process for a specific subgraph can be

controlled by defining a bipartitioning strategy that checks the validity of a criterion

at each bipartitioning step (see for instance Section 8.15.2), and maps all of the

subgraph vertices to one of the subdomains when it becomes false.

3.3 Static mapping methods

The core of our static mapping software uses graph mapping methods as black

boxes. It maintains an internal image of the current mapping, which records the

target vertex index onto which each of the source graph vertices is mapped. It is

therefore possible to apply several mapping methods in sequence, such that the first

method computes an initial mapping to be further refined by the following methods,

thus enabling us to define static mapping strategies. The currently implemented

static mapping methods are listed below.

Multilevel

This framework, which has been studied by several authors [4, 24, 32] and

should be considered as a strategy rather than as a method since it uses other

methods as parameters, repeatedly reduces the size of the graph to map by

finding matchings that collapse vertices and edges, computes a mapping of the

13

coarsest graph obtained, and prolongs the result back to the original graph,

as shown in Figure 3. The multilevel method, when used in conjunction with

Coarsening
phase

Uncoarsening
phase

Initial partitioning

Prolonged partition

 Refined partition

Figure 3: The multilevel partitioning process. In the uncoarsening phase, the light

and bold lines represent for each level the prolonged partition obtained from the

coarser graph, and the partition obtained after refinement, respectively.

some local optimization methods to refine the projected partitions at every

level, usually leads to a significant improvement in quality with respect to

methods operating only on the finest graph. By coarsening the graphs, the

multilevel algorithm broadens the scope of local optimization algorithms: it

makes possible for them to account for topological structures of the original

graph that would else be of a too high level for them to be encompassed in

their local optimization process.

Band

Like the multilevel method above, the band method is a framework, in the

sense that it does not itself compute partitions, but rather helps other parti-

tioning algorithms perform better. It is a refinement algorithm which, from

a given initial partition, extracts a band graph of given width (which only

contains graph vertices that are at most at this distance from the frontiers of

the parts), calls a partitioning strategy on this band graph, and projects back

the refined partition on the original graph. This method was designed to be

able to use expensive partitioning heuristics, such as genetic algorithms, on

large graphs, as it dramatically reduces the problem space by several orders

of magnitude. However, it was found that, in a multilevel context, it also im-

proves partition quality, by coercing partitions in a problem space that derives

from the one which was globally defined at the coarsest level, thus preventing

local optimization refinement algorithms to be trapped in local optima of the

finer graphs [8].

Fiduccia-Mattheyses

This is a direct k-way version of the traditional Fiduccia-Mattheyses heuristics

used for computing bipartitions, that will be presented in the next section.

By default, boundary vertices can only be moved to parts to which at least

one of their neighbors belong.

Diffusion

This is also a k-way version of an algorithm that has been first used in the

context of bipartitioning, and which will be presented in the next section. The

14

k-way version differs from the latter as it diffuses k sorts of liquids rather than

just two as in the bipartitioning case.

Exactifier

This greedy algorithm refines its input mapping so as to reduce load imbal-

ance as much as possible. Since this method does not consider load balance

minimization, its use should be restricted to cases where achieving load bal-

ance is critical and where recursive bipartitioning may fail to achieve it. It

is especially the case when vertex loads are very irregular: some subdomains

may receive only a few heavy vertices, yielding load balance artifacts when no

light vertices are locally available to compensate.

Graph vertices are sorted by decreasing weights, and considered in turn. If the

current vertex can fit in its initial part without causing imbalance by excess,

it is added to it, and the algorithm goes on. Else, a candidate part is found

by exploring other subdomains in an order based on an implicit recursive

bipartitioning of the architecture graph. Consequently, such vertices will be

placed in subdomains that tend to be as close as possible to the original

location of the vertex. This method is most likely to result in disconnected

parts.

Dual recursive bipartitioning

This algorithm implements the dual recursive bipartitioning algorithm that

has been presented in Section 3.2. The DRB algorithms can be used either

directly on the original graph to partition, or on the coarsest graph yielded by

the direct k-way multilevel framework. It uses graph bipartitioning methods,

described below, to compute its bipartitions.

3.4 Graph bipartitioning methods

The core of our dual recursive bipartitioning mapping algorithm uses process graph

bipartitioning methods as black boxes. It allows the mapper to run any type of

graph bipartitioning method compatible with our criteria for quality. Bipartitioning

jobs maintain an internal image of the current bipartition, indicating for every vertex

of the job whether it is currently assigned to the first or to the second subdomain.

It is therefore possible to apply several different methods in sequence, each one

starting from the result of the previous one, and to select the methods with respect

to the job characteristics, thus enabling us to define graph bipartitioning strategies.

The currently implemented graph bipartitioning methods are listed below.

Diffusion

This global optimization method, presented in [43], flows two kinds of antag-

onistic liquids, scotch and anti-scotch, from two source vertices, and sets the

new frontier as the limit between vertices which contain scotch and the ones

which contain anti-scotch. In order to add load-balancing constraints to the

algorithm, a constant amount of liquid disappears from every vertex per unit

of time, so that no domain can spread across more than half of the vertices.

Because selecting the source vertices is essential to the obtainment of use-

ful results, this method has been hard-coded so that the two source vertices

are the two vertices of highest indices, since in the band method these are

the anchor vertices which represent all of the removed vertices of each part.

Therefore, this method must be used on band graphs only, or on specifically

crafted graphs.

15

Exactifier

This greedy algorithm refines the current partition so as to reduce load imbal-

ance as much as possible, while keeping the value of the communication cost

function as small as possible. The vertex set is scanned in order of decreasing

vertex weights, and vertices are moved from one subdomain to the other if

doing so reduces load imbalance. When several vertices have same weight,

the vertex whose swap decreases most the communication cost function is se-

lected first. This method is used in post-processing of other methods when

load balance is mandatory. For weighted graphs, the strict enforcement of

load balance may cause the swapping of isolated vertices of small weight, thus

greatly increasing the cut. Therefore, great care should be taken when using

this method if connectivity or cut minimization are mandatory.

Fiduccia-Mattheyses

The Fiduccia-Mattheyses heuristics [12] is an almost-linear improvement of

the famous Kernighan-Lin algorithm [36]. It tries to improve the bipartition

that is input to it by incrementally moving vertices between the subsets of

the partition, as long as it can find sequences of moves that lower its commu-

nication cost. By considering sequences of moves instead of single swaps, the

algorithm allows hill-climbing from local minima of the cost function. As an

extension to the original Fiduccia-Mattheyses algorithm, we have developed

new data structures, based on logarithmic indexings of arrays, that allow us

to handle weighted graphs while preserving the almost-linearity in time of the

algorithm [45].

As several authors quoted before [25, 33], the Fiduccia-Mattheyses algorithm

gives better results when trying to optimize a good starting partition. There-

fore, it should not be used on its own, but rather after greedy starting methods

such as the Gibbs-Poole-Stockmeyer or the greedy graph growing methods.

Gibbs-Poole-Stockmeyer

This greedy bipartitioning method derives from an algorithm proposed by

Gibbs, Poole, and Stockmeyer to minimize the dilation of graph orderings,

that is, the maximum absolute value of the difference between the numbers of

neighbor vertices [19]. The graph is sliced by using a breadth-first spanning

tree rooted at a randomly chosen vertex, and this process is iterated by se-

lecting a new root vertex within the last layer as long as the number of layers

increases. Then, starting from the current root vertex, vertices are assigned

layer after layer to the first subdomain, until half of the total weight has been

processed. Remaining vertices are then allocated to the second subdomain.

As for the original Gibbs, Poole, and Stockmeyer algorithm, it is assumed that

the maximization of the number of layers results in the minimization of the

sizes –and therefore of the cocycles– of the layers. This property has already

been used by George and Liu to reorder sparse linear systems using the nested

dissection method [18], and by Simon in [56].

Greedy graph growing

This greedy algorithm, which has been proposed by Karypis and Kumar [32],

belongs to the GRASP (“Greedy Randomized Adaptive Search Procedure”)

class [37]. It consists in selecting an initial vertex at random, and repeatedly

adding vertices to this growing subset, such that each added vertex results

in the smallest increase in the communication cost function. This process,

which stops when load balance is achieved, is repeated several times in order

16

to explore (mostly in a gradient-like fashion) different areas of the solution

space, and the best partition found is kept.

Multilevel

This is a graph bipartition-oriented version of the static mapping multilevel

method described in the previous section, page 13.

4 Sparse matrix ordering algorithms

When solving large sparse linear systems of the form Ax = b, it is common to

precede the numerical factorization by a symmetric reordering. This reordering is

chosen in such a way that pivoting down the diagonal in order on the resulting

permuted matrix PAPT produces much less fill-in and work than computing the

factors of A by pivoting down the diagonal in the original order (the fill-in is the

set of zero entries in A that become non-zero in the factored matrix).

4.1 Performance criteria

The quality of orderings is evaluated with respect to several criteria. The first

one, NNZ, is the number of non-zero terms in the factored reordered matrix. The

second one, OPC, is the operation count, that is the number of arithmetic operations

required to factor the matrix. The operation count that we have considered takes

into consideration all operations (additions, subtractions, multiplications, divisions)

required by Cholesky factorization, except square roots; it is equal to
∑

c n
2
c , where

nc is the number of non-zeros of column c of the factored matrix, diagonal included.

A third criterion for quality is the shape of the elimination tree; concurrency in

parallel solving is all the higher as the elimination tree is broad and short. To

measure its quality, several parameters can be defined: hmin, hmax, and havg denote

the minimum, maximum, and average heights of the tree1, respectively, and hdlt

is the variance, expressed as a percentage of havg. Since small separators result in

small chains in the elimination tree, havg should also indirectly reflect the quality

of separators.

4.2 Minimum Degree

The minimum degree algorithm [57] is a local heuristic that performs its pivot

selection by iteratively selecting from the graph a node of minimum degree.

The minimum degree algorithm is known to be a very fast and general purpose

algorithm, and has received much attention over the last three decades (see for

example [1, 17, 40]). However, the algorithm is intrinsically sequential, and very

little can be theoretically proved about its efficiency.

4.3 Nested dissection

The nested dissection algorithm [18] is a global, heuristic, recursive algorithm which

computes a vertex set S that separates the graph into two parts A and B, ordering

S with the highest remaining indices. It then proceeds recursively on parts A and B

until their sizes become smaller than some threshold value. This ordering guarantees

that, at each step, no non zero term can appear in the factorization process between

unknowns of A and unknowns of B.

1We do not consider as leaves the disconnected vertices that are present in some meshes, since

they do not participate in the solving process.

17

Many theoretical results have been carried out on nested dissection order-

ing [7, 39], and its divide and conquer nature makes it easily parallelizable. The

main issue of the nested dissection ordering algorithm is thus to find small vertex

separators that balance the remaining subgraphs as evenly as possible. Most often,

vertex separators are computed by using direct heuristics [29, 38], or from edge

separators [50, and included references] by minimum cover techniques [9, 31], but

other techniques such as spectral vertex partitioning have also been used [51].

Provided that good vertex separators are found, the nested dissection algorithm

produces orderings which, both in terms of fill-in and operation count, compare

favorably [20, 32, 47] to the ones obtained with the minimum degree algorithm [40].

Moreover, the elimination trees induced by nested dissection are broader, shorter,

and better balanced, and therefore exhibit much more concurrency in the context

of parallel Cholesky factorization [3, 15, 16, 20, 47, 55, and included references].

4.4 Hybridization

Due to their complementary nature, several schemes have been proposed to

hybridize the two methods [29, 35, 47]. However, to our knowledge, only loose

couplings have been achieved: incomplete nested dissection is performed on the

graph to order, and the resulting subgraphs are passed to some minimum degree

algorithm. This results in the fact that the minimum degree algorithm does not

have exact degree values for all of the boundary vertices of the subgraphs, leading

to a misbehavior of the vertex selection process.

Our ordering program implements a tight coupling of the nested dissection and

minimum degree algorithms, that allows each of them to take advantage of the infor-

mation computed by the other. First, the nested dissection algorithm provides exact

degree values for the boundary vertices of the subgraphs passed to the minimum

degree algorithm (called halo minimum degree since it has a partial visibility of the

neighborhood of the subgraph). Second, the minimum degree algorithm returns the

assembly tree that it computes for each subgraph, thus allowing for supervariable

amalgamation, in order to obtain column-blocks of a size suitable for BLAS3 block

computations.

As for our mapping program, it is possible to combine ordering methods into

ordering strategies, which allow the user to select the proper methods with respect

to the characteristics of the subgraphs.

The ordering program is completely parametrized by its ordering strategy. The

nested dissection method allows the user to take advantage of all of the graph

partitioning routines that have been developed in the earlier stages of the Scotch

project. Internal ordering strategies for the separators are relevant in the case of

sequential or parallel [21, 52, 53, 54] block solving, to select ordering algorithms

that minimize the number of extra-diagonal blocks [7], thus allowing for efficient

use of BLAS3 primitives, and to reduce inter-processor communication.

4.5 Ordering methods

The core of our ordering algorithm uses graph ordering methods as black boxes,

which allows the orderer to run any type of ordering method. In addition to yielding

orderings of the subgraphs that are passed to them, these methods may compute

column block partitions of the subgraphs, that are recorded in a separate tree

structure. The currently implemented graph ordering methods are listed below.

18

Halo approximate minimum degree

The halo approximate minimum degree method [48] is an improvement of

the approximate minimum degree [1] algorithm, suited for use on subgraphs

produced by nested dissection methods. Its interest compared to classical min-

imum degree algorithms is that boundary vertices are processed using their

real degree in the global graph rather than their (much smaller) degree in the

subgraph, resulting in smaller fill-in and operation count. This method also

implements amalgamation techniques that result in efficient block computa-

tions in the factoring and the solving processes.

Halo approximate minimum fill

The halo approximate minimum fill method is a variant of the halo approxi-

mate minimum degree algorithm, where the criterion to select the next vertex

to permute is not based on its current estimated degree but on the minimiza-

tion of the induced fill.

Graph compression

The graph compression method [2] merges cliques of vertices into single nodes,

so as to speed-up the ordering of the compressed graph. It also results in some

improvement of the quality of separators, especially for stiffness matrices.

Gibbs-Poole-Stockmeyer

This method is mainly used on separators to reduce the number and extent

of extra-diagonal blocks.

Simple method

Vertices are ordered consecutively, in the same order as they are stored in the

graph. This is the fastest method to use on separators when the shape of

extra-diagonal structures is not a concern.

Nested dissection

Incomplete nested dissection method. Separators are computed recursively on

subgraphs, and specific ordering methods are applied to the separators and

to the resulting subgraphs (see sections 4.3 and 4.4).

4.6 Graph separation methods

The core of our incomplete nested dissection algorithm uses graph separation

methods as black boxes. It allows the orderer to run any type of graph separation

method compatible with our criteria for quality, that is, reducing the size of the

vertex separator while maintaining the loads of the separated parts within some

user-specified tolerance. Separation jobs maintain an internal image of the current

vertex separator, indicating for every vertex of the job whether it is currently

assigned to one of the two parts, or to the separator. It is therefore possible to

apply several different methods in sequence, each one starting from the result of

the previous one, and to select the methods with respect to the job characteristics,

thus enabling the definition of separation strategies.

The currently implemented graph separation methods are listed below.

Fiduccia-Mattheyses

This is a vertex-oriented version of the original, edge-oriented, Fiduccia-

Mattheyses heuristics described in page 16.

19

Greedy graph growing

This is a vertex-oriented version of the edge-oriented greedy graph growing

algorithm described in page 16.

Multilevel

This is a vertex-oriented version of the edge-oriented multilevel algorithm

described in page 13.

Thinner

This greedy algorithm refines the current separator by removing all of the

exceeding vertices, that is, vertices that do not have neighbors in both parts.

It is provided as a simple gradient refinement algorithm for the multilevel

method, and is clearly outperformed by the Fiduccia-Mattheyses algorithm.

Vertex cover

This algorithm computes a vertex separator by first computing an edge sepa-

rator, that is, a bipartition of the graph, and then turning it into a vertex sep-

arator by using the method proposed by Pothen and Fang [50]. This method

requires the computation of maximal matchings in the bipartite graphs as-

sociated with the edge cuts, which are built using Duff’s variant [9] of the

Hopcroft and Karp algorithm [31]. Edge separators are computed by using a

bipartitioning strategy, which can use any of the graph bipartitioning methods

described in section 3.4, page 15.

5 Updates

5.1 Changes in version 6.0 from version 5.1

The new sub abstract target architecture allows one to map a graph onto a subset

of any given target architecture (including another sub architecture). This feature

is meant to perform mappings onto potentially disconnected subsets of a parallel

machine, e.g. the set of nodes assigned by a batch scheduler; see Section 8.5.10,

page 85 for further information. Also, in order to allow decomposition-defined

architectures to scale-up to the sizes of modern machines, a new version of the deco

architecture, called deco 2, has been designed. This target architecture can be

created using the SCOTCH archBuild2 routine; see Section 8.5.2, page 80 for further

information. For further information on the rationale and implementation of these

two features, please refer to [49].

Direct k-way graph partitioning and static mapping methods are now available.

They are less expensive than the classical dual recursive bipartitioning scheme, and

improve quality on average for numbers of parts above a few hundreds. Another

new method aims at reducing load imbalance in the case of source graphs with

highly irregular vertex weights; see Section 3.3, page 13. Users willing to keep

using the old recursive bipartitioning strategies of the 5.x branch can create default

strategies with the SCOTCH STRATRECURSIVE flag set, in addition to other flags; see

Section 8.3.1, page 60 for further information.

Graph repartitioning and static re-mapping features are now available; see Sec-

tions 8.7.2 to 8.7.7, starting from page 101.

The clustering capabilities of Scotch can be used more easily from the com-

mand line and library calls ; see Section 7.3.6 and Section 8.15.2.

A new set of routines has been created in order to compute vertex-separated,

k-way partitions, that balance the loads of the parts and of the separator vertices

20

that surround them; see Sections 8.3.4 and 8.7.5.

A new labeled tree-leaf architecture has been created, for nodes that label cores

in non increasing order. See Section 6.4.2, page 26 for the description of the ltleaf

target architecture.

Memory footprint measurement routines are now available to users; see Sec-

tion 8.19, page 152.

Key algorithms are now multi-threaded. See the installation file INSTALL.txt in

the main directory for instructions on how to compile Scotch with thread support

enabled.

5.2 Changes in version 5.1 from version 5.0

A new integer index type has been created in the Fortran interface, to address array

indices larger than the maximum value which can be stored in a regular integer.

Please refer to Section 9.3 for more information.

A new set of routines has been designed, to ease the use of the libScotch as

a dynamic library. The SCOTCH version routine returns the version, release and

patch level numbers of the library being used. The SCOTCH *Alloc routines, which

are only available in the C interface at the time being, dynamically allocate storage

space for the opaque API Scotch structures, which frees application programs from

the need to be systematically recompiled because of possible changes of Scotch

structure sizes.

6 Files and data structures

For the sake of portability, readability, and reduction of storage space, all the data

files shared by the different programs of the Scotch project are coded in plain

ASCII text exclusively. Although we may speak of “lines” when describing file for-

mats, text-formatting characters such as newlines or tabulations are not mandatory,

and are not taken into account when files are read. They are only used to provide

better readability and understanding. Whenever numbers are used to label objects,

and unless explicitely stated, numberings always start from zero, not one.

6.1 Graph files

Graph files, which usually end in “.grf” or “.src”, describe valuated graphs, which

can be valuated process graphs to be mapped onto target architectures, or graphs

representing the adjacency structures of matrices to order.

Graphs are represented by means of adjacency lists: the definition of each

vertex is accompanied by the list of all of its neighbors, i.e. all of its adjacent arcs.

Therefore, the overall number of edge data is twice the number of edges.

Since version 3.3 has been introduced a new file format, referred to as the “new-

style” file format, which replaces the previous, “old-style”, file format. The two

advantages of the new-style format over its predecessor are its greater compacity,

which results in shorter I/O times, and its ability to handle easily graphs output

by C or by Fortran programs.

Starting from version 4.0, only the new format is supported. To convert

remaining old-style graph files into new-style graph files, one should get version 3.4

of the Scotch distribution, which comprises the scv file converter, and use it to

produce new-style Scotch graph files from the old-style Scotch graph files which

21

it is able to read. See section 7.3.5 for a description of gcv, formerly called scv.

The first line of a graph file holds the graph file version number, which is cur-

rently 0. The second line holds the number of vertices of the graph (referred to as

vertnbr in libScotch; see for instance Figure 17, page 55, for a detailed example),

followed by its number of arcs (unappropriately called edgenbr, as it is in fact equal

to twice the actual number of edges). The third line holds two figures: the graph

base index value (baseval), and a numeric flag.

The graph base index value records the value of the starting index used to

describe the graph; it is usually 0 when the graph has been output by C programs,

and 1 for Fortran programs. Its purpose is to ease the manipulation of graphs within

each of these two environments, while providing compatibility between them.

The numeric flag, similar to the one used by the Chaco graph format [25], is

made of three decimal digits. A non-zero value in the units indicates that vertex

weights are provided. A non-zero value in the tenths indicates that edge weights

are provided. A non-zero value in the hundredths indicates that vertex labels are

provided; if it is the case, vertices can be stored in any order in the file; else, natural

order is assumed, starting from the graph base index.

This header data is then followed by as many lines as there are vertices in the

graph, that is, vertnbr lines. Each of these lines begins with the vertex label,

if necessary, the vertex load, if necessary, and the vertex degree, followed by the

description of the arcs. An arc is defined by the load of the edge, if necessary, and

by the label of its other end vertex. The arcs of a given vertex can be provided

in any order in its neighbor list. If vertex labels are provided, vertices can also be

stored in any order in the file.

Figure 4 shows the contents of a graph file modeling a cube with unity vertex

and edge weights and base 0.

0

8 24

0 000

3 4 2 1

3 5 3 0

3 6 0 3

3 7 1 2

3 0 6 5

3 1 7 4

3 2 4 7

3 3 5 6

Figure 4: Graph file representing a cube.

6.2 Mesh files

Mesh files, which usually end in “.msh”, describe valuated meshes, made of elements

and nodes, the elements of which can be mapped onto target architectures, and the

nodes of which can be reordered.

Meshes are bipartite graphs, in the sense that every element is connected to the

nodes that it comprises, and every node is connected to the elements to which it

belongs. No edge connects any two element vertices, nor any two node vertices.

One can also think of meshes as hypergraphs, such that nodes are the vertices

of the hypergraph and elements are hyper-edges which connect multiple nodes, or

22

reciprocally such that elements are the vertices of the hypergraph and nodes are

hyper-edges which connect multiple elements.

Since meshes are graphs, the structure of mesh files resembles very much the

one of graph files described above in section 6.1, and differs only by its header,

which indicates which of the vertices are node vertices and element vertices.

The first line of a mesh file holds the mesh file version number, which is currently

1. Graph and mesh version numbers will always differ, which enables application

programs to accept both file formats and adapt their behavior according to the

type of input data. The second line holds the number of elements of the mesh

(velmnbr), followed by its number of nodes (vnodnbr), and by its overall number of

arcs (edgenbr, that is, twice the number of edges which connect elements to nodes

and vice-versa).

The third line holds three figures: the base index of the first element vertex in

memory (velmbas), the base index of the first node vertex in memory (vnodbas),

and a numeric flag.

The Scotchmesh file format requires that all nodes and all elements be assigned

to contiguous ranges of indices. Therefore, either all element vertices are defined

before all node vertices, or all node vertices are defined before all element vertices.

The node and element base indices indicate at the same time whether elements or

nodes are put in the first place, as well as the value of the starting index used to

describe the graph. Indeed, if velmbas < vnodbas, then elements have the smallest

indices, velmbas is the base value of the underlying graph (that is, baseval =

velmbas), and velmbas + velmnbr = vnodbas holds. Conversely, if velmbas >

vnodbas, then nodes have the smallest indices, vnodbas is the base value of the

underlying graph, (that is, baseval= vnodbas), and vnodbas+vnodnbr = velmbas

holds.

The numeric flag, similar to the one used by the Chaco graph format [25], is

made of three decimal digits. A non-zero value in the units indicates that vertex

weights are provided. A non-zero value in the tenths indicates that edge weights

are provided. A non-zero value in the hundredths indicates that vertex labels are

provided; if it is the case, and if velmbas < vnodbas (resp. velmbas > vnodbas),

the velmnbr (resp. vnodnbr) first vertex lines are assumed to be element (resp.

node) vertices, irrespective of their vertex labels, and the vnodnbr (resp. velmnbr)

remaining vertex lines are assumed to be node (resp. element) vertices; else, natural

order is assumed, starting at the underlying graph base index (baseval).

This header data is then followed by as many lines as there are node and element

vertices in the graph. These lines are similar to the ones of the graph format, except

that, in order to save disk space, the numberings of nodes and elements all start

from the same base value, that is, min(velmbas, vnodbas) (also called baseval, like

for regular graphs).

For example, Figure 5 shows the contents of the mesh file modeling three square

elements, with unity vertex and edge weights, elements defined before nodes, and

numbering of the underlying graph starting from 1. In memory, the three elements

are labeled from 1 to 3, and the eight nodes are labeled from 4 to 11. In the file,

the three elements are still labeled from 1 to 3, while the eight nodes are labeled

from 1 to 8.

When labels are used, elements and nodes may have similar labels, but not two

elements, nor two nodes, should have the same labels.

23

4

2

5

1

6

3

10

11

7

8 9

1

3 8 24

1 4 000

4 2 (= 5) 8 (= 11) 4 (= 7) 3 (= 6)

4 7 (= 10) 2 (= 5) 8 (= 11) 1 (= 4)

4 5 (= 8) 6 (= 9) 3 (= 6) 4 (= 7)

1 2

2 2 1

2 1 3

2 1 3

1 3

1 3

1 2

2 2 1

Figure 5: Mesh file representing three square elements, with unity vertex and edge

weights. Elements are defined before nodes, and numbering of the underlying graph

starts from 1. The left part of the figure shows the mesh representation in memory,

with consecutive element and node indices. The right part of the figure shows

the contents of the file, with both element and node numberings starting from 1,

the minimum of the element and node base values. Corresponding node indices in

memory are shown in parentheses for the sake of comprehension.

6.3 Geometry files

Geometry files, which usually end in “.xyz”, hold the coordinates of the vertices

of their associated graph or mesh. These files are not used in the mapping process

itself, since only topological properties are taken into account then (mappings are

computed regardless of graph geometry). They are used by visualization programs

to compute graphical representations of mapping results.

The first string to appear in a geometry file codes for its type, or dimensional-

ity. It is “1” if the file contains unidimensional coordinates, “2” for bidimensional

coordinates, and “3” for tridimensional coordinates. It is followed by the number of

coordinate data stored in the file, which should be at least equal to the number of

vertices of the associated graph or mesh, and by that many coordinate lines. Each

coordinate line holds the label of the vertex, plus one, two or three real numbers

which are the (X), (X,Y), or (X,Y,Z), coordinates of the graph vertices, according

to the graph dimensionality.

Vertices can be stored in any order in the file. Moreover, a geometry file can have

more coordinate data than there are vertices in the associated graph or mesh file;

only coordinates the labels of which match labels of graph or mesh vertices will be

taken into account. This feature allows all subgraphs of a given graph or mesh to

share the same geometry file, provided that graph vertex labels remain unchanged.

For example, Figure 6 shows the contents of the 3D geometry file associated with

the graph of Figure 4.

6.4 Target files

Target files describe the architectures onto which source graphs are mapped. Instead

of containing the structure of the target graph itself, as source graph files do, target

files define how target graphs are bipartitioned and give the distances between all

24

3

8

0 0.0 0.0 0.0

1 0.0 0.0 1.0

2 0.0 1.0 0.0

3 0.0 1.0 1.0

4 1.0 0.0 0.0

5 1.0 0.0 1.0

6 1.0 1.0 0.0

7 1.0 1.0 1.0

Figure 6: Geometry file associated with the graph file of Figure 4.

pairs of vertices (that is, processors). Keeping the bipartitioning information within

target files avoids recomputing it every time a target architecture is used. We are

allowed to do so because, in our approach, the recursive bipartitioning of the target

graph is fully independent with respect to that of the source graph (however, the

opposite is false).

For space and time saving issues, some classical homogeneous architectures (2D

and 3D meshes and tori, hypercubes, complete graphs, etc.) have been algorithmi-

cally coded within the mapper itself by the means of built-in functions. Instead of

containing the whole graph decomposition data, their target files hold only a few

values, used as parameters by the built-in functions.

6.4.1 Decomposition-defined architecture files

Decomposition-defined architecture files are the way to describe irregular target

architectures that cannot be represented as algorithmically-coded architectures.

Two main file formats coexist : the “deco 0” and “deco 2” formats. “deco”

stands for “decomposition-defined architecture”, followed by the format number.

The “deco 1” format is a compiled form of the “deco 0” format, which we will not

describe here as it is not meant to be handled by users.

The “deco 0” header is followed by two integer numbers, which are the number

of processors and the largest terminal number used in the decomposition, respec-

tively. Two arrays follow. The first array has as many lines as there are processors.

Each of these lines holds three numbers: the processor label, the processor weight

(that is an estimation of its computational power), and its terminal number. The

terminal number associated with every processor is obtained by giving the initial

domain holding all the processors number 1, and by numbering the two subdomains

of a given domain of number i with numbers 2i and 2i + 1. The second array is

a lower triangular diagonal-less matrix that gives the distance between all pairs of

processors. This distance matrix, combined with the decomposition tree coded by

terminal numbers, allows the evaluation by averaging of the distance between all

pairs of domains. In order for the mapper to behave properly, distances between

processors must be strictly positive numbers. Therefore, null distances are not ac-

cepted. For instance, Figure 7 shows the contents of the architecture decomposition

file for UB(2, 3), the binary de Bruijn graph of dimension 3, as computed by the

amk grf program.

The “deco 2” format was created so as to represent bigger target architectures.

Indeed, the distance matrix of the “deco 0” format is quadratic in the number of

target vertices, which is not scalable and prevents users from representing target

architectures bigger than a few thousand vertices. In the “deco 2” architecture,

distances are computed using in a multilevel representation of the target graph, in

25

1

7

3

6

12 13 9 11 8 10

54

2

1415

deco 0

8 15

0 1 15

1 1 14

2 1 13

3 1 11

4 1 12

5 1 9

6 1 8

7 1 10

1

2 1

2 1 2

1 1 1 2

3 2 1 1 2

2 2 2 1 1 1

3 2 3 1 2 2 1

Figure 7: Target decomposition file for UB(2, 3). The terminal numbers associated

with every processor define a unique recursive bipartitioning of the target graph.

the form of a family of coarser graphs. Hence, the more distant the vertices are,

the coarsest is the graph to be used to estimate this distance [49]. The vertices and

edges of these graphs encode their respective cost of traversal, which becomes less

accurate as coarser graphs are used.

6.4.2 Algorithmically-coded architecture files

Almost all algorithmically-coded architectures are defined with unity edge and ver-

tex weights. They start with an abbreviation name of the architecture, followed by

parameters specific to the architecture. The available built-in architecture defini-

tions are listed below.

cmplt size

Defines a complete graph with size vertices. Its vertex labels are numbers

between 0 and size − 1.

cmpltw size load0 load1 . . . loadsize−1

Defines a weighted complete graph with size vertices. Its vertex labels are

numbers between 0 and size − 1, and vertices are assigned integer weights in

the order in which these are provided.

hcub dim

Defines a binary hypercube of dimension dim . Graph vertices are numbered

according to the value of the binary representation of their coordinates in the

hypercube.

ltleaf levlnbr sizeval0 linkval0 . . . sizeval levlnbr−1 linkval levlnbr−1

permnbr permval0 . . . permvalpermnbr−1

The ltleaf (for “labeled tree-leaf ”) architecture is an extended tree-leaf ar-

chitecture (tleaf, see below) which models target topologies where cores are

not labeled in increasing order.

The tree structure of the architecture is described just like for a regular tleaf

architecture. permnbr is the length of the permutation that is used to label

26

cores, followed by this number of permutation indices, ranging between 0 and

(permnbr − 1). Figure 8 presents an example of such an architecture.

The permutation array must be of a size that matches level boundaries. Al-

ternatively, a permutation of size 1, with only index 0 given, represents the

identity permutation. In this case, the regular tleaf architecture can be used.

ltleaf

3 32 10 2 5 4 1

8 0 2 4 6 1 3 5 7

Figure 8: Labeled tree-leaf architecture with 3 levels, representing a system with 32

nodes of 2 quad-core processors. Inter-node communication costs 10, inter-processor

communication within the same node costs 5 and inter-core communication within

the same processor costs 1. Within a 8-core node, cores are labeled such that cores

0, 2, 4 and 6 are located on the first processor, while cores 1, 3, 5 and 7 are located

on the second processor.

mesh2D dimX dimY

Defines a bidimensional array of dimX columns by dimY rows. The vertex

with coordinates (posX , posY) has label posX + posY × dimX .

mesh3D dimX dimY dimZ

Defines a tridimensional array of dimX columns by dimY rows by dimZ levels.

The vertex with coordinates (posX , posY , posZ) has label posX +posY dimX +

posZdimX dimY .

meshXD ndims dim0 dim1 . . . dim(ndims−1)

Generalization of the mesh2D and mesh3D architectures. Defines a

ndims-dimensional array of dimensions dim0, dim1 . . . dimndims−1. The

vertex with coordinates (pos0 , pos1 , . . . , posndims−1) has label pos0 +
∑ndims−1

d=1

(

posd
∏d−1

d′=0 dimd′

)

.

sub termnbr termnum0 termnum1 . . . termnumtermnbr−1 architecture

Defines a sub-architecture of another architecture. The sub-architecture

contains termnbr vertices, which have ranks termnum0, termnum1, . . .

termnumtermnbr−1 in the prescribed, original architecture. The original ar-

chitecture must comprise at least termnbr vertices, and thus cannot be a

variable-sized architecture. The order in which vertex numbers are provided

defines the part indices that will be used as output mapping data. For in-

stance, in the example shown in Figure 9, source vertices that are assigned to

vertex 3 of the sub-architecture are in fact assigned to vertex 5 of the original,

2D mesh architecture, according to its canonical numbering.

tleaf levlnbr sizeval0 linkval0 . . . sizeval levlnbr−1 linkval levlnbr−1

Defines a hierarchical, tree-shaped, architecture with levlnbr levels and
∑levlnbr−1

i=0 sizeval i leaf vertices. This topology is used to model hierarchi-

cal NUMA or NUIOA machines. The mapping is only computed with respect

to the leaf vertices, which represent processing elements, while the upper lev-

els of the tree model interconnection networks (intra-chip buses, inter-chip

interconnection networks, network routers, etc.), as exemplified in Figure 10.

The communication cost between two nodes is the cost of the highest common

ancestor level.

27

0 2

1 3 4

sub

5 0 4 1 5 7

mesh2D 4 2

Figure 9: Sub-architecture of a 4x2 mesh2D 2D grid architecture. The sub-

architecture comprises 5 vertices, numbered from 0 to 4, which correspond to ver-

tices 0, 4, 1, 5 and 7 of the original architecture, respectively.

7

2

20
tleaf

3 3 20 2 7 2 2

Figure 10: A “tree-leaf” graph with three levels. Processors are drawn in black and

routers in grey. It has 3 levels, the first level has 3 sons and a traversal cost of 20,

the second level has 2 sons and a traversal cost of 7, and the third level has also 2

sons and a traversal cost of 2.

torus2D dimX dimY

Defines a bidimensional array of dimX columns by dimY rows, with

wraparound edges. The vertex with coordinates (posX , posY) has label

posX + posY × dimX .

torus3D dimX dimY dimZ

Defines a tridimensional array of dimX columns by dimY rows by dimZ levels,

with wraparound edges. The vertex with coordinates (posX , posY , posZ) has

label posX + posY dimX + posZ dimX dimY .

torusXD ndims dim0 dim1 . . . dimndims−1

Generalization of the torus2D and torus3D architectures. Defines a

ndims-dimensional torus of dimensions dim0, dim1 . . . dimndims−1. The

vertex with coordinates (pos0 , pos1 , . . . , pos(ndims−1)) has label pos0 +
∑ndims−1

d=1

(

posd
∏d−1

d′=0 dimd′

)

.

6.4.3 Variable-sized architecture files

Variable-sized architectures are a class of algorithmically-coded architectures the

size of which is not defined a priori. Domains of these target architectures can

always be bipartitioned, again and again (until integer overflow occurs in domain

indices). These architectures are used to perform graph clustering (see Sections 7.3.6

and 8.7.1), using a specifically tailored graph mapping strategy (see for instance

Section 8.15.2).

As for fixed-size algorithmically-coded architectures, they start with an abbrevi-

ation name of the architecture, followed by parameters specific to the architecture.

The available built-in variable-sized architecture definitions are listed below.

28

varcmplt

Defines a variable-sized complete graph. Domains are labeled such that the

first domain is labeled 1, and the two subdomains of any domain i are labeled

2i and 2i+ 1. The distance between any two subdomains i and j is 0 if i = j

and 1 else.

varhcub

Defines a variable-sized hypercube. Domains are labeled such that the first

domain is labeled 1, and the two subdomains of any domain i are labeled 2i

and 2i+ 1. The distance between any two domains is the Hamming distance

between the common bits of the two domains, plus half of the absolute dif-

ference between the levels of the two domains, this latter term modeling the

average distance on unknown bits. For instance, the distance between subdo-

main 9 = 1001B, of level 3 (since its leftmost 1 has been shifted left thrice),

and subdomain 53 = 110101B, of level 5 (since its leftmost 1 has been shifted

left five times), is equal to 2: it is 1, which is the number of bits which differ

between 1101B (that is, 53 = 110101B shifted rightwards twice) and 1001B,

plus 1, which is half of the absolute difference between 5 and 3.

6.5 Mapping files

Mapping files, which usually end in “.map”, contain the result of the mapping of

source graphs onto target architectures. They associate a vertex of the target graph

with every vertex of the source graph.

Mapping files begin with the number of mapping lines which they contain, fol-

lowed by that many mapping lines. Each mapping line holds a mapping pair, made

of two integer numbers which are the label of a source graph vertex and the label

of the target graph vertex onto which it is mapped. Mapping pairs can be stored

in any order in the file; however, labels of source graph vertices must be all differ-

ent. For example, Figure 11 shows the result obtained when mapping the source

graph of Figure 4 onto the target architecture of Figure 7. This one-to-one embed-

ding of H(3) into UB(2, 3) has dilation 1, except for one hypercube edge which has

dilation 3.

8

0 1

1 3

2 2

3 5

4 0

5 7

6 4

7 6

Figure 11: Mapping file obtained when mapping the hypercube source graph of

Figure 4 onto the binary de Bruijn architecture of Figure 7.

Mapping files are also used on output of the block orderer to represent the

allocation of the vertices of the original graph to the column blocks associated with

the ordering. In this case, column blocks are labeled in ascending order, such that

the number of a block is always greater than the ones of its predecessors in the

elimination process, that is, its leaves in the elimination tree.

29

6.6 Ordering files

Ordering files, which usually end in “.ord”, contain the result of the ordering of

source graphs or meshes that represent sparse matrices. They associate a number

with every vertex of the source graph or mesh.

The structure of ordering files is analogous to the one of mapping files; they

differ only by the meaning of their data.

Ordering files begin with the number of ordering lines which they contain, that

is the number of vertices in the source graph or the number of nodes in the source

mesh, followed by that many ordering lines. Each ordering line holds an ordering

pair, made of two integer numbers which are the label of a source graph or mesh

vertex and its rank in the ordering. Ranks range from the base value of the graph or

mesh (baseval) to the base value plus the number of vertices (resp. nodes), minus

one (baseval+ vertnbr− 1 for graphs, and baseval+ vnodnbr− 1 for meshes).

Ordering pairs can be stored in any order in the file; however, indices of source

vertices must be all different.

For example, Figure 12 shows the result obtained when reordering the source

graph of Figure 4.

8

0 6

1 3

2 2

3 7

4 1

5 5

6 4

7 0

Figure 12: Ordering file obtained when reordering the hypercube graph of Figure 4.

The advantage of having both graph and mesh orderings start from baseval

(and not vnodbas in the case of meshes) is that an ordering computed on the nodal

graph of some mesh has the same structure as an ordering computed from the native

mesh structure, allowing for greater modularity. However, in memory, permutation

indices for meshes are numbered from vnodbas to vnodbas+ vnodnbr− 1.

6.7 Vertex list files

Vertex lists are used by programs that select vertices from graphs.

Vertex lists are coded as lists of integer numbers. The first integer is the number

of vertices in the list and the other integers are the labels of the selected vertices,

given in any order. For example, Figure 13 shows the list made from three vertices

of labels 2, 45, and 7.

3 2 45 7

Figure 13: Example of vertex list with three vertices of labels 2, 45, and 7.

7 Programs

The programs of the Scotch project belong to five distinct classes.

30

• Graph handling programs, the names of which begin in “g”, that serve to

build and test source graphs.

• Mesh handling programs, the names of which begin in “m”, that serve to build

and test source meshes.

• Target architecture handling programs, the names of which begin in “a”,

that allow the user to build and test decomposition-defined target files, and

especially to turn a source graph file into a target file.

• The mapping and ordering programs themselves.

• Output handling programs, which are the mapping performance analyzer, the

graph factorization program, and the graph, matrix, and mapping visualiza-

tion program.

The general architecture of the Scotch project is displayed in Figure 14.

7.1 Invocation

The programs comprising the Scotch project have been designed to run in

command-line mode without any interactive prompting, so that they can be called

easily from other programs by means of “system ()” or “ popen ()” system calls,

or be piped together on a single shell command line. In order to facilitate this,

whenever a stream name is asked for (either on input or output), the user may

put a single “-” to indicate standard input or output. Moreover, programs read

their input in the same order as stream names are given in the command line. It

allows them to read all their data from a single stream (usually the standard input),

provided that these data are ordered properly.

A brief on-line help is provided with all the programs. To get this help, use the

“-h” option after the program name. The case of option letters is not significant,

except when both the lower and upper cases of a letter have different meanings.

When passing parameters to the programs, only the order of file names is significant;

options can be put anywhere in the command line, in any order. Examples of use

of the different programs of the Scotch project are provided in section 10.

Error messages are standardized, but may not be fully explanatory. However,

most of the errors you may run into should be related to file formats, and located in

“ ...Load” routines. In this case, compare your data formats with the definitions

given in section 6, and use the gtst and mtst programs to check the consistency of

source graphs and meshes.

7.2 Using compressed files

Starting from version 5.0.6, Scotch allows users to provide and retrieve data in

compressed form. Since this feature requires that the compression and decompres-

sion tasks run in the same time as data is read or written, it can only be done

on systems which support multi-threading (Posix threads) or multi-processing (by

means of fork system calls).

To determine if a stream has to be handled in compressed form, Scotch checks

its extension. If it is “.gz” (gzip format), “.bz2” (bzip2 format) or “.lzma” (lzma

format), the stream is assumed to be compressed according to the corresponding

format. A filter task will then be used to process it accordingly if the format is

implemented in Scotch and enabled on your system.

31

Program

File

Source
graph file

.grf

mtst

.tgt

Target file

gtst atst

.msh

Source
mesh file

mord

External
graph file

gcv

External
mesh file

mmk_* gmk_*

mcv

.xyz

Geometry
file

gord

gmk_msh

file

.ord

Ordering
file

Mapping

.map

gmtst

file
Graphics

gout

amk_grf

gotst

acpl

amk_*

gmap

Data flow

Figure 14: General architecture of the Scotch project. All of the features offered

by the stand-alone programs are also available in the libScotch library.

32

To date, data can be read and written in bzip2 and gzip formats, and can

also be read in the lzma format. Since the compression ratio of lzma on Scotch

graphs is 30% better than the one of gzip and bzip2 (which are almost equivalent

in this case), the lzma format is a very good choice for handling very large graphs.

To see how to enable compressed data handling in Scotch, please refer to Section 9.

When the compressed format allows it, several files can be provided on

the same stream, and be uncompressed on the fly. For instance, the

command “cat brol.grf.gz brol.xyz.gz | gout -.gz -.gz -Mn - brol.iv”

concatenates the topology and geometry data of some graph brol and feed them

as a single compressed stream to the standard input of program gout, hence the

”-.gz” to indicate a compressed standard stream.

7.3 Description

7.3.1 acpl

Synopsis

acpl [input target file [output target file]] options

Description

The program acpl is the decomposition-defined architecture file compiler. It

processes architecture files of type “deco 0” built by hand or by the amk *

programs, to create a “deco 1” compiled architecture file of about four times

the size of the original one; see section 6.4.1, page 25, for a detailed description

of decomposition-defined target architecture file formats.

The mapper can read both original and compiled architecture file formats.

However, compiled architecture files are read much more efficiently, as they are

directly loaded into memory without further processing. Since the compilation

time of a target architecture graph evolves as the square of its number of

vertices, precompiling with acpl can save some time when many mappings

are to be performed onto the same large target architecture.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

7.3.2 amk *

Synopsis

amk ccc dim [output target file] options

amk fft2 dim [output target file] options

amk hy dim [output target file] options

amk m2 dimX [dimY [output target file]] options

amk p2 weight0 [weight1 [output target file]] options

33

Description

The amk * programs make target graphs. Each of them is devoted to a

specific topology, for which it builds target graphs of any dimension.

These programs are an alternate way between algorithmically-coded built-in

target architectures and decompositions computed by mapping with amk grf.

Like built-in target architectures, their decompositions are algorithmically

computed, and like amk grf, their output is a decomposition-defined target

architecture file. These programs allow the definition and testing of new

algorithmically-coded target architectures without coding them in the core of

the mapper.

Program amk ccc outputs the target architecture file of a Cube-Connected-

Cycles graph of dimension dim. Vertex (l,m) of CCC(dim), with

0 ≤ l < dim and 0 ≤ m < 2dim, is linked to vertices ((l − 1) mod dim,m),

((l+ 1) mod dim,m), and (l,m⊕ 2l), and is labeled l× 2dim +m. ⊕ denotes

the bitwise exclusive-or binary operator, and a mod b the integer remainder

of the euclidian division of a by b.

Program amk fft2 outputs the target architecture file of a binary Fast-

Fourier-Transform graph of dimension dim. Vertex (l,m) of FFT(dim),

with 0 ≤ l ≤ dim and 0 ≤ m < 2dim, is linked to vertices (l − 1,m),

(l− 1,m mod 2l−1), (l+1,m), and (l+1,m⊕ 2l), if they exist, and is labeled

l× 2dim +m.

Program amk hy outputs the target architecture file of a hypercube graph

of dimension dim. Vertices are labeled according to the decimal value of

their binary representation. The decomposition-defined target architectures

computed by amk hy do not exactly give the same results as the built-in

hypercube targets because distances are not computed in the same manner,

although the two recursive bipartitionings are identical. To achieve best

performance and save space, use the built-in architecture.

Program amk p2 outputs the target architecture file of a weighted path graph

with two vertices, the weights of which are given as parameters.

This simple target topology is used to bipartition a source graph into two

weighted parts with as few cut edges as possible. In particular, it is used

to compute independent partitions of the processors of a multi-user parallel

machine. As a matter of fact, if the yet unallocated part of the machine is

represented by a source graph with n vertices, and n′ processors are requested

by a user in order to run a job (with n′ ≤ n), mapping the source graph onto

the weighted path graph with two vertices of weights n′ and n − n′ leads to

a partition of the machine in which the allocated n′ processors should be as

densely connected as possible (see Figure 15).

Options

-h Display the program synopsis.

-mmethod

Select the bipartitioning method (for amk m2 only).

n Nested dissection.

34

a. Construction of a partition with 13

vertices (in black) on a 8× 8 bidimen-

sional mesh architecture.

b. Construction of a partition with

17 vertices (in black) on the remaining

architecture.

Figure 15: Construction of partitions on a bidimensional 8 × 8 mesh architecture

by weighted bipartitioning.

o Dimension-per-dimension one-way dissection. This is less efficient

than nested dissection, and this feature exists only for benchmarking

purposes.

-V Print the program version and copyright.

7.3.3 amk grf

Synopsis

amk grf [input graph file [output target file]] options

Description

The program amk grf turns a source graph file into a decomposition-defined

target architecture file.

The -2 option creates a “deco 2” decomposition rather than a “deco 0”

one. See Section 6.4.1, page 25 for more information on the different types of

decomposition-defined target architectures.

The -l option restricts the target architecture to the vertices indicated in the

given vertex list file. It is therefore possible to build a target architecture

made of several disconnected parts of a bigger architecture. Note that this is

not equivalent to turning a disconnected source graph into a target architec-

ture, since doing so would lead to an architecture made of several independent

pieces at infinite distance one from another. Considering the selected vertices

within their original architecture makes it possible to compute the distance

between vertices belonging to distinct connected components, and therefore

to evaluate the cost of the mapping of two neighbor processes onto disjoint

areas of the architecture.

The restriction feature is very useful in the context of multi-user parallel ma-

chines. On these machines, when users request processors in order to run their

jobs, the partitions allocated by the operating system may not be regular nor

connected, because of existing partitions already attributed to other people.

By feeding amk grf with the source graph representing the whole parallel ma-

chine, and the vertex list containing the labels of the processors allocated by

35

the operating system, it is possible to build a target architecture correspond-

ing to this partition, and therefore to map processes on it, automatically,

regardless of the partition shape.

The -b option selects the recursive bipartitioning strategy used to build the

“deco 0” decomposition of the source graph. For regular, unweighted, topolo-

gies, the ’-b(g|h)fx’ recursive bipartitioning strategy should work best. For

irregular or weighted graphs, use the default strategy, which is more flexible.

See also the manual page of function SCOTCH archBuild0, page 79, for further

information.

Options

-bstrategy

Use recursive bipartitioning strategy strategy to build the decomposi-

tion of the architecture graph. The format of bipartitioning strategies is

defined within section 8.3.2, at page 64.

-h Display the program synopsis.

-linput vertex file

Load vertex list from input vertex file. As for all other file names, “-”

may be used to indicate standard input.

-V Print the program version and copyright.

7.3.4 atst

Synopsis

atst [input target file [output data file]] options

Description

The program atst is the architecture tester. It gives some statistics on

decomposition-defined target architectures, and in particular the minimum,

maximum, and average communication costs (that is, weighted distance) be-

tween all pairs of processors.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

7.3.5 gcv

Synopsis

gcv [input graph file [output graph file [output geometry file]]] options

Description

The program gcv is the source graph converter. It takes on input a graph

file of the format specified with the -i option, and outputs its equivalent

in the format specified with the -o option, along with its associated geom-

etry file whenever geometry data is available. At the time being, it accepts

four input formats: the Matrix Market format [5], the Harwell-Boeing col-

lection format [10], the Chaco/MeTiS graph format [25], and the Scotch

36

format. Three output format are available: the Matrix Market format, the

Chaco/MeTiS graph format and the Scotch source graph and geometry

data format.

Options

-h Display the program synopsis.

-iformat

Specify the type of input graph. The available input formats are listed

below.

b[number]

Harwell-Boeing graph collection format. Only symmetric assembled

matrices are currently supported. Since files in this format can con-

tain several graphs one after another, the optional integer number,

starting from 0, indicates which graph of the file is considered for

conversion.

c Chaco v1.0/MeTiS format.

m The Matrix Market format.

s Scotch source graph format.

-oformat

Specify the output graph format. The available output formats are listed

below.

c Chaco v1.0/MeTiS format.

m The Matrix Market format.

s Scotch source graph format.

-V Print the program version and copyright.

Default option set is “-Ib0 -Os”.

7.3.6 gmap / gpart

Synopsis

gmap [input graph file [input target file [output mapping file [output log file]]]]

options

gpart number of parts [input graph file [output mapping file [output log file]]]

options

Description

The program gmap is the graph mapper. It uses a partitioning strategy to

map a source graph onto a target graph, so that the weight of source graph

vertices allocated to target vertices is balanced, and the communication cost

function fC is minimized.

The program gpart is the graph partitioner. It uses a partitioning strategy

to split a source graph into the prescribed number of parts, using vertex or

edge separators, depending whether the -o option is set or not.

The implemented mapping methods mainly derive from graph theory.

In particular, graph geometry is never used, even if it is available; only

topological properties are taken into account. Mapping methods are used to

37

define mapping strategies by means of selection, combination, grouping, and

condition operators.

Mapping methods implemented in version 6.0 comprise direct k-way methods,

including a k-way multilevel framework and k-way local refinement methods,

as well as the Dual Recursive Bipartitioning algorithm, which uses graph

bipartitioning methods. Available bipartitioning methods include a multilevel

framework that uses other bipartitioning methods to compute the initial and

refined bipartitions: an improved implementation of the Fiduccia–Mattheyses

heuristic designed to handle weighted graphs, a diffusion-based algorithm, a

greedy method derived from the Gibbs, Poole, and Stockmeyer algorithm, a

greedy graph growing heuristic, a greedy “exactifying” refinement algorithm

designed to balance vertex loads as much as possible, etc.

gpart is a simplified interface to gmap, which performs graph partitioning

instead of static mapping. Consequently, the desired number of parts has to

be provided, in lieu of the target architecture.

The -b and -c options allow the user to set preferences on the behavior of the

mapping strategy which is used by default. The -m option allows the user to

define a custom mapping strategy.

Both programs can be used to perform clustering, by means of the -q option.

gpart will perform topology-independent clustering, while gmapmay compute

locality-preserving clusters when mapping onto variable-sized, non-complete,

architectures (see Section 6.4.3).

If mapping statistics are wanted rather than the mapping output itself, map-

ping output can be set to /dev/null, with option -vmt to get mapping statis-

tics and timings.

Options

Since the program is devoted to experimental studies, it has many optional

parameters, used to test various execution modes. Values set by default will

give best results in most cases.

-brat

Set the maximum load imbalance ratio to rat, which should be a value

comprised between 0 and 1. This option can be used in conjunction with

option -c, but is incompatible with option -m.

-cflags

Tune the default mapping strategy according to the given preference

flags. Some of these flags are antagonistic, while others can be combined.

See Section 8.3.1 for more information. The currently available flags are

the following.

b Enforce load balance as much as possible.

q Privilege quality over speed.

r Only use recursive bipartitioning methods.

s Privilege speed over quality.

t Use only safe methods in the strategy.

This option can be used in conjunction with option -b, but is incompat-

ible with option -m. The resulting strategy string can be displayed by

means of the -vs option.

38

-h Display the program synopsis.

-mstrat

Apply mapping strategy strat. In the case of static mapping or of edge-

based graph partitioning, the format of mapping strategies should com-

ply with the format defined in Section 8.3.2. If the -o option is used

(see below), strategies must be vertex partitioning strategies, which are

described in Section 8.3.4. This option is incompatible with options -b

and -c.

-o Compute vertex-based partitions rather than static mappings or edge-

based partitions. This option is only valid for gpart, or when gmap is

called with a target architecture which is an unweighted complete graph.

-q (for gpart)

-qpwght

(for gmap) Perform clustering instead of partitioning or mapping. Clus-

tering is achieved by means of a specific strategy string that performs

recursive bipartitioning until the size of the parts is smaller than some

threshold value. For gpart, this value replaces the desired number of

parts as the first argument passed to the program. For gmap, the thresh-

old must be given just after the -q option.

-sobj

Mask source edge and vertex weights. This option allows the user to “un-

weight” weighted source graphs by removing weights from edges and ver-

tices at loading time. obj may contain several of the following switches.

e Remove edge weights, if any.

v Remove vertex weights, if any.

-V Print the program version and copyright.

-vverb

Set verbose mode to verb, which may contain several of the following

switches. For a detailed description of the data displayed, please refer to

the manual page of gmtst below.

m Mapping or partitioning information, depending whether the -o op-

tion has been set or not.

s Strategy information. This parameter displays the mapping strategy

which will be used by gmap or gpart.

t Timing information.

-V Print the program version and copyright.

7.3.7 gmk *

Synopsis

gmk hy dim [output graph file] options

gmk m2 dimX [dimY [output graph file]] options

gmk m3 dimX [dimY [dimZ [output graph file]]] options

gmk ub2 dim [output graph file] options

39

Description

The gmk * programs make source graphs. Each of them is devoted to a

specific topology, for which it builds target graphs of any dimension.

The gmk * programs are mainly used in conjunction with amk grf. Most

gmk * programs build source graphs describing parallel machines, which

are used by amk grf to generate corresponding target sub-architectures, by

means of its -l option. Such a procedure is shown in section 10, which

builds a target architecture from five vertices of a binary de Bruijn graph of

dimension 3.

Program gmk hy outputs the source file of a hypercube graph of dimension

dim. Vertices are labeled according to the decimal value of their binary

representation.

Program gmk m2 outputs the source file of a bidimensional mesh with dimX

columns and dimY rows. If the -t option is set, tori are built instead of

meshes. The vertex of coordinates (posX, posY) is labeled posY×dimX+posX.

Program gmk m3 outputs the source file of a tridimensional mesh with dimZ

layers of dimY rows by dimX columns. If the -t option is set, tori are

built instead of meshes. The vertex of coordinates (posX, posY) is labeled

(posZ× dimY+ posY)× dimX+ posX.

Program gmk ub2 outputs the source file of a binary unoriented de Bruijn

graph of dimension dim. Vertices are labeled according to the decimal value

of their binary representation.

Options

-goutput geometry file

Output graph geometry to file output geometry file (for gmk m2 only). As

for all other file names, “-” may be used to indicate standard output.

-h Display the program synopsis.

-t Build a torus rather than a mesh (for gmk m2 only).

-V Print the program version and copyright.

7.3.8 gmk msh

Synopsis

gmk msh [input mesh file [output graph file]] options

Description

The gmk msh program builds a graph file from a mesh file. All of the nodes

of the mesh are turned into graph vertices, and edges are created between

all pairs of vertices that share an element (that is, elements are turned into

cliques).

Options

40

-h Display the program synopsis.

-V Print the program version and copyright.

7.3.9 gmtst

Synopsis

gmtst [input graph file [input target file [input mapping file [output data

file]]]] options

Description

The program gmtst is the graph mapping tester. It outputs some statistics

on the given mapping, regarding load balance and inter-processor communi-

cation.

The two first statistics lines deal with process mapping statistics, while the

following ones deal with communication statistics. The first mapping line

gives the number of processors used by the mapping, followed by the number

of processors available in the architecture, and the ratio of these two numbers,

written between parentheses. The second mapping line gives the minimum,

maximum, and average loads of the processors, followed by the variance of the

load distribution, and an imbalance ratio equal to the maximum load over the

average load. The first communication line gives the minimum and maximum

number of neighbors over all blocks of the mapping, followed by the sum of the

number of neighbors over all blocks of the mapping, that is the total number

of messages that have to be sent to exchange data between all neighboring

blocks. The second communication line gives the average dilation of the edges,

followed by the sum of all edge dilations. The third communication line gives

the average expansion of the edges, followed by the value of function fC . The

fourth communication line gives the average cut of the edges, followed by the

number of cut edges. The fifth communication line shows the ratio of the aver-

age expansion over the average dilation; it is smaller than 1 when the mapper

succeeds in putting heavily intercommunicating processes closer to each other

than it does for lightly communicating processes; it is equal to 1 if all edges

have the same weight. The remaining lines form a distance histogram, which

shows the amount of communication load that involves processors located at

increasing distances.

gmtst allows the testing of cross-architecture mappings. By inputing it a

target architecture different from the one that has been used to compute the

mapping, but with compatible vertex labels, one can see what the mapping

would yield on this new target architecture.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

7.3.10 gord

Synopsis

gord [input graph file [output ordering file [output log file]]] options

41

Description

The gord program is the block sparse matrix graph orderer. It uses an or-

dering strategy to compute block orderings of sparse matrices represented as

source graphs, whose vertex weights indicate the number of DOFs per node (if

this number is non homogeneous) and whose edges are unweighted, in order

to minimize fill-in and operation count.

Since its main purpose is to provide orderings that exhibit high concurrency

for parallel block factorization, it comprises a nested dissection method [18],

but classical [40] and state-of-the-art [1, 48] minimum degree algorithms are

implemented as well. Ordering methods are used to define ordering strategies

by means of selection, grouping, and condition operators.

For the nested dissection method, vertex separation methods comprise algo-

rithms that directly compute vertex separators, as well as methods that build

vertex separators from edge separators, i.e. graph bipartitions (all of the graph

bipartitioning methods available in the static mapper gmap can be used in this

latter case).

The -o option allows the user to define the ordering strategy. The -c option

allows the user to set preferences on the behavior of the ordering strategy

which is used by default.

When the graphs to order are very large, the same results can be obtained by

using the dgord parallel program of the PT-Scotch distribution, which can

read centralized graph files too.

Options

Since the program is devoted to experimental studies, it has many optional

parameters, used to test various execution modes. Values set by default will

give best results in most cases.

-cflags

Tune the default ordering strategy according to the given preference flags.

Some of these flags are antagonistic, while others can be combined. See

Section 8.3.1 for more information. The resulting strategy string can be

displayed by means of the -vs option.

b Enforce load balance as much as possible.

q Privilege quality over speed. This is the default behavior.

s Privilege speed over quality.

t Use only safe methods in the strategy.

-h Display the program synopsis.

-moutput mapping file

Write to output mapping file the mapping of graph vertices to column

blocks. All of the separators and leaves produced by the nested dissection

method are considered as distinct column blocks, which may be in turn

split by the ordering methods that are applied to them. Distinct integer

numbers are associated with each of the column blocks, such that the

number of a block is always greater than the ones of its predecessors in

the elimination process, that is, its descendants in the elimination tree.

The structure of mapping files is given in section 6.5.

42

When the geometry of the graph is available, this mapping file may be

processed by program gout to display the vertex separators and super-

variable amalgamations that have been computed.

-ostrat

Apply ordering strategy strat. The format of ordering strategies is defined

in section 8.3.5.

-toutput tree file

Write to output tree file the structure of the separator tree. The data

that is written resembles much the one of a mapping file: after a first

line that contains the number of lines to follow, there are that many lines

of mapping pairs, which associate an integer number with every graph

vertex index. This integer number is the number of the column block

which is the parent of the column block to which the vertex belongs,

or −1 if the column block to which the vertex belongs is a root of the

separator tree (there can be several roots, if the graph is disconnected).

Combined to the column block mapping data produced by option -m, the

tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

-vverb

Set verbose mode to verb, which may contain several of the following

switches.

s Strategy information. This parameter displays the ordering strategy

which will be used by gord.

t Timing information.

7.3.11 gotst

Synopsis

gotst [input graph file [input ordering file [output data file]]] options

Description

The program gotst is the ordering tester. It gives some statistics on orderings,

including the number of non-zeros and the operation count of the factored

matrix, as well as statistics regarding the elimination tree. Since it performs

the factorization of the reordered matrix, it can take a very long time and

consume a large amount of memory when applied to large graphs.

The first two statistics lines deal with the elimination tree. The first one

displays the number of leaves, while the second shows the minimum height of

the tree (that is, the length of the shortest path from any leaf to the –or a–

root node), its maximum height, its average height, and the variance of the

heights with respect to the average. The third line displays the number of non-

zero terms in the factored matrix, the amount of index data that is necessary

to maintain the block structure of the factored matrix, and the number of

operations required to factor the matrix by means of Cholesky factorization.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

43

7.3.12 gout

Synopsis

gout [input graph file [input geometry file [input mapping file [output

visualization file]]]] options

Description

The gout program is the graph, matrix, and mapping viewer program. It takes

on input a source graph, its geometry file, and optionally a mapping result file,

and produces a file suitable for display. At the time being, gout can gener-

ate plain and encapsulated PostScript files for the display of adjacency matrix

patterns and the display of planar graphs (although tridimensional objects can

be displayed by means of isometric projection, the display of tridimensional

mappings is not efficient), and Open Inventor files [41] for the interactive

visualization of tridimensional graphs.

In the case of mapping display, the number of mapping pairs contained in the

input mapping file may differ from the number of vertices of the input source

graph; only mapping pairs the source labels of which match labels of source

graph vertices will be taken into account for display. This feature allows the

user to show the result of the mapping of a subgraph drawn on the whole

graph, or else to outline the most important aspects of a mapping by restrict-

ing the display to a limited portion of the graph. For example, Figure 16.b

shows how the result of the mapping of a subgraph of the bidimensional mesh

M2(4, 4) onto the complete graph K(2) can be displayed on the whole M2(4, 4)

graph, and Figure 16.c shows how the display of the same mapping can be

restricted to a subgraph of the original graph.

Options

-gparameters

Geometry parameters.

n Do not read geometry data. This option can be used in conjunction

with option -om to avoid reading the geometry file when displaying

the pattern of the adjacency matrix associated with the source graph,

since geometry data are not needed in this case. If this option is set,

the geometry file is not read. However, if an output visualization file

name is given in the command line, dummy input geometry file and

input mapping file names must be specified so that the file argument

count is correct. In this case, use the “-” parameter to take standard

input as a dummy geometry input stream. In practice, the -om and

-gn options always imply the -mn option.

r For bidimensional geometry only, rotate geometry data by 90 de-

grees, counter-clockwise.

-h Display the program synopsis.

-mn Do not read mapping data, and display the graph without any mapping

information. If this option is set, the mapping file is not read. However, if

an output visualization file name is given in the command line, a dummy

input mapping file name must be specified so that the file argument count

is correct. In this case, use the “-” parameter to take standard input as

a dummy mapping input stream.

44

a. A subgraph of M2(4, 4) to

be mapped onto K(2).

b. Mapping result displayed

on the full M2(4, 4) graph.

c. Mapping result dis-

played on another subgraph

of M2(4, 4).

Figure 16: PostScript diplay of a single mapping file with different subgraphs of the

same source graph. Vertices covered with disks of the same color are mapped onto

the same processor.

-oformat[{parameters}]

Specify the type of output, with optional parameters within curly braces

and separated by commas. The output formats are listed below.

i Output the graph in SGI’s Open Inventor format, in ASCII mode,

suitable for display by the ivview program [41]. The optional pa-

rameters are given below.

c Color output, using 16 different colors. Opposite of g.

g Grey-level output, using 8 different levels. Opposite of c.

r Remove cut edges. Edges the ends of which are mapped onto

different processors are not displayed. Opposite of v.

v View cut edges. All graph edges are displayed. Opposite of r.

m Output the pattern of the adjacency matrix associated with the

source graph, in Adobe’s PostScript format. The optional parame-

ters are given below.

e Encapsulated PostScript output, suitable for LATEX use with

epsf. Opposite of f.

f Full-page PostScript output, suitable for direct printing. Oppo-

site of e.

p Output the graph in Adobe’s PostScript format. The optional pa-

rameters are given below.

45

a Avoid displaying the mapping disks. Opposite of d.

c Color PostScript output, using 16 different colors. Opposite of

g.

d Display the mapping disks. Opposite of a.

e Encapsulated PostScript output, suitable for LATEX use with

epsf. Opposite of f.

f Full-page PostScript output, suitable for direct printing. Oppo-

site of e.

g Grey-level PostScript output. Opposite of c.

l Large clipping. Mapping disks are included in the clipping area

computation. Opposite of s.

r Remove cut edges. Edges the ends of which are mapped onto

different processors are not displayed. Opposite of v.

s Small clipping. Mapping disks are excluded from the clipping

area computation. Opposite of l.

v View cut edges. All graph edges are displayed. Opposite of r.

x=val

Minimum X relative clipping position (in [0.0;1.0]).

X=val

Maximum X relative clipping position (in [0.0;1.0]).

y=val

Minimum Y relative clipping position (in [0.0;1.0]).

Y=val

Maximum Y relative clipping position (in [0.0;1.0]).

-V Print the program version and copyright.

Default option set is “-Oi{v}”.

7.3.13 gtst

Synopsis

gtst [input graph file [output data file]] options

Description

The program gtst is the source graph tester. It checks the consistency of

the input source graph structure (matching of arcs, number of vertices and

edges, etc.), and gives some statistics regarding edge weights, vertex weights,

and vertex degrees.

When the graphs to test are very large, the same results can be obtained by

using the dgtst parallel program of the PT-Scotch distribution, which can

read centralized graph files too.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

46

7.3.14 mcv

Synopsis

mcv [input mesh file [output mesh file [output geometry file]]] options

Description

The program mcv is the source mesh converter. It takes on input a mesh file

of the format specified with the -i option, and outputs its equivalent in the

format specified with the -o option, along with its associated geometry file

whenever geometrical data is available. At the time being, it only accepts one

external input format: the Harwell-Boeing format [10], for square elemental

matrices only. The only output format to date is the Scotch source mesh

and geometry data format.

Options

-h Display the program synopsis.

-iformat

Specify the type of input mesh. The available input formats are listed

below.

b[number]

Harwell-Boeing mesh collection format. Only symmetric elemental

matrices are currently supported. Since files in this format can con-

tain several meshes one after another, the optional integer number,

starting from 0, indicates which mesh of the file is considered for

conversion.

s Scotch source mesh format.

-oformat

Specify the output graph format. The available output formats are listed

below.

s Scotch source graph format.

-V Print the program version and copyright.

Default option set is “-Ib0 -Os”.

7.3.15 mmk *

Synopsis

mmk m2 dimX [dimY [output mesh file]] options

mmk m3 dimX [dimY [dimZ [output mesh file]]] options

Description

The mmk * programs make source meshes.

Program mmk m2 outputs the source file of a bidimensional mesh with

dimX × dimY elements and (dimX + 1) × (dimY + 1) nodes. The element

47

of coordinates (posX, posY) is labeled posY× dimX+ posX.

Program mmk m3 outputs the source file of a tridimensional mesh with

dimX × dimY × dimZ elements and (dimX + 1)× (dimY + 1)× (dimZ + 1)

nodes.

Options

-goutput geometry file

Output mesh geometry to file output geometry file (for mmk m2 only). As

for all other file names, “-” may be used to indicate standard output.

-h Display the program synopsis.

-V Print the program version and copyright.

7.3.16 mord

Synopsis

mord [input mesh file [output ordering file [output log file]]] options

Description

The mord program is the block sparse matrix mesh orderer. It uses an ordering

strategy to compute block orderings of sparse matrices represented as source

meshes, whose node vertex weights indicate the number of DOFs per node (if

this number is non homogeneous), in order to minimize fill-in and operation

count.

Since its main purpose is to provide orderings that exhibit high concurrency

for parallel block factorization, it comprises a nested dissection method [18],

but classical [40] and state-of-the-art [1, 48] minimum degree algorithms are

implemented as well. Ordering methods are used to define ordering strategies

by means of selection, grouping, and condition operators.

The -o option allows the user to define the ordering strategy. The -c option

allows the user to set preferences on the behavior of the ordering strategy

which is used by default.

Options

Since the program is devoted to experimental studies, it has many optional

parameters, used to test various execution modes. Values set by default will

give best results in most cases.

-cflags

Tune the default ordering strategy according to the given preference flags.

Some of these flags are antagonistic, while others can be combined. See

Section 8.3.1 for more information. The resulting strategy string can be

displayed by means of the -vs option.

b Enforce load balance as much as possible.

q Privilege quality over speed. This is the default behavior.

s Privilege speed over quality.

t Use only safe methods in the strategy.

48

-h Display the program synopsis.

-moutput mapping file

Write to output mapping file the mapping of mesh node vertices to col-

umn blocks. All of the separators and leaves produced by the nested

dissection method are considered as distinct column blocks, which may

be in turn split by the ordering methods that are applied to them. Dis-

tinct integer numbers are associated with each of the column blocks, such

that the number of a block is always greater than the ones of its prede-

cessors in the elimination process, that is, its leaves in the elimination

tree. The structure of mapping files is given in section 6.5.

When the coordinates of the node vertices are available, the mapping

file may be processed by program gout, along with the graph structure

that can be created from the source mesh file by means of the gmk

msh program, to display the node vertex separators and supervariable

amalgamations that have been computed.

-ostrat

Apply ordering strategy strat. The format of ordering strategies is defined

in section 8.3.5.

-toutput tree file

Write to output tree file the structure of the separator tree. The data

that is written resembles much the one of a mapping file: after a first

line that contains the number of lines to follow, there are that many

lines of mapping pairs, which associate an integer number with every

node vertex index. This integer number is the number of the column

block which is the parent of the column block to which the node vertex

belongs, or −1 if the column block to which the node vertex belongs is

a root of the separator tree (there can be several roots, if the mesh is

disconnected).

Combined to the column block mapping data produced by option -m, the

tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

-vverb

Set verbose mode to verb, which may contain several of the following

switches.

s Strategy information. This parameter displays the default ordering

strategy used by mord.

t Timing information.

7.3.17 mtst

Synopsis

mtst [input mesh file [output data file]] options

Description

The program mtst is the source mesh tester. It checks the consistency of the

input source mesh structure (matching of arcs that link elements to nodes

and nodes to elements, number of elements, nodes, and edges, etc.), and gives

some statistics regarding element and node weights, edge weights, and element

and node degrees.

49

Options

-h Display the program synopsis.

-V Print the program version and copyright.

8 Library

All of the features provided by the programs of the Scotch distribution may be

directly accessed by calling the appropriate functions of the libScotch library,

archived in files libscotch.a and libscotcherr.a. These routines belong to six

distinct classes:

• source graph and source mesh handling routines, which serve to declare, build,

load, save, and check the consistency of source graphs and meshes, along with

their geometry data;

• target architecture handling routines, which allow the user to declare, build,

load, and save target architectures;

• strategy handling routines, which allow the user to declare and build mapping

and ordering strategies;

• mapping routines, which serve to declare, compute, and save mappings of

source graphs to target architectures by means of mapping strategies;

• a partitioning-with-overlap routine, which computes a vertex separator that

splits a graph into a prescribed number of parts, such that the vertex load of

each part and of its neighboring separator vertices are balanced;

• ordering routines, which allow the user to declare, compute, and save orderings

of source graphs and meshes;

• error handling routines, which allow the user either to provide his own error

servicing routines, or to use the default routines provided in the libScotch

distribution.

A MeTiS compatibility library, called libscotchmetis.a, is also available. It

allows users who were previously using MeTiS in their software to take advantage of

the efficieny of Scotch without having to modify their code. The services provided

by this library are described in Section 8.20.

8.1 Calling the routines of libScotch

8.1.1 Calling from C

All of the C routines of the libScotch library are prefixed with “SCOTCH ”. The

remainder of the function names is made of the name of the type of object to which

the functions apply (e.g. “graph”, “mesh”, “arch”, “map”, etc.), followed by the

type of action performed on this object: “Init” for the initialization of the object,

“Exit” for the freeing of its internal structures, “Load” for loading the object from

a stream, and so on.

Typically, functions that return an error code return zero if the function suc-

ceeds, and a non-zero value in case of error.

For instance, the SCOTCH graphInit and SCOTCH graphLoad routines, described

in sections 8.6.14 and 8.6.15, respectively, can be called from C by using the following

code.

50

#include <stdio.h>

#include "scotch.h"

...

SCOTCH_Graph grafdat;

FILE * fileptr;

if (SCOTCH_graphInit (&grafdat) != 0) {

... /* Error handling */

}

if ((fileptr = fopen ("brol.grf", "r")) == NULL) {

... /* Error handling */

}

if (SCOTCH_graphLoad (&grafdat, fileptr, -1, 0) != 0) {

... /* Error handling */

}

...

Since “scotch.h” uses several system objects which are declared in “stdio.h”,

this latter file must be included beforehand in your application code.

Although the “scotch.h” and “ptscotch.h” files may look very similar on your

system, never mistake them, and always use the “scotch.h” file as the include file

for compiling a program which uses only the sequential routines of the libScotch

library.

8.1.2 Calling from Fortran

The routines of the libScotch library can also be called from Fortran. For any C

function named SCOTCH typeAction() which is documented in this manual, there

exists a SCOTCHFTYPEACTION () Fortran counterpart, in which the separating

underscore character is replaced by an “F”. In most cases, the Fortran routines

have exactly the same parameters as the C functions, save for an added trailing

INTEGER argument to store the return value yielded by the function when the

return type of the C function is not void.

Since all the data structures used in libScotch are opaque, equivalent dec-

larations for these structures must be provided in Fortran. These structures must

therefore be defined as arrays of DOUBLEPRECISIONs, of sizes given in file scotchf.h,

which must be included whenever necessary.

For routines which read or write data using a FILE * stream in C, the Fortran

counterpart uses an INTEGER parameter which is the numer of the Unix file descrip-

tor corresponding to the logical unit from which to read or write. In most Unix

implementations of Fortran, standard descriptors 0 for standard input (logical unit

5), 1 for standard output (logical unit 6) and 2 for standard error are opened by

default. However, for files which are opened using OPEN statements, an additional

function must be used to obtain the number of the Unix file descriptor from the

number of the logical unit. This function is called PXFFILENO in the normalized

POSIX Fortran API, and files which use it should include the USE IFPOSIX direc-

tive whenever necessary. An alternate, non normalized, function also exists in most

Unix implementations of Fortran, and is called FNUM.

For instance, the SCOTCH graphInit and SCOTCH graphLoad routines, described

in sections 8.6.14 and 8.6.15, respectively, can be called from Fortran by using the

following code.

51

INCLUDE "scotchf.h"

DOUBLEPRECISION GRAFDAT(SCOTCH_GRAPHDIM)

INTEGER RETVAL

...

CALL SCOTCHFGRAPHINIT (GRAFDAT (1), RETVAL)

IF (RETVAL .NE. 0) THEN

...

OPEN (10, FILE=’brol.grf’)

CALL SCOTCHFGRAPHLOAD (GRAFDAT (1), FNUM (10), 1, 0, RETVAL)

CLOSE (10)

IF (RETVAL .NE. 0) THEN

...

Although the “scotchf.h” and “ptscotchf.h” files may look very similar on

your system, never mistake them, and always use the “scotchf.h” file as the in-

clude file for compiling a program which uses only the sequential routines of the

libScotch library.

8.1.3 Compiling and linking

The compilation of C or Fortran routines which use routines of the libScotch

library requires that either “scotch.h” or “scotchf.h” be included, respectively.

The routines of the libScotch library are grouped in a library file called

libscotch.a. Default error routines that print an error message and exit are pro-

vided in library file libscotcherr.a.

Therefore, the linking of applications that make use of the libScotch li-

brary with standard error handling is carried out by using the following options:

“-lscotch -lscotcherr -lm”. If you want to handle errors by yourself, you

should not link with library file libscotcherr.a, but rather provide a SCOTCH

errorPrint() routine. Please refer to section 8.18 for more information.

Programs that call both sequential and parallel routines of Scotch should use

only the parallel versions of the include file and of the library. Please refer to the

equivalent section of the PT-Scotch user’s manual for more information.

8.1.4 Dynamic library issues

The advantage of dynamic libraries is that application code may not need to be

recompiled when the library is updated. Whether this is true or not depends on

the extent of the changes. One of the cases when recompilation is mandatory is

when API data structures change: code that statically reserves space for them may

be subject to boundary overflow errors when the size of library data structures

increase, so that library routines operate on more space than what was statically

allocated by the compiler based on the header files of the old version of the library.

In order to alleviate this problem, the libScotch proposes a set of routines to

dynamically allocate storage space for the opaque API Scotch structures. Because

these routines return pointers, these SCOTCH *Alloc routines, as well as the SCOTCH

free routine, are only available in the C interface.

8.1.5 Machine word size issues

Graph indices are represented in Scotch as integer values of type SCOTCH Num. By

default, this type equates to the int C type, that is, an integer type of size equal

to the one of the machine word. However, it can represent any other integer type.

52

Indeed, the size of the SCOTCH Num integer type can be coerced to 32 or 64 bits

by using the “-DINTSIZE32” or “-DINTSIZE64” compilation flags, respectively, or

else by using the “-DINT=” definition (see Section 9.3 for more information on the

setting of these compilation flags).

Consequently, the C interface of Scotch uses two types of integers. Graph-

related quantities are passed as SCOTCH Nums, while system-related values such as

file handles, as well as return values of libScotch routines, are always passed as

ints.

Because of the variability of library integer type sizes, one must be careful

when using the Fortran interface of Scotch, as it does not provide any proto-

typing information, and consequently cannot produce any warning at link time.

In the manual pages of the libScotch routines, Fortran prototypes are written

using three types of INTEGERs. As for the C interface, the regular INTEGER type

is used for system-based values, such as file handles and MPI communicators, as

well as for return values of the libScotch routines, while the INTEGER*num type

should be used for all graph-related values, in accordance to the size of the SCOTCH

Num type, as set by the “-DINTSIZEx” compilation flags. Also, the INTEGER*idx

type represents an integer type of a size equivalent to the one of a SCOTCH Idx, as

set by the “-DIDXSIZEx” compilation flags. Values of this type are used in the For-

tran interface to represent arbitrary array indices which can span across the whole

address space, and consequently deserve special treatment.

In practice, when Scotch is compiled on a 32-bit architecture so as

to use 64-bit SCOTCH Nums, graph indices should be declared as INTEGER*8,

while error return values should still be declared as plain INTEGER (that is,

INTEGER*4) values. On a 32 64-bit architecture, irrespective of whether SCOTCH

Nums are defined as INTEGER*4 or INTEGER*8 quantities, the SCOTCH Idx type

should always be defined as a 64-bit quantity, that is, an INTEGER*8, because

it stores differences between memory addresses, which are represented by 64-bit

values. The above is no longer a problem if Scotch is compiled such that ints

equate 64-bit integers. In this case, there is no need to use any type coercing

definition.

The MeTiS v3 compatibility library provided by Scotch can also run on a

64-bit architecture. Yet, if you are willing to use it this way, you will have to

replace all int’s that are passed to the MeTiS routines by 64-bit integer SCOTCH

Num values (even the option configuration values). However, in this case, you will no

longer be able to link against the service routines of the genuine MeTiS v3 library,

as they are only available as a 32-bit implementation.

8.2 Data formats

All of the data used in the libScotch interface are of integer type SCOTCH Num. To

hide the internals of Scotch to callers, all of the data structures are opaque, that

is, declared within “scotch.h” as dummy arrays of double precision values, for the

sake of data alignment. Accessor routines, the names of which end in “Size” and

“Data”, allow callers to retrieve information from opaque structures.

In all of the following, whenever arrays are defined, passed, and accessed, it

is assumed that the first element of these arrays is always labeled as baseval,

whether baseval is set to 0 (for C-style arrays) or 1 (for Fortran-style arrays).

Scotch internally manages with base values and array pointers so as to process

53

these arrays accordingly.

8.2.1 Architecture format

Target architecture structures are completely opaque. The only way to describe an

architecture is by means of a graph passed to the SCOTCH archBuild or SCOTCH

archBuild2 routines.

8.2.2 Graph format

Source graphs are described by means of adjacency lists. The description of a graph

requires several SCOTCH Num scalars and arrays, as shown in Figures 17 and 18. They

have the following meaning:

baseval

Base value for all array indexings.

vertnbr

Number of vertices in graph.

edgenbr

Number of arcs in graph. Since edges are represented by both of their ends,

the number of edge data in the graph is twice the number of graph edges.

verttab

Array of start indices in edgetab of vertex adjacency sub-arrays.

vendtab

Array of after-last indices in edgetab of vertex adjacency sub-arrays. For any

vertex i, with baseval ≤ i < (baseval+vertnbr), vendtab[i]−verttab[i]

is the degree of vertex i, and the indices of the neighbors of i are stored in

edgetab from edgetab[verttab[i]] to edgetab[vendtab[i]− 1], inclusive.

When all vertex adjacency lists are stored in order in edgetab, it is possible to

save memory by not allocating the physical memory for vendtab. In this case,

illustrated in Figure 17, verttab is of size vertnbr+1 and vendtab points to

verttab+ 1. This case is referred to as the “compact edge array” case, such

that verttab is sorted in ascending order, verttab[baseval] = baseval and

verttab[baseval+ vertnbr] = (baseval+ edgenbr).

velotab

Optional array, of size vertnbr, holding the integer load associated with every

vertex.

edgetab

Array, of a size equal at least to (maxi(vendtab[i])− baseval), holding the

adjacency array of every vertex.

edlotab

Optional array, of a size equal at least to (maxi(vendtab[i])− baseval), hold-

ing the integer load associated with every arc. Matching arcs should always

have identical loads.

Dynamic graphs can be handled elegantly by using the vendtab array. In order

to dynamically manage graphs, one just has to allocate verttab, vendtab and

edgetab arrays that are large enough to contain all of the expected new vertex and

54

baseval

vertnbr

edgenbr

vlbltab

verttab

edgetab

edlotab

velotab

vendtab

24

4 101316192225

4

4

4

4
4

1

2

2
2 1

1
3

3
3

1

1

1

2

4

1 2

3
4

56

1

7

1

2 6 3 4 1 7 6 5 1 2 4 2 7 3 7 2 6 2 1 5 5 2 43

1 1 1 12 2 2 3 3 1 2 2 12 2 1 3 3 3 1 3 1 2 1

4 1 4 4 4 4 4

7

Figure 17: Sample graph and its description by libScotch arrays using a compact

edge array. Numbers within vertices are vertex indices, bold numbers close to

vertices are vertex loads, and numbers close to edges are edge loads. Since the edge

array is compact, verttab is of size vertnbr+1 and vendtab points to verttab+1.

edgetab

verttab

vendtab

edlotab

17 2 1310 232720

820 1613 263023

3 4 1 7 6 5 2 7 3 1 2 4 2 63 7 2 6 5 2 4 2 1 5

12 2 2 3 3 12 2 1 2 2 1 1 1 1 3 3 1 2 1 3 1 3

Figure 18: Adjacency structure of the sample graph of Figure 17 with disjoint edge

and edge load arrays. Both verttab and vendtab are of size vertnbr. This allows

for the handling of dynamic graphs, the structure of which can evolve with time.

55

edge data. Original vertices are labeled starting from baseval, leaving free space at

the end of the arrays. To remove some vertex i, one just has to replace verttab[i]

and vendtab[i] with the values of verttab[vertnbr-1] and vendtab[vertnbr-1],

respectively, and browse the adjacencies of all neighbors of former vertex vertnbr-1

such that all (vertnbr-1) indices are turned into is. Then, vertnbr must be

decremented, and SCOTCH graphBuild() must be called to account for the change

of topology. If a graph building routine such as SCOTCH graphLoad() or SCOTCH

graphBuild() had already been called on the SCOTCH Graph structure, SCOTCH

graphFree() has to be called first in order to free the internal structures associated

with the older version of the graph, else these data would be lost, which would

result in memory leakage.

To add a new vertex, one has to fill verttab[vertnbr-1] and vendtab[vertnbr

-1] with the starting and end indices of the adjacency sub-array of the new vertex.

Then, the adjacencies of its neighbor vertices must also be updated to account for it.

If free space had been reserved at the end of each of the neighbors, one just has to

increment the vendtab[i] values of every neighbor i, and add the index of the new

vertex at the end of the adjacency sub-array. If the sub-array cannot be extended,

then it has to be copied elsewhere in the edge array, and both verttab[i] and

vendtab[i] must be updated accordingly. With simple housekeeping of free areas

of the edge array, dynamic arrays can be updated with as little data movement as

possible.

8.2.3 Mesh format

Since meshes are basically bipartite graphs, source meshes are also described by

means of adjacency lists. The description of a mesh requires several SCOTCH Num

scalars and arrays, as shown in Figure 19. They have the following meaning:

velmbas

Base value for element indexings.

vnodbas

Base value for node indexings. The base value of the underlying graph,

baseval, is set as min(velmbas, vnodbas).

velmnbr

Number of element vertices in mesh.

vnodnbr

Number of node vertices in mesh. The overall number of vertices in the

underlying graph, vertnbr, is set as velmnbr+ vnodnbr.

edgenbr

Number of arcs in mesh. Since edges are represented by both of their ends,

the number of edge data in the mesh is twice the number of edges.

verttab

Array of start indices in edgetab of vertex (that is, both elements and nodes)

adjacency sub-arrays.

vendtab

Array of after-last indices in edgetab of vertex adjacency sub-arrays. For

any element or node vertex i, with baseval ≤ i < (baseval + vertnbr),

vendtab[i] − verttab[i] is the degree of vertex i, and the indices of the

56

edgenbr

vlbltab

verttab

velotab

vendtab

vnodnbr

velmbas

vnodbas

velmnbr

edgetab

24

11 10 11

5 9 2513141618202122231

1 4

2

5

1

6

3

5 7 6 5 4 6 78 9 2 2 1 31 1 3 3 3 2 2 1

4

8

3

10

11

7

8 9

Figure 19: Sample mesh and its description by libScotch arrays using a compact

edge array. Numbers within vertices are vertex indices. Since the edge array is

compact, verttab is of size vertnbr+ 1 and vendtab points to verttab+ 1.

neighbors of i are stored in edgetab from edgetab[verttab[i]] to edgetab

[vendtab[i]−1], inclusive.

When all vertex adjacency lists are stored in order in edgetab, it is possible to

save memory by not allocating the physical memory for vendtab. In this case,

illustrated in Figure 19, verttab is of size vertnbr+1 and vendtab points to

verttab+ 1. This case is referred to as the “compact edge array” case, such

that verttab is sorted in ascending order, verttab[baseval] = baseval and

verttab[baseval+ vertnbr] = (baseval+ edgenbr).

velotab

Array, of size vertnbr, holding the integer load associated with each vertex.

As for graphs, it is possible to handle elegantly dynamic meshes by means of the

verttab and vendtab arrays. There is, however, an additional constraint, which is

that mesh nodes and elements must be ordered consecutively. The solution to fulfill

this constraint in the context of mesh ordering is to keep a set of empty elements

(that is, elements which have no node adjacency attached to them) between the

element and node arrays. For instance, Figure 20 represents a 4-element mesh

with 6 nodes, and such that 4 element vertex slots have been reserved for new

elements and nodes. These slots are empty elements for which verttab[i] equals

vendtab[i], irrespective of these values, since they will not lead to any memory

access in edgetab.

Using this layout of vertices, new nodes and elements can be created by growing

the element and node sub-arrays into the empty element sub-array, by both of

its sides, without having to re-write the whole mesh structure, as illustrated in

Figure 21. Empty elements are transparent to the mesh ordering routines, which

base their work on node vertices only. Users who want to update the arrays of

a mesh that has already been declared using the SCOTCH meshBuild routine must

call SCOTCH meshExit prior to updating the mesh arrays, and then call SCOTCH

meshBuild again after the arrays have been updated, so that the SCOTCH Mesh

structure remains consistent with the new mesh data.

57

edgenbr

vlbltab

velotab

vnodnbr

velmbas

vnodbas

velmnbr

verttab

edgetab

vendtab

24

11

12 131619

1213 16192225

22

111112131112141313141214

1 2 5 8 9

2 5 8 9

1 2 3 5 2 3 4 5 2 3 6 5

1

2 3

4 5 6

0 0 0 0

0 0 0 0

1

6

4

12

11

13 14

Figure 20: Sample mesh and its description by libScotch arrays, with nodes

numbered first and elements numbered last. In order to allow for dynamic re-

meshing, empty elements (in grey) have been inserted between existing node and

element vertices.

edgenbr

vlbltab

velotab

vnodnbr

velmbas

vnodbas

velmnbr

verttab

edgetab

vendtab

12 131619

13 16192225

22

13 14 14 11

25

27

13 1413

36

27

31

31

35

12 11 1210

12

35

38

1112 10 10

2 5 8

5 8 9

7

1

2 3

4 5 6

7

6

1

9

1 2 7 5 2 4 5 2 3 6 5 9

0

0

9

9

1 37 7 3 579

13 14

11

12 10

9

Figure 21: Re-meshing of the mesh of Figure 20. New node vertices have been added

at the end of the vertex sub-array, new elements have been added at the beginning

of the element sub-array, and vertex base values have been updated accordingly.

Node adjacency lists that could not fit in place have been added at the end of the

edge array, and some of the freed space has been re-used for new adjacency lists.

Element adjacency lists do not require moving in this case, as all of the elements

have the name number of nodes.

58

8.2.4 Geometry format

Geometry data is always associated with a graph or a mesh. It is simply made

of a single array of double-precision values which represent the coordinates of the

vertices of a graph, or of the node vertices of a mesh, in vertex order. The fields of

a geometry structure are the following:

dimnnbr

Number of dimensions of the graph or of the mesh, which can be 1, 2, or 3.

geomtab

Array of coordinates. This is an array of double precision values organized as

an array of (x), or (x, y), or (x, y, z) tuples, according to dimnnbr. Coordinates

that are not used (e.g. the z coordinates for a bidimentional object) are not

allocated. Therefore, the x coordinate of some graph vertex i is located at

geomtab[(i − baseval) ∗ dimnnbr+ baseval], its y coordinate is located at

geomtab[(i − baseval) ∗ dimnnbr+ baseval+ 1] if dimnnbr ≥ 2, and its z

coordinate is located at geomtab[(i − baseval) ∗ dimnnbr+ baseval+ 2] if

dimnnbr = 3. Whenever the geometry is associated with a mesh, only node

vertices are considered, so the x coordinate of some mesh node vertex i, with

vnodbas ≤ i, is located at geomtab[(i − vnodbas) ∗ dimnnbr+ baseval], its

y coordinate is located at geomtab[(i − vnodbas) ∗ dimnnbr+ baseval+ 1]

if dimnnbr ≥ 2, and its z coordinate is located at geomtab[(i − vnodbas) ∗

dimnnbr+ baseval+ 2] if dimnnbr = 3.

8.2.5 Block ordering format

Block orderings associated with graphs and meshes are described by means of block

and permutation arrays, made of SCOTCH Nums, as shown in Figure 22. In order for

all orderings to have the same structure, irrespective of whether they are created

from graphs or meshes, all ordering data indices start from baseval, even when they

refer to a mesh the node vertices of which are labeled from a vnodbas index such

that vnodbas > baseval. Consequently, row indices are related to vertex indices

in memory in the following way: row i is associated with vertex i of the SCOTCH

Graph structure if the ordering was computed from a graph, and with node vertex

i+(vnodbas−baseval) of the SCOTCH Mesh structure if the ordering was computed

from a mesh. Block orderings are made of the following data:

permtab

Array holding the permutation of the reordered matrix. Thus, if k =

permtab[i], then row i of the original matrix is now row k of the reordered

matrix, that is, row i is the kth pivot.

peritab

Inverse permutation of the reordered matrix. Thus, if i = peritab[k], then

row k of the reordered matrix was row i of the original matrix.

cblknbr

Number of column blocks (that is, supervariables) in the block ordering.

rangtab

Array of ranges for the column blocks. Column block c, with baseval ≤ c <

(cblknbr+baseval), contains columns with indices ranging from rangtab[i]

to rangtab[i + 1], exclusive, in the reordered matrix. Indices in rangtab

59

peritab

cblknbr

rangtab

treetab

permtab

13

10 11 12

1011 12

10

−1

1 2 4 85 6

7

2 3 4 8 7 16

1 2 45

3 3 7 6 76

5 9

1

2 3

9

8 7

6

5

4

1

5

2

6

9

4

8

3

7

3 6789

1

2

3

4

5

6

7

10

11

1210 11 12

Figure 22: Arrays resulting from the ordering by complete nested dissection of a 4

by 3 grid based from 1. Leftmost grid is the original grid, and righmost grid is the

reordered grid, with separators shown and column block indices written in bold.

are based. Therefore, rangtab[baseval] is always equal to baseval, and

rangtab[cblknbr+baseval] is always equal to vertnbr+baseval for graphs

and to vnodnbr+ baseval for meshes. In order to avoid memory errors when

column blocks are all single columns, the size of rangtab must always be

one more than the number of columns, that is, vertnbr + 1 for graphs and

vnodnbr+ 1 for meshes.

treetab

Array of ascendants of permuted column blocks in the separators tree.

treetab[i] is the index of the father of column block i in the separators

tree, or −1 if column block i is the root of the separators tree. Whenever sep-

arators or leaves of the separators tree are split into subblocks, as the block

splitting, minimum fill or minimum degree methods do, all subblocks of the

same level are linked to the column block of higher index belonging to the

closest separator ancestor. Indices in treetab are based, in the same way as

for the other blocking structures. See Figure 22 for a complete example.

8.3 Strategy strings

The behavior of the mapping and block ordering routines of the libScotch library

is parametrized by means of strategy strings, which describe how and when given

partitioning or ordering methods should be applied to graphs and subgraphs, or to

meshes and submeshes.

8.3.1 Using default strategy strings

While strategy strings can be built by hand, according to the syntax given in the

next sections, users who do not have specific needs can take advantage of default

strategies already implemented in the libScotch, which will yield very good results

in most cases. By doing so, they will spare themselves the hassle of updating their

strategies to comply to subsequent syntactic changes, and they will benefit from the

availability of new partitioning or ordering methods as soon as they are released.

The simplest way to use default strategy strings is to avoid specifying any. By

initializing a strategy object, by means of the SCOTCH stratInit routine, and by

using the initialized strategy object as is, without further parametrization, this

object will be filled with a default strategy when passing it as a parameter to the

next partitioning or ordering routine to be called. On return, the strategy object

will contain a fully specified strategy, tailored for the type of operation which has

been requested. Consequently, a fresh strategy object that was used to partition

60

a graph cannot be used afterward as a default strategy when calling an ordering

routine, for instance, as partitioning and ordering strategies are incompatible.

The libScotch also provides helper routines which allow users to express their

preferences on the kind of strategy that they need. These helper routines, which

are of the form SCOTCH strat*Build (see Section 8.15.2 and after), tune default

strategy strings according to parameters provided by the user, such as the requested

number of parts (used as a hint to select the most efficient partitioning routines),

the desired maximum load imbalance ratio, and a set of preference flags. While

some of these flags are antagonistic, most of them can be combined, by means of

addition or “binary or” operators. These flags are the following. They are grouped

by application class.

Global flags

SCOTCH STRATDEFAULT

Default behavior. No flags are set.

SCOTCH STRATBALANCE

Enforce load balance as much as possible.

SCOTCH STRATQUALITY

Privilege quality over speed.

SCOTCH STRATSAFETY

Do not use methods that can lead to the occurrence of problematic events,

such as floating point exceptions, which could not be properly handled by the

calling software.

SCOTCH STRATSPEED

Privilege speed over quality.

Mapping and partitioning flags

SCOTCH STRATRECURSIVE

Use only recursive bipartitioning methods, and not direct k-way methods.

When this flag is not set, any combination of methods can be used, so as to

achieve the best result according to other user preferences.

SCOTCH STRATREMAP

Use the strategy for remapping an existing partition.

Ordering flags

SCOTCH STRATLEVELMAX

Create at most the prescribed levels of nested dissection separators.

SCOTCH STRATLEVELMIN

Create at least the prescribed levels of nested dissection separators. When

used in conjunction with SCOTCH STRATLEVELMAX, the exact number of nested

dissection levels will be performed, unless the graph to order is too small.

SCOTCH STRATLEAFSIMPLE

Order nested dissection leaves as cheaply as possible.

SCOTCH STRATSEPASIMPLE

Order nested dissection separators as cheaply as possible.

61

8.3.2 Mapping strategy strings

At the time being, mapping methods only apply to graphs, as there is not yet a mesh

mapping tool in the Scotch package. Mapping strategies are made of methods,

with optional parameters enclosed between curly braces, and separated by commas,

in the form of method [{parameters}] . The currently available mapping methods

are the following.

b Band method. This method builds a band graph of given width around the

current frontier of the k-way partition to which it is applied, and calls a graph

mapping strategy to refine the equivalent k-way partition of the band graph.

Then, the refined frontier of the band graph is projected back to the current

graph. This method was initially presented in [8] in the case of bipartitioning.

The parameters of the band bipartitioning method are listed below.

bnd=strat

Set the graph mapping strategy to be used on the band graph.

org=strat

Set the fallback graph mapping strategy to be used on the original graph

if the band graph strategy could not be used. The three cases which

require the use of this fallback strategy are the following. First, if the

separator of the original graph is empty, which makes it impossible to

compute a band graph. Second, if any part of the band graph to be

built is of the same size as the one of the original graph. Third, if the

application of the bnd bipartitioning method to the band graph leads to

a situation where any two anchor vertices are placed in the same part.

width=val

Set the width of the band graph. All graph vertices that are at a distance

less than or equal to val from any frontier vertex are kept in the band

graph.

d Diffusion method. This method, presented in [43] in the case of bipartitioning,

flows k kinds of antagonistic liquids from k source vertices, and sets the new

frontier as the limit between vertices which contain different kinds of liquids.

Because selecting the source vertices is essential to the obtainment of useful

results, this method has been hard-coded so that the k source vertices are the

k vertices of highest indices, since in the band method these are the anchor

vertices which represent all of the removed vertices of each part. Therefore,

this method must be used on band graphs only, or on specifically crafted

graphs. Applying it to any other graphs is very likely to lead to extremely

poor results. The physical analogy of this method loses weight when it is

applied to target architectures that are not complete graphs. The parameters

of the diffusion mapping method are listed below.

dif=rat

Fraction of liquid which is diffused to neighbor vertices at each pass. To

achieve convergence, the sum of the dif and rem parameters must be

equal to 1, but in order to speed-up the diffusion process, other combi-

nations of higher sum can be tried. In this case, the number of passes

must be kept low, to avoid numerical overflows which would make the

results useless.

pass=nbr

Set the number of diffusion sweeps performed by the algorithm. This

62

number depends on the width of the band graph to which the diffusion

method is applied. Useful values range from 30 to 500 according to

chosen dif and rem coefficients.

rem=rat

Fraction of liquid which remains on vertices at each pass. See above.

f k-way Fiduccia-Mattheyses method. The parameters of the Fiduccia-

Mattheyses method are listed below.

bal=rat

Set the maximum weight imbalance ratio to the given fraction of the

subgraph vertex weight. Common values are around 0.01, that is, one

percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before

a pass ends. During each of its passes, the Fiduccia-Mattheyses algo-

rithm repeatedly swaps vertices between parts so as to minimize the cost

function. A pass completes either when all of the vertices have been

moved once, or if too many swaps that do not decrease the value of the

cost function have been performed. Setting this value to zero turns the

Fiduccia-Mattheyses algorithm into a gradient-like method, which may

be used to quickly refine partitions during the uncoarsening phase of the

multilevel method.

pass=nbr

Set the maximum number of optimization passes performed by the algo-

rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has

not yielded any improvement of the cost function, or when the maximum

number of passes has been reached. Value −1 stands for an infinite num-

ber of passes, that is, as many as needed by the algorithm to converge.

m Multilevel method. The parameters of the multilevel method are listed below.

asc=strat

Set the strategy that is used to refine the mappings obtained at ascending

levels of the uncoarsening phase by projection of the mappings computed

for coarser graphs. This strategy is not applied to the coarsest graph,

for which only the low strategy is used.

low=strat

Set the strategy that is used to compute the mapping of the coarsest

graph, at the lowest level of the coarsening process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs are no

longer coarsened. The ratio of any given coarsening cannot be less that

0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-

ening stops when either the coarsening ratio is above the maximum coars-

ening ratio, or the graph has fewer vertices than the minimum number

of vertices allowed.

vert=nbr

Set the threshold under which graphs are no longer coarsened. Coarsen-

ing stops when either the coarsening ratio is above the maximum coars-

ening ratio, or the graph would have fewer vertices than the minimum

63

number of vertices allowed. When the target architecture is a variable-

sized architecture, coarsening stops when the coarsened graph would have

less than nbr vertices. When the target architecture is a regular, fixed-

size, architecture, coarsening stops when each subdomain would have less

than nbr vertices, that is, when the size of the coarsened graph would

have less than nbr × domnnbr vertices, where domnnbr is the number of

vertices in the target architecture.

r Dual Recursive Bipartitioning mapping algorithm, as defined in section 3.2.

The parameters of the DRB mapping method are listed below.

job=tie

The tie flag defines how new jobs are stored in job pools.

t Tie job pools together. Subjobs are stored in same pool as their par-

ent job. This is the default behavior, as it proves the most efficient

in practice.

u Untie job pools. Subjobs are stored in the next job pool to be pro-

cessed.

map=tie

The tie flag defines how results of bipartitioning jobs are propagated to

jobs still in pools.

t Tie both mapping tables together. Results are immediately available

to jobs in the same job pool. This is the default behavior.

u Untie mapping tables. Results are only available to jobs of next pool

to be processed.

poli=policy

Select jobs according to policy policy. Job selection policies define how

bipartitioning jobs are ordered within the currently active job pool. Valid

policy flags are

L Most neighbors of higher level.

l Highest level.

r Random.

S Most neighbors of smaller size. This is the default behavior.

s Biggest size.

sep=strat

Apply bipartitioning strategy strat to each bipartitioning job. A biparti-

tioning strategy is made of one or several bipartitioning methods, which

can be combined by means of strategy operators. Graph bipartitioning

strategies are described below.

x Exactifier method, as defined in Section 3.3. This greedy algorithm refines the

current mapping so as to reduce load imbalance as much as possible. Since

this method does not consider communication minimization, its use should be

restricted to cases where achieving load balance is critical and where recursive

bipartitioning may fail to achieve it, because of very irregular vertex loads.

8.3.3 Graph bipartitioning strategy strings

A graph bipartitioning strategy is made of one or several graph bipartitioning meth-

ods, which can be combined by means of strategy operators. Strategy operators are

listed below, by increasing precedence.

64

strat1|strat2

Selection operator. The result of the selection is the best bipartition of the

two that are obtained by the separate application of strat1 and strat2 to the

current bipartition.

strat1 strat2

Combination operator. Strategy strat2 is applied to the bipartition resulting

from the application of strategy strat1 to the current bipartition. Typically,

the first method used should compute an initial bipartition from scratch, and

every following method should use the result of the previous one at its starting

point.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single bipartitioning method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current active graph, and can be built from logical

and relational operators. Conditional operators are listed below, by increasing

precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a graph variable, val is either a graph

variable or a constant of the type of variable var , and relop is one of ’<’,

’=’, and ’>’. The graph variables are listed below, along with their types.

deg

The average degree of the current graph. Float.

edge

The number of arcs (which is twice the number of edges) of the

current graph. Integer.

load

The overall vertex load (weight) of the current graph. Integer.

load0

The vertex load of the first subset of the current bipartition of the

current graph. Integer.

vert

The number of vertices of the current graph. Integer.

method [{parameters}]

Bipartitioning method. For bipartitioning methods that can be parametrized,

65

parameter settings may be provided after the method name. Parameters must

be separated by commas, and the whole list be enclosed between curly braces.

The currently available graph bipartitioning methods are the following.

b Band method. This method builds a band graph of given width around the

current frontier of the graph to which it is applied, and calls a graph biparti-

tioning strategy to refine the equivalent bipartition of the band graph. Then,

the refined frontier of the band graph is projected back to the current graph.

This method, presented in [8], was created to reduce the cost of vertex sepa-

rator refinement algorithms in a multilevel context, but it improves partition

quality too. The same behavior is observed for graph bipartitioning. The

parameters of the band bipartitioning method are listed below.

bnd=strat

Set the graph bipartitioning strategy to be used on the band graph.

org=strat

Set the fallback graph bipartitioning strategy to be used on the original

graph if the band graph strategy could not be used. The three cases

which require the use of this fallback strategy are the following. First, if

the separator of the original graph is empty, which makes it impossible

to compute a band graph. Second, if any part of the band graph to be

built is of the same size as the one of the original graph. Third, if the

application of the bnd bipartitioning method to the band graph leads to

a situation where both anchor vertices are placed in the same part.

width=val

Set the width of the band graph. All graph vertices that are at a distance

less than or equal to val from any frontier vertex are kept in the band

graph.

d Diffusion method. This method, presented in [43], flows two kinds of antag-

onistic liquids, scotch and anti-scotch, from two source vertices, and sets the

new frontier as the limit between vertices which contain scotch and the ones

which contain anti-scotch. Because selecting the source vertices is essential

to the obtainment of useful results, this method has been hard-coded so that

the two source vertices are the two vertices of highest indices, since in the

band method these are the anchor vertices which represent all of the removed

vertices of each part. Therefore, this method must be used on band graphs

only, or on specifically crafted graphs. Applying it to any other graphs is

very likely to lead to extremely poor results. The parameters of the diffusion

bipartitioning method are listed below.

dif=rat

Fraction of liquid which is diffused to neighbor vertices at each pass. To

achieve convergence, the sum of the dif and rem parameters must be

equal to 1, but in order to speed-up the diffusion process, other combi-

nations of higher sum can be tried. In this case, the number of passes

must be kept low, to avoid numerical overflows which would make the

results useless.

pass=nbr

Set the number of diffusion sweeps performed by the algorithm. This

number depends on the width of the band graph to which the diffusion

66

method is applied. Useful values range from 30 to 500 according to

chosen dif and rem coefficients.

rem=rat

Fraction of liquid which remains on vertices at each pass. See above.

f Fiduccia-Mattheyses method. The parameters of the Fiduccia-Mattheyses

method are listed below.

bal=rat

Set the maximum weight imbalance ratio to the given fraction of the

subgraph vertex weight. Common values are around 0.01, that is, one

percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before a

pass ends. During each of its passes, the Fiduccia-Mattheyses algorithm

repeatedly swaps vertices between the two parts so as to minimize the

cost function. A pass completes either when all of the vertices have been

moved once, or if too many swaps that do not decrease the value of the

cost function have been performed. Setting this value to zero turns the

Fiduccia-Mattheyses algorithm into a gradient-like method, which may

be used to quickly refine partitions during the uncoarsening phase of the

multilevel method.

pass=nbr

Set the maximum number of optimization passes performed by the algo-

rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has

not yielded any improvement of the cost function, or when the maximum

number of passes has been reached. Value −1 stands for an infinite num-

ber of passes, that is, as many as needed by the algorithm to converge.

g Gibbs-Poole-Stockmeyer method. This method has only one parameter.

pass=nbr

Set the number of sweeps performed by the algorithm.

h Greedy-graph-growing method. This method has only one parameter.

pass=nbr

Set the number of runs performed by the algorithm.

m Multilevel method. The parameters of the multilevel method are listed below.

asc=strat

Set the strategy that is used to refine the partitions obtained at ascend-

ing levels of the uncoarsening phase by projection of the bipartitions

computed for coarser graphs. This strategy is not applied to the coarsest

graph, for which only the low strategy is used.

low=strat

Set the strategy that is used to compute the partition of the coarsest

graph, at the lowest level of the coarsening process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs are no

longer coarsened. The ratio of any given coarsening cannot be less that

67

0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-

ening stops when either the coarsening ratio is above the maximum coars-

ening ratio, or the graph has fewer vertices than the minimum number

of vertices allowed.

vert=nbr

Set the threshold minimum graph size under which graphs are no longer

coarsened. Coarsening stops when either the coarsening ratio is above

the maximum coarsening ratio, or the coarsened graph would have fewer

vertices than the minimum number of vertices allowed.

x Exactifying method.

z Zero method. This method moves all of the vertices to the first part. Its

main use is to stop the bipartitioning process, if some condition is true, when

mapping onto variable-sized architectures (see section 3.2.3).

8.3.4 Vertex partitioning strategy strings

Vertex partitioning is a special form of graph partitioning, in which graphs are

partitioned into a prescribed number of parts by means of vertex separators rather

than of edge separators like in Section 8.3.2. The load balance criterion also differs

from common practice: the load to be balanced across all parts comprises not

only the load of the vertices which belong to the part, but also the load of all the

separator vertices which are their immediate neighbors. Consequently, the load

of every separator vertex is accounted for several times, in each of the parts it

separates.

Vertex partitioning strategies are made of methods, with optional parame-

ters enclosed between curly braces, and separated by commas, in the form of

method [{parameters}] . The currently available mapping methods are the follow-

ing.

f Fiduccia-Mattheyses method. The parameters of the Fiduccia-Mattheyses

method are listed below.

bal=rat

Set the maximum weight imbalance ratio to the given fraction of the

subgraph vertex weight. Common values are around 0.01, that is, one

percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before

a pass ends. During each of its passes, the Fiduccia-Mattheyses algo-

rithm repeatedly moves vertices between parts so as to minimize the

cost function. A pass completes either when all of the vertices have been

moved once, or if too many swaps that do not decrease the value of the

cost function have been performed. Setting this value to zero turns the

Fiduccia-Mattheyses algorithm into a gradient-like method, which may

be used to quickly refine partitions during the uncoarsening phase of the

multilevel method.

pass=nbr

Set the maximum number of optimization passes performed by the algo-

rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has

not yielded any improvement of the cost function, or when the maximum

68

number of passes has been reached. Value −1 stands for an infinite num-

ber of passes, that is, as many as needed by the algorithm to converge.

g Gibbs-Poole-Stockmeyer method. This is a k-way version of the original algo-

rithm, in which parts are grown one after the other. Consequently, depending

on graph topology, this method is likely to yield disconnected parts, with

higher probability as the number of part increases. This method has only one

parameter.

pass=nbr

Set the number of sweeps performed by the algorithm.

h Greedy-graph-growing method. This is a k-way version of the original algo-

rithm, in which parts are grown one after the other. Consequently, depending

on graph topology, this method is likely to yield disconnected parts, with

higher probability as the number of part increases. This method has only one

parameter.

pass=nbr

Set the number of runs performed by the algorithm.

m Multilevel method. The parameters of the multilevel method are listed below.

asc=strat

Set the strategy that is used to refine the partitions obtained at ascend-

ing levels of the uncoarsening phase by projection of the bipartitions

computed for coarser graphs. This strategy is not applied to the coarsest

graph, for which only the low strategy is used.

low=strat

Set the strategy that is used to compute the partition of the coarsest

graph, at the lowest level of the coarsening process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs are no

longer coarsened. The ratio of any given coarsening cannot be less that

0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-

ening stops when either the coarsening ratio is above the maximum coars-

ening ratio, or the graph has fewer vertices than the minimum number

of vertices allowed.

vert=nbr

Set the threshold minimum number of vertices per part under which

graphs are no longer coarsened. Coarsening stops when either the coars-

ening ratio is above the maximum coarsening ratio, or the graph has

fewer vertices than the minimum number of vertices allowed.

r Recursive bipartitioning algorithm. The parameters of the recursive biparti-

tioning method are listed below.

sep=strat

Apply vertex (node) separation strategy strat to each bipartitioning job.

A node separation strategy is made of one or several node separation

methods, which can be combined by means of strategy operators. Node

separation strategies are described in Section 8.3.6.

69

8.3.5 Ordering strategy strings

Ordering strategies are available both for graphs and for meshes. An ordering

strategy is made of one or several ordering methods, which can be combined by

means of strategy operators. The strategy operators that can be used in ordering

strategies are listed below, by increasing precedence.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single ordering method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current node of the separators tree, and can be

built from logical and relational operators. Conditional operators are listed

below, by increasing precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a node variable, val is either a node

variable or a constant of the type of variable var, and relop is one of ’<’,

’=’, and ’>’. The node variables are listed below, along with their types.

edge

The number of vertices of the current subgraph. Integer.

levl

The level of the subgraph in the separators tree, starting from zero

for the initial graph at the root of the tree. Integer.

load

The overall vertex load (weight) of the current subgraph. Integer.

mdeg

The maximum degree of the current subgraph. Integer.

vert

The number of vertices of the current subgraph. Integer.

method [{parameters}]

Graph or mesh ordering method. Available ordering methods are listed below.

The currently available ordering methods are the following.

b Blocking method. This method does not perform ordering by itself, but is used

as post-processing to cut into blocks of smaller sizes the separators or large

blocks produced by other ordering methods. This is not useful in the context of

direct solving methods, because the off-diagonal blocks created by the splitting

70

of large diagonal blocks are likely to be filled at factoring time. However, in

the context of incomplete solving methods such as ILU(k) [30], it can lead

to a significant reduction of the required memory space and time, because it

helps carving large triangular blocks. The parameters of the blocking method

are described below.

cmin=size

Set the minimum size of the resulting subblocks, in number of columns.

Blocks larger than twice this minimum size are cut into sub-blocks of

equal sizes (within one), having a number of columns comprised between

size and 2size.

The definition of size depends on the size of the graph to order. Large

graphs cannot afford very small values, because the number of blocks

becomes much too large and limits the acceleration of BLAS 3 routines,

while large values do not help reducing enough the complexity of ILU(k)

solving.

strat=strat

Ordering strategy to be performed. After the ordering strategy is applied,

the resulting separators tree is traversed and all of the column blocks

that are larger than 2size are split into smaller column blocks, without

changing the ordering that has been computed.

c Compression method [2]. The parameters of the compression method are

listed below.

rat=rat

Set the compression ratio over which graphs and meshes will not be

compressed. Useful values range between 0.7 and 0.8.

cpr=strat

Ordering strategy to use on the compressed graph or mesh if its size is

below the compression ratio times the size of the original graph or mesh.

unc=strat

Ordering strategy to use on the original graph or mesh if the size of the

compressed graph or mesh were above the compression ratio times the

size of the original graph or mesh.

d Block Halo Approximate Minimum Degree method [48]. The parameters of

the Halo Approximate Minimum Degree method are listed below. The Block

Halo Approximate Minimum Fill method, described below, is more efficient

and should be preferred.

cmin=size

Minimum number of columns per column block. All column blocks of

width smaller than size are amalgamated to their parent column block in

the elimination tree, provided that it does not violate the cmax constraint.

cmax=size

Maximum number of column blocks over which some column block will

not amalgamate one of its descendents in the elimination tree. This

parameter is mainly designed to provide an upper bound for block size

in the context of BLAS3 computations ; else, a huge value should be

provided.

71

frat=rat

Fill-in ratio over which some column block will not amalgamate one of

its descendents in the elimination tree. Typical values range from 0.05

to 0.10.

f Block Halo Approximate Minimum Fill method. The parameters of the Halo

Approximate Minimum Fill method are listed below.

cmin=size

Minimum number of columns per column block. All column blocks of

width smaller than size are amalgamated to their parent column block in

the elimination tree, provided that it does not violate the cmax constraint.

cmax=size

Maximum number of column blocks over which some column block will

not amalgamate one of its descendents in the elimination tree. This

parameter is mainly designed to provide an upper bound for block size

in the context of BLAS3 computations ; else, a huge value should be

provided.

frat=rat

Fill-in ratio over which some column block will not amalgamate one of

its descendents in the elimination tree. Typical values range from 0.05

to 0.10.

g Gibbs-Poole-Stockmeyermethod. This method is used on separators to reduce

the number and extent of extra-diagonal blocks. If the number of extra-

diagonal blocks is not relevant, the smethod should be preferred. This method

has only one parameter.

pass=nbr

Set the number of sweeps performed by the algorithm.

n Nested dissection method. The parameters of the nested dissection method

are given below.

ole=strat

Set the ordering strategy that is used on every leaf of the separators tree

if the node separation strategy sep has failed to separate it further.

ose=strat

Set the ordering strategy that is used on every separator of the separators

tree.

sep=strat

Set the node separation strategy that is used on every leaf of the sep-

arators tree to make it grow. Node separation strategies are described

below, in section 8.3.6.

s Simple method. Vertices are ordered in their natural order. This method is

fast, and should be used to order separators if the number of extra-diagonal

blocks is not relevant ; else, the g method should be preferred.

v Mesh-to-graph method. Available only for mesh ordering strategies. From the

mesh to which this method applies is derived a graph, such that a graph vertex

is associated with every node of the mesh, and a clique is created between all

vertices which represent nodes that belong to the same element. A graph

72

ordering strategy is then applied to the derived graph, and this ordering is

projected back to the nodes of the mesh. This method is here for evaluation

purposes only, as mesh ordering methods are generally more efficient than

their graph ordering counterpart.

strat=strat

Graph ordering strategy to apply to the associated graph.

8.3.6 Node separation strategy strings

A node separation strategy is made of one or several node separation methods,

which can be combined by means of strategy operators. Strategy operators are

listed below, by increasing precedence.

strat1|strat2

Selection operator. The result of the selection is the best vertex separator of

the two that are obtained by the distinct application of strat1 and strat2 to

the current separator.

strat1 strat2

Combination operator. Strategy strat2 is applied to the vertex separator

resulting from the application of strategy strat1 to the current separator.

Typically, the first method used should compute an initial separation from

scratch, and every following method should use the result of the previous one

as a starting point.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single separation method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current subgraph, and can be built from logical

and relational operators. Conditional operators are listed below, by increasing

precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a graph or node variable, val is either

a graph or node variable or a constant of the type of variable var , and

relop is one of ’<’, ’=’, and ’>’. The graph and node variables are listed

below, along with their types.

73

levl

The level of the subgraph in the separators tree, starting from zero

at the root of the tree. Integer.

proc

The number of processors on which the current subgraph is dis-

tributed at this level of the separators tree. This variable is available

only when calling from routines of the PT-Scotch parallel library.

Integer.

rank

The rank of the current processor among the group of processors

on which the current subgraph is distributed at this level of the

separators tree. This variable is available only when calling from

routines of the PT-Scotch parallel library, for instance to decide

which node separation strategy should be used on which processor

in a multi-sequential approach. Integer.

vert

The number of vertices of the current subgraph. Integer.

The currently available vertex separation methods are the following.

b Band method. Available only for graph separation strategies. This method

builds a band graph of given width around the current separator of the graph

to which it is applied, and calls a graph separation strategy to refine the

equivalent separator of the band graph. Then, the refined separator of the

band graph is projected back to the current graph. This method, presented

in [8], was created to reduce the cost of separator refinement algorithms in a

multilevel context, but it improves partition quality too. The parameters of

the band separation method are listed below.

bnd=strat

Set the vertex separation strategy to be used on the band graph.

org=strat

Set the fallback vertex separation strategy to be used on the original

graph if the band graph strategy could not be used. The three cases

which require the use of this fallback strategy are the following. First, if

the separator of the original graph is empty, which makes it impossible

to compute a band graph. Second, if any part of the band graph to be

built is of the same size as the one of the original graph. Third, if the

application of the bnd vertex separation method to the band graph leads

to a situation where both anchor vertices are placed in the same part.

width=val

Set the width of the band graph. All graph vertices that are at a distance

less than or equal to val from any separator vertex are kept in the band

graph.

e Edge-separation method. Available only for graph separation strategies. This

method builds vertex separators from edge separators, by the method pro-

posed by Pothen and Fang [50], which uses a variant of the Hopcroft and

Karp algorithm due to Duff [9]. This method is expensive and most often

yields poorer results than direct vertex-oriented methods such as the vertex

vertex Greedy-graph-growing and the vertex Fiduccia-Mattheyses algorithms.

The parameters of the edge-separation method are listed below.

74

bal=val

Set the load imbalance tolerance to val, which is a floating-point ratio

expressed with respect to the ideal load of the partitions.

strat=strat

Set the graph bipartitioning strategy that is used to compute the edge bi-

partition. The syntax of bipartitioning strategy strings is defined within

section 8.3.3, at page 64.

width=type

Select the width of the vertex separators built from edge separators.

When type is set to f, fat vertex separators are built, that hold all of

the ends of the edges of the edge cut. When it is set to t, a thin vertex

separator is built by removing as many vertices as possible from the fat

separator.

f Vertex Fiduccia-Mattheyses method. The parameters of the vertex Fiduccia-

Mattheyses method are listed below.

bal=rat

Set the maximum weight imbalance ratio to the given fraction of the

weight of all node vertices. Common values are around 0.01, that is, one

percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before

a pass ends. During each of its passes, the vertex Fiduccia-Mattheyses

algorithm repeatedly moves vertices from the separator to any of the two

parts, so as to minimize the size of the separator. A pass completes either

when all of the vertices have been moved once, or if too many swaps that

do not decrease the size of the separator have been performed.

pass=nbr

Set the maximum number of optimization passes performed by the al-

gorithm. The vertex Fiduccia-Mattheyses algorithm stops as soon as a

pass has not yielded any reduction of the size of the separator, or when

the maximum number of passes has been reached. Value -1 stands for an

infinite number of passes, that is, as many as needed by the algorithm

to converge.

g Gibbs-Poole-Stockmeyer method. Available only for graph separation strate-

gies. This method has only one parameter.

pass=nbr

Set the number of sweeps performed by the algorithm.

h Vertex greedy-graph-growing method. This method has only one parameter.

pass=nbr

Set the number of runs performed by the algorithm.

m Vertex multilevel method. The parameters of the vertex multilevel method

are listed below.

asc=strat

Set the strategy that is used to refine the vertex separators obtained at

ascending levels of the uncoarsening phase by projection of the separators

75

computed for coarser graphs or meshes. This strategy is not applied to

the coarsest graph or mesh, for which only the low strategy is used.

low=strat

Set the strategy that is used to compute the vertex separator of the

coarsest graph or mesh, at the lowest level of the coarsening process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs or meshes

are no longer coarsened. The ratio of any given coarsening cannot be less

that 0.5 (case of a perfect matching), and cannot be greater than 1.0.

Coarsening stops when either the coarsening ratio is above the maximum

coarsening ratio, or the graph or mesh has fewer node vertices than the

minimum number of vertices allowed.

vert=nbr

Set the threshold minimum size under which graphs or meshes are no

longer coarsened. Coarsening stops when either the coarsening ratio is

above the maximum coarsening ratio, or the graph or mesh has fewer

node vertices than the minimum number of vertices allowed.

t Thinner method. Available only for graph separation strategies. This method

quickly eliminates all useless vertices of the current separator. It searches the

separator for vertices that have no neighbors in one of the two parts, and

moves these vertices to the part they are connected to. This method may

be used to refine separators during the uncoarsening phase of the multilevel

method, and is faster than a vertex Fiduccia-Mattheyses algorithm with {move

=0}.

v Mesh-to-graph method. Available only for mesh separation strategies. From

the mesh to which this method applies is derived a graph, such that a graph

vertex is associated with every node of the mesh, and a clique is created

between all vertices which represent nodes that belong to the same element.

A graph separation strategy is then applied to the derived graph, and the

separator is projected back to the nodes of the mesh. This method is here

for evaluation purposes only, as mesh separation methods are generally more

efficient than their graph separation counterpart.

strat=strat

Graph separation strategy to apply to the associated graph.

w Graph separator viewer. Available only for graph separation strategies. Ev-

ery call to this method results in the creation, in the current subdirectory,

of partial mapping files called “vgraphseparatevw output nnnnnnnn.map”,

where “nnnnnnnn” are increasing decimal numbers, which contain the cur-

rent state of the two parts and the separator. These mapping files can be

used as input by the gout program to produce displays of the evolving shape

of the current separator and parts. This is mostly a debugging feature, but

it can also have an illustrative interest. While it is only available for graph

separation strategies, mesh separation strategies can indirectly use it through

the mesh-to-graph separation method.

z Zero method. This method moves all of the node vertices to the first part,

resulting in an empty separator. Its main use is to stop the separation process

whenever some condition is true.

76

8.4 Target architecture handling routines

8.4.1 SCOTCH archExit

Synopsis

void SCOTCH archExit (SCOTCH Arch * archptr)

scotchfarchexit (doubleprecision (*) archdat)

Description

The SCOTCH archExit function frees the contents of a SCOTCH Arch structure

previously initialized by SCOTCH archInit. All subsequent calls to SCOTCH

arch routines other than SCOTCH archInit, using this structure as parameter,

may yield unpredictable results.

8.4.2 SCOTCH archInit

Synopsis

int SCOTCH archInit (SCOTCH Arch * archptr)

scotchfarchinit (doubleprecision (*) archdat,

integer ierr)

Description

The SCOTCH archInit function initializes a SCOTCH Arch structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Arch structure. When the target architecture data is

no longer of use, call function SCOTCH archExit to free its internal structures.

Return values

SCOTCH archInit returns 0 if the graph structure has been successfully ini-

tialized, and 1 else.

8.4.3 SCOTCH archLoad

Synopsis

int SCOTCH archLoad (SCOTCH Arch * archptr,

FILE * stream)

scotchfarchload (doubleprecision (*) archdat,

integer fildes,

integer ierr)

Description

77

The SCOTCH archLoad routine fills the SCOTCH Arch structure pointed to by

archptr with the source graph description available from stream stream in

the Scotch target architecture format (see Section 6.4).

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

architecture file.

Return values

SCOTCH archLoad returns 0 if the target architecture structure has been suc-

cessfully allocated and filled with the data read, and 1 else.

8.4.4 SCOTCH archName

Synopsis

const char * SCOTCH archName (const SCOTCH Arch * archptr)

scotchfarchname (doubleprecision (*) archdat,

character (*) chartab,

integer charnbr)

Description

The SCOTCH archName function returns a string containing the name of the

architecture pointed to by archptr. Since Fortran routines cannot return

string pointers, the scotchfarchname routine takes as second and third pa-

rameters a character() array to be filled with the name of the architecture,

and the integer size of the array, respectively. If the array is of sufficient

size, a trailing nul character is appended to the string to materialize the end

of the string (this is the C style of handling character strings).

Return values

SCOTCH archName returns a non-null character pointer that points to a null-

terminated string describing the type of the architecture.

8.4.5 SCOTCH archSave

Synopsis

int SCOTCH archSave (const SCOTCH Arch * archptr,

FILE * stream)

scotchfarchsave (doubleprecision (*) archdat,

integer fildes,

integer ierr)

Description

78

The SCOTCH archSave routine saves the contents of the SCOTCH Arch structure

pointed to by archptr to stream stream, in the Scotch target architecture

format (see section 6.4).

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

architecture file.

Return values

SCOTCH archSave returns 0 if the graph structure has been successfully writ-

ten to stream, and 1 else.

8.4.6 SCOTCH archSize

Synopsis

SCOTCH Num SCOTCH archSize (const SCOTCH Arch * archptr)

scotchfarchsize (doubleprecision (*) archdat,

integer*num archnbr)

Description

The SCOTCH archSize function returns the number of nodes of the given tar-

get architecture. The Fortran routine has a second parameter, of integer type,

which is set on return with the number of nodes of the target architecture.

Return values

SCOTCH archSize returns the number of nodes of the target architecture.

8.5 Target architecture creation routines

8.5.1 SCOTCH archBuild0 / SCOTCH archBuild

Synopsis

int SCOTCH archBuild0 (SCOTCH Arch * archptr,

const SCOTCH Graph * grafptr,

const SCOTCH Num listnbr,

const SCOTCH Num * listtab,

const SCOTCH Strat * straptr)

int SCOTCH archBuild (SCOTCH Arch * archptr,

const SCOTCH Graph * grafptr,

const SCOTCH Num listnbr,

const SCOTCH Num * listtab,

const SCOTCH Strat * straptr)

79

scotchfarchbuild0 (doubleprecision (*) archdat,

doubleprecision (*) grafdat,

integer*num listnbr,

integer*num (*) listtab,

doubleprecision (*) stradat,

integer ierr)

scotchfarchbuild (doubleprecision (*) archdat,

doubleprecision (*) grafdat,

integer*num listnbr,

integer*num (*) listtab,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH archBuild0 routine fills the architecture structure pointed to

by archptr with the “deco 1” (that is, a compiled form of a “deco 0”)

decomposition-defined target architecture computed by applying the graph bi-

partitioning strategy pointed to by straptr to the architecture graph pointed

to by grafptr.

When listptr is not NULL and listnbr is greater than zero, the

decomposition-defined architecture is restricted to the listnbr vertices whose

indices are given in the array pointed to by listtab, from listtab[0] to

listtab[listnbr - 1]. These indices should have the same base value as

the one of the graph pointed to by grafptr, that is, be in the range from 0 to

vertnbr− 1 if the graph base is 0, and from 1 to vertnbr if the graph base

is 1.

Graph bipartitioning strategies are declared by means of the SCOTCH strat

GraphBipart function, described in page 137. The syntax of bipartitioning

strategy strings is defined in section 8.3.2, page 64. Additional information

may be obtained from the manual page of amk grf, the stand-alone executable

that builds decomposition-defined target architecture files from source graph

files, available at page 35.

At the time being, SCOTCH archBuild is equivalent to SCOTCH archBuild0.

In future releases, it is planned that SCOTCH archBuild will either behave as

SCOTCH archBuild0 or SCOTCH archBuild2, depending on target graph size.

For target graphs of small sizes, users are invited to use explicitly the SCOTCH

archBuild0 routine.

Return values

SCOTCH archBuild0 returns 0 if the decomposition-defined architecture has

been successfully computed, and 1 else.

8.5.2 SCOTCH archBuild2

Synopsis

80

int SCOTCH archBuild2 (SCOTCH Arch * archptr,

const SCOTCH Graph * grafptr,

const SCOTCH Num listnbr,

const SCOTCH Num * listtab)

scotchfarchbuild2 (doubleprecision (*) archdat,

doubleprecision (*) grafdat,

integer*num listnbr,

integer*num (*) listtab,

integer ierr)

Description

The SCOTCH archBuild2 routine fills the architecture structure pointed to by

archptr with the “deco 2” decomposition-defined target architecture corre-

sponding to the graph pointed to by grafptr. Since the computation of the

decomposition is performed by means of graph coarsening, unlike SCOTCH

archBuild, no bipartitioning strategy has to be provided.

When listptr is not NULL and listnbr is greater than zero, the

decomposition-defined architecture is restricted to the listnbr vertices whose

indices are given in the array pointed to by listtab, from listtab[0] to

listtab[listnbr - 1]. These indices should have the same base value as

that of the graph pointed to by grafptr, that is, be in the range from 0 to

vertnbr− 1 if the graph base is 0, and from 1 to vertnbr if the graph base

is 1.

Additional information may be obtained from the manual page of amk grf, the

stand-alone executable that builds decomposition-defined target architecture

files from source graph files, available at page 35.

Return values

SCOTCH archBuild returns 0 if the decomposition-defined architecture has

been successfully computed, and 1 else.

8.5.3 SCOTCH archCmplt

Synopsis

int SCOTCH archCmplt (SCOTCH Arch * archptr,

const SCOTCH Num vertnbr)

scotchfarchcmplt (doubleprecision (*) archdat,

integer*num vertnbr,

integer ierr)

Description

The SCOTCH archCmplt routine fills the SCOTCH Arch structure pointed to by

archptr with the description of a complete graph architecture with vertnbr

processors, which can be used as input to SCOTCH graphMap to perform graph

partitioning. A shortcut to this is to use the SCOTCH graphPart routine.

81

Return values

SCOTCH archCmplt returns 0 if the complete graph target architecture has

been successfully built, and 1 else.

8.5.4 SCOTCH archCmpltw

Synopsis

int SCOTCH archCmpltw (SCOTCH Arch * archptr,

const SCOTCH Num vertnbr,

const SCOTCH Num * const velotab)

scotchfarchcmplt (doubleprecision (*) archdat,

integer*num vertnbr,

integer*num (*) velotab,

integer ierr)

Description

The SCOTCH archCmpltw routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a weighted complete graph architecture

with vertnbr processors. The relative weights of the processors are given in

the velotab array. Once the target architecture has been created, it can be

used as input to SCOTCH graphMap to perform weighted graph partitioning.

Return values

SCOTCH archCmpltw returns 0 if the weighted complete graph target architec-

ture has been successfully built, and 1 else.

8.5.5 SCOTCH archHcub

Synopsis

int SCOTCH archHcub (SCOTCH Arch * archptr,

const SCOTCH Num hdimval)

scotchfarchhcub (doubleprecision (*) archdat,

integer*num hdimval,

integer ierr)

Description

The SCOTCH archHcub routine fills the SCOTCH Arch structure pointed to by

archptr with the description of a hypercube graph of dimension hdimval.

Return values

SCOTCH archHcub returns 0 if the hypercube target architecture has been suc-

cessfully built, and 1 else.

82

8.5.6 SCOTCH archLtleaf

Synopsis

int SCOTCH archLtleaf (SCOTCH Arch * archptr,

const SCOTCH Num levlnbr,

const SCOTCH Num * sizetab,

const SCOTCH Num * linktab,

const SCOTCH Num permnbr,

const SCOTCH Num * permtab)

scotchfarchltleaf (doubleprecision (*) archdat,

integer*num levlnbr,

integer*num (*) sizetab,

integer*num (*) linktab,

integer*num permnbr,

integer*num (*) permtab,

integer ierr)

Description

The SCOTCH archLtleaf routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a labeled, tree-shaped, hierarchical graph

architecture with
∑levlnbr−1

i=0 sizetab[i] processors. Level 0 is the root of the

tree. For each level i, with 0 ≤ i < levlnbr, sizetab[i] is the number of

childs at level (i + 1) of each node at level i, and linktab[i] is the cost of

communication between processors the first common ancestor of which belongs

to this level. See Section 6.4.2, page 26, for an example of this architecture.

Return values

SCOTCH archLtleaf returns 0 if the labeled tree-leaf target architecture has

been successfully built, and 1 else.

8.5.7 SCOTCH archMesh2

Synopsis

int SCOTCH archMesh2 (SCOTCH Arch * archptr,

const SCOTCH Num xdimval,

const SCOTCH Num ydimval)

scotchfarchmesh2 (doubleprecision (*) archdat,

integer*num xdimval,

integer*num ydimval,

integer ierr)

Description

The SCOTCH archMesh2 routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a 2D mesh architecture with xdimval×

ydimval processors.

83

Return values

SCOTCH archMesh2 returns 0 if the 2D mesh target architecture has been

successfully built, and 1 else.

8.5.8 SCOTCH archMesh3

Synopsis

int SCOTCH archMesh3 (SCOTCH Arch * archptr,

const SCOTCH Num xdimval,

const SCOTCH Num ydimval,

const SCOTCH Num zdimval)

scotchfarchmesh3 (doubleprecision (*) archdat,

integer*num xdimval,

integer*num ydimval,

integer*num zdimval,

integer ierr)

Description

The SCOTCH archMesh3 routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a 3D mesh architecture with xdimval×

ydimval× zdimval processors.

Return values

SCOTCH archMesh3 returns 0 if the 3D mesh target architecture has been

successfully built, and 1 else.

8.5.9 SCOTCH archMeshX

Synopsis

int SCOTCH archMeshX (SCOTCH Arch * archptr,

const SCOTCH Num dimnnbr,

const SCOTCH Num * dimntab)

scotchfarchmeshx (doubleprecision (*) archdat,

integer*num dimnnbr,

integer*num dimntab,

integer ierr)

Description

The SCOTCH archMeshX routine fills the SCOTCH Arch structure pointed to by

archptr with the description of a dimnnbr-dimension mesh architecture with
∏

d dimntab[d] processors. The maximum number of dimensions is defined at

compile-time.

84

Return values

SCOTCH archMeshX returns 0 if the dimnnbr-dimension mesh target architec-

ture has been successfully built, and 1 else.

8.5.10 SCOTCH archSub

Synopsis

int SCOTCH archSub (SCOTCH Arch * subarchptr,

SCOTCH Arch * orgarchptr,

const SCOTCH Num vnumnbr,

const SCOTCH Num * vnumtab)

scotchfarchsub (doubleprecision (*) subarchdat,

doubleprecision (*) orgarchdat,

integer*num vnumnbr,

integer*num vnumtab,

integer ierr)

Description

The SCOTCH archSub routine fills the SCOTCH Arch structure pointed to by

subarchptr with the description of a subset of the orgarchptr architecture,

restricted to vertnbr processors which are listed in the vnumtab array. The

order in which these processor indices in the original architecture are stored in

the vnumtab array defines the rank of these processors in the sub-architecture.

Return values

SCOTCH archSub returns 0 if the target sub-architecture has been successfully

built, and 1 else.

8.5.11 SCOTCH archTleaf

Synopsis

int SCOTCH archTleaf (SCOTCH Arch * archptr,

const SCOTCH Num levlnbr,

const SCOTCH Num * sizetab,

const SCOTCH Num * linktab)

scotchfarchtleaf (doubleprecision (*) archdat,

integer*num levlnbr,

integer*num (*) sizetab,

integer*num (*) linktab,

integer ierr)

Description

The SCOTCH archTleaf routine fills the SCOTCH Arch structure pointed to by

archptr with the description of a tree-shaped, hierarchical graph architecture

85

with
∑levlnbr−1

i=0 sizetab[i] processors. Level 0 is the root of the tree. For each

level i, with 0 ≤ i < levlnbr, sizetab[i] is the number of childs at level

(i + 1) of each node at level i, and linktab[i] is the cost of communication

between processors the first common ancestor of which belongs to this level.

See Section 6.4.2, page 26, for an example of this architecture.

Return values

SCOTCH archTleaf returns 0 if the tree-leaf target architecture has been suc-

cessfully built, and 1 else.

8.5.12 SCOTCH archTorus2

Synopsis

int SCOTCH archTorus2 (SCOTCH Arch * archptr,

const SCOTCH Num xdimval,

const SCOTCH Num ydimval)

scotchfarchtorus2 (doubleprecision (*) archdat,

integer*num xdimval,

integer*num ydimval,

integer ierr)

Description

The SCOTCH archTorus2 routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a 2D torus architecture with xdimval×

ydimval processors.

Return values

SCOTCH archTorus2 returns 0 if the 2D torus target architecture has been

successfully built, and 1 else.

8.5.13 SCOTCH archTorus3

Synopsis

int SCOTCH archTorus3 (SCOTCH Arch * archptr,

const SCOTCH Num xdimval,

const SCOTCH Num ydimval,

const SCOTCH Num zdimval)

scotchfarchtorus3 (doubleprecision (*) archdat,

integer*num xdimval,

integer*num ydimval,

integer*num zdimval,

integer ierr)

Description

86

The SCOTCH archTorus3 routine fills the SCOTCH Arch structure pointed to

by archptr with the description of a 3D torus architecture with xdimval×

ydimval× zdimval processors.

Return values

SCOTCH archTorus3 returns 0 if the 3D torus target architecture has been

successfully built, and 1 else.

8.5.14 SCOTCH archTorusX

Synopsis

int SCOTCH archTorusX (SCOTCH Arch * archptr,

const SCOTCH Num dimnnbr,

const SCOTCH Num * dimntab)

scotchfarchtorusx (doubleprecision (*) archdat,

integer*num dimnnbr,

integer*num dimntab,

integer ierr)

Description

The SCOTCH archTorusX routine fills the SCOTCH Arch structure pointed to by

archptr with the description of a dimnnbr-dimension torus architecture with
∏

d dimntab[d] processors. The maximum number of dimensions is defined at

compile-time.

Return values

SCOTCH archTorusX returns 0 if the dimnnbr-dimension mesh target architec-

ture has been successfully built, and 1 else.

8.6 Graph handling routines

8.6.1 SCOTCH graphAlloc

Synopsis

SCOTCH Graph * SCOTCH graphAlloc (void)

Description

The SCOTCH graphAlloc function allocates a memory area of a size sufficient

to store a SCOTCH Graph structure. It is the user’s responsibility to free this

memory when it is no longer needed, using the SCOTCH memFree routine. The

allocated space must be initialized before use, by means of the SCOTCH graph

Init routine.

Return values

SCOTCH graphAlloc returns the pointer to the memory area if it has been

successfully allocated, and NULL else.

87

8.6.2 SCOTCH graphBase

Synopsis

int SCOTCH graphBase (SCOTCH Graph * grafptr,

SCOTCH Num baseval)

scotchfgraphbase (doubleprecision (*) grafdat,

integer*num baseval,

integer*num oldbaseval)

Description

The SCOTCH graphBase routine sets the base of all graph indices according to

the given base value, and returns the old base value. This routine is a helper

for applications that do not handle base values properly.

In Fortan, the old base value is returned in the third parameter of the function

call.

Return values

SCOTCH graphBase returns the old base value.

8.6.3 SCOTCH graphBuild

Synopsis

int SCOTCH graphBuild (SCOTCH Graph * grafptr,

const SCOTCH Num baseval,

const SCOTCH Num vertnbr,

const SCOTCH Num * verttab,

const SCOTCH Num * vendtab,

const SCOTCH Num * velotab,

const SCOTCH Num * vlbltab,

const SCOTCH Num edgenbr,

const SCOTCH Num * edgetab,

const SCOTCH Num * edlotab)

scotchfgraphbuild (doubleprecision (*) grafdat,

integer*num baseval,

integer*num vertnbr,

integer*num (*) verttab,

integer*num (*) vendtab,

integer*num (*) velotab,

integer*num (*) vlbltab,

integer*num edgenbr,

integer*num (*) edgetab,

integer*num (*) edlotab,

integer ierr)

Description

88

The SCOTCH graphBuild routine fills the source graph structure pointed to

by grafptr with all of the data that are passed to it.

baseval is the graph base value for index arrays (typically 0 for structures

built from C and 1 for structures built from Fortran). vertnbr is the number

of vertices. verttab is the adjacency index array, of size (vertnbr + 1) if

the edge array is compact (that is, if vendtab equals verttab+ 1 or NULL),

or of size vertnbr else. vendtab is the adjacency end index array, of size

vertnbr if it is disjoint from verttab. velotab is the vertex load array, of

size vertnbr if it exists. vlbltab is the vertex label array, of size vertnbr if

it exists. edgenbr is the number of arcs (that is, twice the number of edges).

edgetab is the adjacency array, of size at least edgenbr (it can be more if the

edge array is not compact). edlotab is the arc load array, of size edgenbr if

it exists.

The vendtab, velotab, vlbltab and edlotab arrays are optional, and a NULL

pointer can be passed as argument whenever they are not defined. Since, in

Fortran, there is no null reference, passing the scotchfgraphbuild routine a

reference equal to verttab in the velotab or vlbltab fields makes them be

considered as missing arrays. The same holds for edlotab when it is passed a

reference equal to edgetab. Setting vendtab to refer to one cell after verttab

yields the same result, as it is the exact semantics of a compact vertex array.

To limit memory consumption, SCOTCH graphBuild does not copy array data,

but instead references them in the SCOTCH Graph structure. Therefore, great

care should be taken not to modify the contents of the arrays passed to

SCOTCH graphBuild as long as the graph structure is in use. Every update

of the arrays should be preceded by a call to SCOTCH graphFree, to free in-

ternal graph structures, and eventually followed by a new call to SCOTCH

graphBuild to re-build these internal structures so as to be able to use the

new graph.

To ensure that inconsistencies in user data do not result in an erroneous behav-

ior of the libScotch routines, it is recommended, at least in the development

stage, to call the SCOTCH graphCheck routine on the newly created SCOTCH

Graph structure before calling any other libScotch routine.

Return values

SCOTCH graphBuild returns 0 if the graph structure has been successfully set

with all of the input data, and 1 else.

8.6.4 SCOTCH graphCheck

Synopsis

int SCOTCH graphCheck (const SCOTCH Graph * grafptr)

scotchfgraphcheck (doubleprecision (*) grafdat,

integer ierr)

Description

The SCOTCH graphCheck routine checks the consistency of the given SCOTCH

Graph structure. It can be used in client applications to determine if a graph

89

that has been created from used-generated data by means of the SCOTCH

graphBuild routine is consistent, prior to calling any other routines of the

libScotch library.

Return values

SCOTCH graphCheck returns 0 if graph data are consistent, and 1 else.

8.6.5 SCOTCH graphCoarsen

Synopsis

int SCOTCH graphCoarsen (SCOTCH Graph * const finegrafptr,

const SCOTCH Num coarvertnbr,

const double coarrat,

const SCOTCH Num flagval,

SCOTCH Graph * const coargrafptr,

SCOTCH Num * const coarmulttab)

scotchfgraphcoarsen (doubleprecision (*) finegrafdat,

integer*num coarvertnbr,

doubleprecision coarrat,

integer*num flagval,

doubleprecision (*) coargrafdat,

integer*num (*) coarmulttab,

integer ierr)

Description

The SCOTCH graphCoarsen routine creates, in the SCOTCH Graph structure

coargrafdat pointed to by coargrafptr, a graph coarsened from the SCOTCH

Graph structure finegrafdat pointed to by finegrafptr. The coarsened

graph is created only if it comprises more than coarvertnbr vertices, or if

the coarsening ratio is lower than coarrat. Valid coarsening ratio values

range from 0.5 (in the case of a perfect matching) to 1.0 (if no vertex could

be coarsened). Classical threshold values range from 0.7 to 0.8.

The flagval flag specifies the type of coarsening. When SCOTCH COARSEN

NOMERGE is set, isolated vertices are never merged with other vertices. This

preserves the topology of the graph, at the expense of a higher coarsening

ratio.

The multloctab array should be of a size big enough to store multinode data

for the resulting coarsened graph. Hence, the size of the array must be at least

twice the maximum expected number of local coarse vertices, according to the

prescribed coarsening ratio coarrat. Upon successful completion, this array

will contain pairs of consecutive SCOTCH Num values, representing the indices of

the two fine vertices that have been coarsened into each of the coarse vertices.

When a vertex has been coarsened with itself, its two multinode values are

identical.

coargrafdat must have been initialized with the SCOTCH graphInit routine

before SCOTCH graphCoarsen is called.

90

Return values

SCOTCH graphCoarsen returns 0 if the coarse graph structure has been suc-

cessfully created, 1 if the coarse graph was not created because it did not

enforce the threshold parameters, and 2 on error.

8.6.6 SCOTCH graphCoarsenBuild

Synopsis

int SCOTCH graphCoarsenBuild (SCOTCH Graph * const finegrafptr,

const SCOTCH Num coarvertnbr,

SCOTCH Num * const finematetab,

SCOTCH Graph * const coargrafptr,

SCOTCH Num * const coarmulttab)

scotchfgraphcoarsenbuild (doubleprecision (*) finegrafdat,

integer*num coarvertnbr,

integer*num (*) finematetab,

doubleprecision (*) coargrafdat,

integer*num (*) coarmulttab,

integer ierr)

Description

The SCOTCH graphCoarsenBuild routine creates, in the SCOTCH Graph struc-

ture coargrafdat pointed to by coargrafptr, a graph with coarvertnbr

vertices, coarsened from the SCOTCH Graph structure finegrafdat pointed to

by finegrafptr, using the matching provided by finematetab.

On input, the finematetab mating array should contain the indices of the

mates chosen for each vertex of the fine graph. When some vertex is mated to

itself, its array cell value is equal to its own index. Upon successful completion,

this array is updated so as to contain fine-to-coarse indices: each array cell

contains the index of the coarse vertex created from the given fine vertex.

The finematetab mating array and its associated number of coarse vertices

coarvertnbrmay have been computed using the SCOTCH graphCoarsenMatch

routine. Indeed, calling the SCOTCH graphCoarsenMatch and SCOTCH graph

CoarsenBuild routines in sequence amounts to calling the SCOTCH graph

Coarsen routine, yet additionally publicizing the finematetab array.

The multloctab array should be of a size big enough to store multinode

data for the resulting coarsened graph, that is, twice the value of coarvert

nbr. Upon successful completion, this array will contain pairs of consecutive

SCOTCH Num values, representing the indices of the two fine vertices that have

been coarsened into each of the coarse vertices. When a vertex has been

coarsened with itself, the two multinode values are identical.

coargrafdat must have been initialized with the SCOTCH graphInit routine

before SCOTCH graphCoarsenBuild is called.

Return values

SCOTCH graphCoarsenBuild returns 0 if the coarse graph structure has been

successfully created, and 1 on error.

91

8.6.7 SCOTCH graphCoarsenMatch

Synopsis

int SCOTCH graphCoarsenMatch (SCOTCH Graph * const finegrafptr,

SCOTCH Num * const coarvertptr,

const double coarrat,

const SCOTCH Num flagval,

SCOTCH Num * const finematetab)

scotchfgraphcoarsenmatch (doubleprecision (*) finegrafdat,

integer*num coarvertnbr,

doubleprecision coarrat,

integer*num flagval,

integer*num (*) finematetab,

integer ierr)

Description

The SCOTCH graphCoarsenMatch routine fills the finematetab array with a

matching of the vertices of the SCOTCH Graph structure finegrafdat pointed

to by finegrafptr. The matching is computed only if it amounts to the

creation of more than coarvertnbr (that is, the value pointed to by coar

vertptr in the C interface) coarse vertices, or if the coarsening ratio is lower

than coarrat. Valid coarsening ratio values range from 0.5 (in the case of a

perfect matching) to 1.0 (if no vertex could be coarsened). Classical threshold

values range from 0.7 to 0.8.

The flagval flag specifies the type of matching. When SCOTCH COARSENNO

MERGE is set, isolated vertices are never matched with other vertices. This

preserves the topology of the graph, at the expense of a higher coarsening

ratio.

The finematetab array must be of a size sufficient to hold as many SCOTCH

Num values as the number of vertices in the finegrafdat graph. Upon success-

ful completion, this array will contain the indices of the mates chosen for each

vertex of the provided graph. When some vertex is mated to itself, its array

cell value is equal to its own index. Additionally, coarvertnbr will be set to

the number of coarse vertices associated with the matching. This number is

equal to the number of vertices in the provided graph, minus the number of

matched pairs of vertices, since in a subsequent coarsening process, each pair

should see its two matched vertices collapsed into a single coarse vertex.

The mating array and its associated number of coarse vertices can be used by

the SCOTCH graphCoarsenBuild routine. Indeed, calling the SCOTCH graph

CoarsenMatch and SCOTCH graphCoarsenBuild routines in sequence amounts

to calling the SCOTCH graphCoarsen routine, yet additionally publicizing the

finematetab array.

Return values

SCOTCH graphCoarsenMatch returns 0 if a matching has been successfully

computed, 1 if the matching was not computed because it did not enforce the

threshold parameters, and 2 on error.

92

8.6.8 SCOTCH graphColor

Synopsis

void SCOTCH graphColor (const SCOTCH Graph * grafptr,

SCOTCH Num * colotab,

SCOTCH Num * coloptr,

SCOTCH Num flagval)

scotchfgraphcolor (doubleprecision (*) grafdat,

integer*num (*) colotab,

integernum colonbr,

integernum flagval,

integer ierr)

Description

The SCOTCH graphColor routine computes a coloring of the graph vertices.

The colotab array is filled with color values, and the number of colors found

is placed into the integer variable colonbr, pointed to by coloptr.

The computed coloring is not guaranteed to be maximal. Indeed, the only

algorithm currently implemented is a variant of Luby’s algorithm. Due to

the operations of this algorithm, the first colors are likely to have many more

representatives than the last colors.

Like for partition arrays, color values are not based: color values range from

0 to (colonbr− 1).

The flag value flagval is currently not used. It may be used in the future to

select a coloring method. At the time being, a value of 0 should be provided.

Return values

SCOTCH graphColor returns 0 if the graph coloring has been successfully com-

puted, and 1 else.

8.6.9 SCOTCH graphData

Synopsis

void SCOTCH graphData (const SCOTCH Graph * grafptr,

SCOTCH Num * baseptr,

SCOTCH Num * vertptr,

SCOTCH Num ** verttab,

SCOTCH Num ** vendtab,

SCOTCH Num ** velotab,

SCOTCH Num ** vlbltab,

SCOTCH Num * edgeptr,

SCOTCH Num ** edgetab,

SCOTCH Num ** edlotab)

93

scotchfgraphdata (doubleprecision (*) grafdat,

integer*num (*) indxtab,

integer*num baseval,

integer*num vertnbr,

integer*idx vertidx,

integer*idx vendidx,

integer*idx veloidx,

integer*idx vlblidx,

integer*num edgenbr,

integer*idx edgeidx,

integer*num edloidx)

Description

The SCOTCH graphData routine is the dual of the SCOTCH graphBuild routine.

It is a multiple accessor that returns scalar values and array references.

baseptr is the pointer to a location that will hold the graph base value for

index arrays (typically 0 for structures built from C and 1 for structures built

from Fortran). vertptr is the pointer to a location that will hold the number

of vertices. verttab is the pointer to a location that will hold the reference

to the adjacency index array, of size ∗vertptr + 1 if the adjacency array

is compact, or of size *vertptr else. vendtab is the pointer to a location

that will hold the reference to the adjacency end index array, and is equal to

verttab+ 1 if the adjacency array is compact. velotab is the pointer to a

location that will hold the reference to the vertex load array, of size *vertptr.

vlbltab is the pointer to a location that will hold the reference to the vertex

label array, of size vertnbr. edgeptr is the pointer to a location that will

hold the number of arcs (that is, twice the number of edges). edgetab is the

pointer to a location that will hold the reference to the adjacency array, of

size at least *edgeptr. edlotab is the pointer to a location that will hold the

reference to the arc load array, of size *edgeptr.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow

users to access graph arrays. The scotchfgraphdata routine is passed an

integer array, the first element of which is used as a base address from which all

other array indices are computed. Therefore, instead of returning references,

the routine returns integers, which represent the starting index of each of the

relevant arrays with respect to the base input array, or vertidx, the index

of verttab, if they do not exist. For instance, if some base array myarray

(1) is passed as parameter indxtab, then the first cell of array verttab

will be accessible as myarray(vertidx). In order for this feature to behave

properly, the indxtab array must be word-aligned with the graph arrays.

This is automatically enforced on most systems, but some care should be

taken on systems that allow one to access data that is not word-aligned. On

such systems, declaring the array after a dummy doubleprecision array

can coerce the compiler into enforcing the proper alignment. Also, on 32 64

architectures, such indices can be larger than the size of a regular INTEGER.

94

This is why the indices to be returned are defined by means of a specific

integer type. See Section 8.1.5 for more information on this issue.

8.6.10 SCOTCH graphExit

Synopsis

void SCOTCH graphExit (SCOTCH Graph * grafptr)

scotchfgraphexit (doubleprecision (*) grafdat)

Description

The SCOTCH graphExit function frees the contents of a SCOTCH Graph struc-

ture previously initialized by SCOTCH graphInit. All subsequent calls to

SCOTCH graph routines other than SCOTCH graphInit, using this structure

as parameter, may yield unpredictable results.

8.6.11 SCOTCH graphFree

Synopsis

void SCOTCH graphFree (SCOTCH Graph * grafptr)

scotchfgraphfree (doubleprecision (*) grafdat)

Description

The SCOTCH graphFree function frees the graph data of a SCOTCH Graph struc-

ture previously initialized by SCOTCH graphInit, but preserves its internal

data structures. This call is equivalent to a call to SCOTCH graphExit im-

mediately followed by a call to SCOTCH graphInit. Consequently, the given

SCOTCH Graph structure remains ready for subsequent calls to any routine of

the libScotch library.

8.6.12 SCOTCH graphInduceList

Synopsis

void SCOTCH graphInduceList (const SCOTCH Graph * orggrafptr,

SCOTCH Num vnumnbr,

SCOTCH Num * vnumtab,

SCOTCH Graph * indgrafptr)

scotchfgraphinducelist (doubleprecision (*) orggrafdat,

integer*num vnumnbr,

integernum (*) vnumtab,

doubleprecision (*) indgrafdat,

integer ierr)

95

Description

The SCOTCH graphInduceList routine computes an induced graph

indgrafdat from the original graph orggrafdat. The vertices that are kept

in the induced graph are the vnumnbr vertices whose based indices in the

original graph are provided in the vnumtab array, in its first vnumnbr cells.

Return values

SCOTCH graphInduceList returns 0 if the induced graph has been successfully

computed, and 1 else.

8.6.13 SCOTCH graphInducePart

Synopsis

void SCOTCH graphInducePart (const SCOTCH Graph * orggrafptr,

SCOTCH Num vnumnbr,

SCOTCH GraphPart2 * parttab,

SCOTCH GraphPart2 partval,

SCOTCH Graph * indgrafptr)

scotchfgraphinducepart (doubleprecision (*) orggrafdat,

integer*num vnumnbr,

characternum (*) parttab,

characternum partval,

doubleprecision (*) indgrafdat,

integer ierr)

Description

The SCOTCH graphInducePart routine computes an induced graph

indgrafdat from the original graph orggrafdat. The vertices that are kept

in the induced graph are the vnumnbr vertices whose part number in the

parttab array are equal to partval. The SCOTCH GraphPart2 type, being a

very small integer (most likely, an unsigned char), is assumed to hold only

small values, e.g. 0 or 1.

Return values

SCOTCH graphInducePart returns 0 if the induced graph has been successfully

computed, and 1 else.

8.6.14 SCOTCH graphInit

Synopsis

int SCOTCH graphInit (SCOTCH Graph * grafptr)

scotchfgraphinit (doubleprecision (*) grafdat,

integer ierr)

96

Description

The SCOTCH graphInit function initializes a SCOTCH Graph structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Graph structure. When the graph data is no longer of

use, call function SCOTCH graphExit to free its internal structures.

Return values

SCOTCH graphInit returns 0 if the graph structure has been successfully ini-

tialized, and 1 else.

8.6.15 SCOTCH graphLoad

Synopsis

int SCOTCH graphLoad (SCOTCH Graph * grafptr,

FILE * stream,

SCOTCH Num baseval,

SCOTCH Num flagval)

scotchfgraphload (doubleprecision (*) grafdat,

integer fildes,

integer*num baseval,

integer*num flagval,

integer ierr)

Description

The SCOTCH graphLoad routine fills the SCOTCH Graph structure pointed to

by grafptr with the source graph description available from stream stream

in the Scotch graph format (see section 6.1).

To ease the handling of source graph files by programs written in C as well as

in Fortran, the base value of the graph to read can be set to 0 or 1, by setting

the baseval parameter to the proper value. A value of -1 indicates that the

graph base should be the same as the one provided in the graph description

that is read from stream.

The flagval value is a combination of the following integer values, that may

be added or bitwise-ored:

0 Keep vertex and edge weights if they are present in the stream data.

1 Remove vertex weights. The graph read will have all of its vertex weights

set to one, regardless of what is specified in the stream data.

2 Remove edge weights. The graph read will have all of its edge weights

set to one, regardless of what is specified in the stream data.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the graph

file.

97

Return values

SCOTCH graphLoad returns 0 if the graph structure has been successfully al-

located and filled with the data read, and 1 else.

8.6.16 SCOTCH graphSave

Synopsis

int SCOTCH graphSave (const SCOTCH Graph * grafptr,

FILE * stream)

scotchfgraphsave (doubleprecision (*) grafdat,

integer fildes,

integer ierr)

Description

The SCOTCH graphSave routine saves the contents of the SCOTCH Graph struc-

ture pointed to by grafptr to stream stream, in the Scotch graph format

(see section 6.1).

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the graph

file.

Return values

SCOTCH graphSave returns 0 if the graph structure has been successfully writ-

ten to stream, and 1 else.

8.6.17 SCOTCH graphSize

Synopsis

void SCOTCH graphSize (const SCOTCH Graph * grafptr,

SCOTCH Num * vertptr,

SCOTCH Num * edgeptr)

scotchfgraphsize (doubleprecision (*) grafdat,

integer*num vertnbr,

integer*num edgenbr)

Description

The SCOTCH graphSize routine fills the two areas of type SCOTCH Num pointed

to by vertptr and edgeptrwith the number of vertices and arcs (that is, twice

the number of edges) of the given graph pointed to by grafptr, respectively.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

98

This routine is useful to get the size of a graph read by means of the SCOTCH

graphLoad routine, in order to allocate auxiliary arrays of proper sizes. If the

whole structure of the graph is wanted, function SCOTCH graphData should

be preferred.

8.6.18 SCOTCH graphStat

Synopsis

void SCOTCH graphStat (const SCOTCH Graph * grafptr,

SCOTCH Num * velominptr,

SCOTCH Num * velomaxptr,

SCOTCH Num * velosumptr,

double * veloavgptr,

double * velodltptr,

SCOTCH Num * degrminptr,

SCOTCH Num * degrmaxptr,

double * degravgptr,

double * degrdltptr,

SCOTCH Num * edlominptr,

SCOTCH Num * edlomaxptr,

SCOTCH Num * edlosumptr,

double * edloavgptr,

double * edlodltptr)

scotchfgraphstat (doubleprecision (*) grafdat,

integer*num velomin,

integer*num velomax,

integer*num velosum,

doubleprecision veloavg,

doubleprecision velodlt,

integer*num degrmin,

integer*num degrmax,

doubleprecision degravg,

doubleprecision degrdlt,

integer*num edlomin,

integer*num edlomax,

integer*num edlosum,

doubleprecision edloavg,

doubleprecision edlodlt)

Description

The SCOTCH graphStat routine produces some statistics regarding the graph

structure pointed to by grafptr. velomin, velomax, velosum, veloavg and

velodlt are the minimum vertex load, the maximum vertex load, the sum of

all vertex loads, the average vertex load, and the variance of the vertex loads,

respectively. degrmin, degrmax, degravg and degrdlt are the minimum ver-

tex degree, the maximum vertex degree, the average vertex degree, and the

variance of the vertex degrees, respectively. edlomin, edlomax, edlosum,

edloavg and edlodlt are the minimum edge load, the maximum edge load,

99

the sum of all edge loads, the average edge load, and the variance of the edge

loads, respectively.

8.7 High-level graph partitioning, mapping and clustering

routines

The routines presented in this section provide high-level functionalities and free

the user from the burden of calling in sequence several of the low-level routines

described in the next section.

8.7.1 SCOTCH graphMap

Synopsis

int SCOTCH graphMap (const SCOTCH Graph * grafptr,

const SCOTCH Arch * archptr,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphmap (doubleprecision (*) grafdat,

doubleprecision (*) archdat,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphMap routine computes a mapping of the source graph

structure pointed to by grafptr onto the target architecture pointed to by

archptr, using the mapping strategy pointed to by straptr (as defined in Sec-

tion 8.3.2), and returns the mapping data in the array pointed to by parttab.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

On return, every cell of the mapping array holds the number of the target

vertex to which the corresponding source vertex is mapped. The numbering

of target values is not based: target vertices are numbered from 0 to the

number of target vertices minus 1. This semantics aims at complying with

standards such as MPI, in which process ranks start from 0.

When a variable-sized architecture is used (see Section 6.4.3) and a proper

strategy is provided (see Section 8.15.2), the SCOTCH graphMap routine can

cluster the given graph by means of recursive bipartitioning. In this case,

clusters are labeled according to a binary scheme: the part equal to the whole

graph is numbered 1, its two bipartitioned descendants are labeled 2 and 3,

the two descendants of part 2 are labeled 4 and 5, and so on. More generally,

clusters are labeled such that the two descendants of any cluster i that has

been split are labeled 2i and 2i+ 1.

Classical clustering strategies perform recursive bipartitioning of process

graphs until some criterion is met: either parts become smaller than some

size threshold, or edge density becomes higher than some ratio, etc. If graph

100

mapping is performed using a variable-sized architecture and a classical map-

ping strategy, recursive bipartitioning will halt only when the load imbalance

criterion allows for one of the bipartitioned parts to be empty (that is, most

often, parts contains a single vertex).

Return values

SCOTCH graphMap returns 0 if the mapping of the graph has been successfully

computed, and 1 else. In this last case, the parttab array may however have

been partially or completely filled, but its contents are not significant.

8.7.2 SCOTCH graphMapFixed

Synopsis

int SCOTCH graphMapFixed (const SCOTCH Graph * grafptr,

const SCOTCH Arch * archptr,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphmapfixed (doubleprecision (*) grafdat,

doubleprecision (*) archdat,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphMapFixed routine computes a mapping of the source graph

structure pointed to by grafptr onto the target architecture pointed to by

archptr, using the mapping strategy pointed to by straptr (as defined in

Section 8.3.2), and fills the array pointed to by parttab with the mapping

data regarding vertices which have not been pre-assigned by the user.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

It must also have been filled in advance by the user, with data indicating

whether vertices have been already pre-assigned to a fixed position or are to

be processed by the routine. In each cell of the parttab array, a value of −1

indicates that the vertex is movable, while a value between 0 and the number

of target vertices minus 1 indicates that the vertex has been pre-assigned to

the given part.

On return, every cell of the mapping array that contained a −1 will hold

the number of the target vertex to which the corresponding source vertex is

mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices minus 1. This semantics

aims at complying with standards such as MPI, in which process ranks start

from 0.

Return values

SCOTCH graphMapFixed returns 0 if the mapping of the graph has been suc-

cessfully computed, and 1 else. In this last case, the parttab array may

101

however have been partially or completely filled, but its contents are not sig-

nificant.

8.7.3 SCOTCH graphPart

Synopsis

int SCOTCH graphPart (const SCOTCH Graph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphpart (doubleprecision (*) grafdat,

integer*num partnbr,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphPart routine computes an edge-separated partition, into

partnbr parts, of the source graph structure pointed to by grafptr, using the

graph edge partitioning strategy pointed to by stratptr (as defined in Sec-

tion 8.3.2), and returns the partition data in the array pointed to by parttab.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

On return, every cell of the mapping array holds the number of the target

vertex to which the corresponding source vertex is mapped. The numbering

of target values is not based: target vertices are numbered from 0 to partnbr−

1. This semantics aims at complying with standards such as MPI, in which

process ranks start from 0.

Return values

SCOTCH graphPart returns 0 if the graph partition has been successfully com-

puted, and 1 else. In the latter case, the parttab array may however have

been partially or completely filled, but its contents are not significant.

8.7.4 SCOTCH graphPartFixed

Synopsis

int SCOTCH graphPartFixed (const SCOTCH Graph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphpartfixed (doubleprecision (*) grafdat,

integer*num partnbr,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

102

Description

The SCOTCH graphPartFixed routine computes an edge-separated partition,

into partnbr parts, of the source graph structure pointed to by grafptr, using

the graph edge partitioning strategy pointed to by stratptr (as defined in

Section 8.3.2), and fills the array pointed to by parttab with the partitioning

data regarding vertices which have not been pre-assigned by the user.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

It must also have been filled in advance by the user, with data indicating

whether vertices have been already pre-assigned to a fixed position or are to

be processed by the routine. In each cell of the parttab array, a value of −1

indicates that the vertex is movable, while a value between 0 and the number

of target vertices minus 1 indicates that the vertex has been pre-assigned to

the given part.

On return, every cell of the mapping array that contained a −1 will hold

the number of the target vertex to which the corresponding source vertex is

assigned. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices minus 1. This semantics

aims at complying with standards such as MPI, in which process ranks start

from 0.

Return values

SCOTCH graphPartFixed returns 0 if the graph partition has been successfully

computed, and 1 else. In the latter case, the parttab array may however have

been partially or completely filled, but its contents are not significant.

8.7.5 SCOTCH graphPartOvl

Synopsis

int SCOTCH graphPartOvl (const SCOTCH Graph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphpartovl (doubleprecision (*) grafdat,

integer*num partnbr,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphPartOvl routine computes an overlapped vertex-separated

partition, into partnbr parts, of the source graph structure pointed to by

grafptr, using the graph vertex partitioning with overlap strategy pointed to

by stratptr (as defined in Section 8.3.4), and returns the partition data in

the array pointed to by parttab.

103

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

On return, every array cell holds the number of the part to which the corre-

sponding vertex is mapped. Regular parts are numbered from 0 to partnbr−1,

and separator vertices are labeled with part number -1.

While SCOTCH graphMap and SCOTCH graphPart are based on edge parti-

tioning methods, SCOTCH graphPartOvl relies on a completely distinct set

of routines to compute vertex separators. This is why SCOTCH graphPart

Ovl requires strategy strings of a different kind, created by the SCOTCH strat

GraphPartOvl* routines only (see Sections 8.15.5 and 8.15.6).

Return values

SCOTCH graphPartOvl returns 0 if the partition of the graph has been success-

fully computed, and 1 else. In the latter case, the parttab array may however

have been partially or completely filled, but its contents are not significant.

8.7.6 SCOTCH graphRemap

Synopsis

int SCOTCH graphRemap (const SCOTCH Graph * grafptr,

const SCOTCH Arch * archptr,

const SCOTCH Num * parotab,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphremap (doubleprecision (*) grafdat,

doubleprecision (*) archdat,

integer*num (*) parotab,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphRemap routine computes a remapping of the source graph

structure pointed to by grafptr onto the target architecture pointed to by

archptr, based on the old partition array pointed to by parotab, using the

mapping strategy pointed to by straptr (as defined in Section 8.3.2), and

returns the mapping data in the array pointed to by parttab.

The parotab array stores the old partition that is used to compute migration

costs. Every cell contains values from 0 to the number of target vertices minus

1, or −1 for vertices that did not belong to the old partition (e.g., vertices

newly created by graph adaptation, which can be placed at no cost before

their associated data is interpolated).

104

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

On return, every cell of the mapping array holds the number of the target

vertex to which the corresponding source vertex is mapped. The numbering

of target values is not based: target vertices are numbered from 0 to the

number of target vertices minus 1. This semantics aims at complying with

standards such as MPI, in which process ranks start from 0.

Return values

SCOTCH graphRemap returns 0 if the mapping of the graph has been success-

fully computed, and 1 else. In this last case, the parttab array may however

have been partially or completely filled, but its contents are not significant.

8.7.7 SCOTCH graphRemapFixed

Synopsis

int SCOTCH graphRemapFixed (const SCOTCH Graph * grafptr,

const SCOTCH Arch * archptr,

const SCOTCH Num * parotab,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphremapfixed (doubleprecision (*) grafdat,

doubleprecision (*) archdat,

integer*num (*) parotab,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphRemapFixed routine computes a remapping of the source

graph structure pointed to by grafptr onto the target architecture pointed

to by archptr, based on the old partition array pointed to by parotab, using

the mapping strategy pointed to by straptr (as defined in Section 8.3.2),

and fills the array pointed to by parttab with the mapping data regarding

vertices which have not been pre-assigned by the user.

The parotab array stores the old partition that is used to compute migration

costs. Every cell contains values from 0 to the number of target vertices minus

105

1, or −1 for vertices that did not belong to the old partition (e.g., vertices

newly created by graph adaptation, which can be placed at no cost before

their associated data is interpolated).

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

It must also have been filled in advance by the user, with data indicating

whether vertices have been already pre-assigned to a fixed position or are to

be processed by the routine. In each cell of the parttab array, a value of −1

indicates that the vertex is movable, while a value between 0 and the number

of target vertices minus 1 indicates that the vertex has been pre-assigned to

the given part.

On return, every cell of the mapping array that contained a −1 will hold

the number of the target vertex to which the corresponding source vertex is

mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices minus 1. This semantics

aims at complying with standards such as MPI, in which process ranks start

from 0.

Return values

SCOTCH graphRemapFixed returns 0 if the mapping of the graph has been

successfully computed, and 1 else. In this last case, the parttab array may

however have been partially or completely filled, with some −1’s removed, but

its contents are not significant.

8.7.8 SCOTCH graphRepart

Synopsis

int SCOTCH graphRepart (const SCOTCH Graph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Num * parotab,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

scotchfgraphrepart (doubleprecision (*) grafdat,

integer*num partnbr,

integer*num (*) parotab,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

106

Description

The SCOTCH graphRepart routine computes an edge-separated repartition,

into partnbr parts, of the source graph structure pointed to by grafptr,

based on the old partition array pointed to by parotab, using the partitioning

strategy pointed to by straptr (as defined in Section 8.3.2), and returns the

partition data in the array pointed to by parttab.

The parotab array stores the old partition that is used to compute migration

costs. Every cell contains values from 0 to the number of target vertices minus

1, or −1 for vertices that did not belong to the old partition (e.g., vertices

newly created by graph adaptation, which can be assigned to any part at no

cost before their associated data is interpolated).

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

On return, every cell of the mapping array holds the number of the target

vertex to which the corresponding source vertex is mapped. The numbering

of target values is not based: target vertices are numbered from 0 to the

number of target vertices minus 1. This semantics aims at complying with

standards such as MPI, in which process ranks start from 0.

Return values

SCOTCH graphRepart returns 0 if the graph partition has been successfully

computed, and 1 else. In the latter case, the parttab array may however

have been partially or completely filled, but its contents are not significant.

8.7.9 SCOTCH graphRepartFixed

Synopsis

int SCOTCH graphRepartFixed (const SCOTCH Graph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Num * parotab,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr,

SCOTCH Num * parttab)

107

scotchfgraphrepartfixed (doubleprecision (*) grafdat,

integer*num partnbr,

integer*num (*) parotab,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer*num (*) parttab,

integer ierr)

Description

The SCOTCH graphRepartFixed routine computes an edge-separated reparti-

tion, into partnbr parts, of the source graph structure pointed to by grafptr,

based on the old partition array pointed to by parotab, using the partition-

ing strategy pointed to by straptr (as defined in Section 8.3.2), and fills the

array pointed to by parttab with the mapping data regarding vertices which

have not been pre-assigned by the user.

The parotab array stores the old partition that is used to compute migration

costs. Every cell contains values from 0 to the number of target vertices minus

1, or −1 for vertices that did not belong to the old partition (e.g., vertices

newly created by graph adaptation, which can be assigned to any part at no

cost before their associated data is interpolated).

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

It must also have been filled in advance by the user, with data indicating

whether vertices have been already pre-assigned to a fixed position or are to

be processed by the routine. In each cell of the parttab array, a value of −1

indicates that the vertex is movable, while a value between 0 and the number

of target vertices minus 1 indicates that the vertex has been pre-assigned to

the given part.

On return, every cell of the mapping array that contained a −1 will hold

the number of the target vertex to which the corresponding source vertex is

mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices minus 1. This semantics

aims at complying with standards such as MPI, in which process ranks start

from 0.

Return values

SCOTCH graphRepartFixed returns 0 if the graph partition has has been suc-

cessfully computed, and 1 else. In this last case, the parttab array may

however have been partially or completely filled, with some −1’s removed,

but its contents are not significant.

108

8.8 Low-level graph partitioning, mapping and clustering

routines

All of the following routines operate on a SCOTCH Mapping structure that contains

references to the partition and mapping arrays to be filled during the mapping or

remapping process.

8.8.1 SCOTCH graphMapCompute

Synopsis

int SCOTCH graphMapCompute (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

const SCOTCH Strat * straptr)

scotchfgraphmapcompute (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphMapCompute routine computes a mapping on the given

SCOTCH Mapping structure pointed to by mappptr using the mapping strategy

pointed to by stratptr.

On return, every cell of the mapping array defined by SCOTCH mapInit holds

the number of the target vertex to which the corresponding source vertex is

mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices, minus 1.

Return values

SCOTCH graphMapCompute returns 0 if the mapping has been successfully com-

puted, and 1 else. In this latter case, the mapping array may however have

been partially or completely filled, but its contents are not significant.

8.8.2 SCOTCH graphMapExit

Synopsis

void SCOTCH graphMapExit (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr)

scotchfgraphmapexit (doubleprecision (*) grafdat,

doubleprecision (*) mappdat)

Description

The SCOTCH graphMapExit function frees the contents of a SCOTCH Mapping

structure previously initialized by SCOTCH graphMapInit. All subsequent calls

to SCOTCH graphMap* routines other than SCOTCH graphMapInit, using this

structure as parameter, may yield unpredictable results.

109

8.8.3 SCOTCH graphMapFixedCompute

Synopsis

int SCOTCH graphMapFixedCompute (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

const SCOTCH Strat * straptr)

scotchfgraphmapfixedcompute (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphMapFixedCompute routine computes a mapping on the

given SCOTCH Mapping structure pointed to by mappptr using the mapping

strategy pointed to by stratptr. The mapping must have been built so that

its partition array has been filled in advance by the user, with data indicating

whether vertices have been already pre-assigned to a fixed position or are to

be processed by the routine. In each cell of the parttab array, a value of −1

indicates that the vertex is movable, while a value between 0 and the number

of target vertices minus 1 indicates that the vertex has been pre-assigned to

the given part.

On return, every cell of the mapping array defined by SCOTCH mapInit that

contained a −1 will hold the number of the target vertex to which the cor-

responding source vertex is mapped. The numbering of target values is not

based: target vertices are numbered from 0 to the number of target vertices,

minus 1.

Return values

SCOTCH graphMapFixedCompute returns 0 if the mapping has been success-

fully computed, and 1 else. In this latter case, the mapping array may how-

ever have been partially or completely filled, with some −1’s removed, but its

contents are not significant.

8.8.4 SCOTCH graphMapInit

Synopsis

int SCOTCH graphMapInit (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

const SCOTCH Arch * archptr,

SCOTCH Num * parttab)

scotchfgraphmapinit (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) archdat,

integer*num (*) parttab,

integer ierr)

110

Description

The SCOTCH graphMapInit routine fills the mapping structure pointed to by

mappptr with all of the data that is passed to it. Thus, all subsequent calls

to ordering routines such as SCOTCH graphMapCompute, using this mapping

structure as parameter, will place mapping results in field parttab.

parttab is the pointer to an array of as many SCOTCH Nums as there are vertices

in the graph pointed to by grafptr, and which will receive the indices of the

vertices of the target architecture pointed to by archptr.

It should be the first function to be called upon a SCOTCH Mapping structure.

When the mapping structure is no longer of use, call function SCOTCH graph

MapExit to free its internal structures.

Return values

SCOTCH graphMapInit returns 0 if the mapping structure has been success-

fully initialized, and 1 else.

8.8.5 SCOTCH graphMapLoad

Synopsis

int SCOTCH graphMapLoad (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

FILE * stream)

scotchfgraphmapload (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

integer fildes,

integer ierr)

Description

The SCOTCH graphMapLoad routine fills the SCOTCH Mapping structure pointed

to by mappptr with the mapping data available in the Scotch mapping for-

mat (see section 6.5) from stream stream. If the source graph has vertex labels

attached to its vertices, mapping indices in the input stream are assumed to

be vertex labels as well.

Users willing to have subsequent access to the partition data rather than to

fill an opaque SCOTCH Mapping structure are invited to use the SCOTCH graph

TabLoad routine instead.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

mapping file.

Return values

SCOTCH graphMapLoad returns 0 if the mapping structure has been success-

fully loaded from stream, and 1 else.

111

8.8.6 SCOTCH graphMapSave

Synopsis

int SCOTCH graphMapSave (const SCOTCH Graph * grafptr,

const SCOTCH Mapping * mappptr,

FILE * stream)

scotchfgraphmapsave (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

integer fildes,

integer ierr)

Description

The SCOTCH graphMapSave routine saves the contents of the SCOTCH Mapping

structure pointed to by mappptr to stream stream, in the Scotch mapping

format (see section 6.5).

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

mapping file.

Return values

SCOTCH graphMapSave returns 0 if the mapping structure has been success-

fully written to stream, and 1 else.

8.8.7 SCOTCH graphMapView

Synopsis

int SCOTCH graphMapView (const SCOTCH Graph * grafptr,

const SCOTCH Mapping * mappptr,

FILE * stream)

scotchfgraphmapview (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

integer fildes,

integer ierr)

Description

The SCOTCH mapView routine summarizes statistical information on the map-

ping pointed to by mappptr (load of target processors, number of neighboring

domains, average dilation and expansion, edge cut size, distribution of edge

dilations), and prints these results to stream stream.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the output

data file.

112

Return values

SCOTCH mapView returns 0 if the data has been successfully written to stream,

and 1 else.

8.8.8 SCOTCH graphRemapCompute

Synopsis

int SCOTCH graphRemapCompute (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

SCOTCH Mapping * mapoptr,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr)

scotchfgraphremapcompute (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) mapodat,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphRemapCompute routine computes a mapping on the given

SCOTCH Mapping structure pointed to by mappptr, using the mapping strategy

pointed to by stratptr, and accounting for migration costs computed based

on the already computed partition pointed to by mapoptr. This partition

should have been created from the same graph and target architecture as the

one pointer to by mappptr.

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

On return, every cell of the new mapping array defined by SCOTCH mapInit

holds the number of the target vertex to which the corresponding source vertex

is mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices, minus 1.

Return values

SCOTCH graphRemapCompute returns 0 if the remapping has been successfully

computed, and 1 else. In this latter case, the mapping array may however

have been partially or completely filled, but its contents are not significant.

113

8.8.9 SCOTCH graphRemapFixedCompute

Synopsis

int SCOTCH graphRemapFixedCompute (const SCOTCH Graph * grafptr,

SCOTCH Mapping * mappptr,

SCOTCH Mapping * mapoptr,

const double emraval,

const SCOTCH Num * vmlotab,

const SCOTCH Strat * straptr)

scotchfgraphremapfixedcompute (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) mapodat,

doubleprecision emraval,

integer*num (*) vmlotab,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphRemapFixedCompute routine computes a mapping on the

given SCOTCH Mapping structure pointed to by mappptr, using the mapping

strategy pointed to by stratptr, and accounting for migration costs com-

puted based on the already computed partition pointed to by mapoptr. This

partition should have been created from the same graph and target architec-

ture as the one pointer to by mappptr.

The partition array of the mapping pointed to by mappptr must have been

filled in advance by the user, with data indicating whether vertices have been

already pre-assigned to a fixed position or are to be processed by the routine.

A value of −1 indicates that the vertex is movable, while a value between 0

and the number of target vertices minus 1 indicates that the vertex has been

pre-assigned to the given part.

With every source graph vertex is associated an individual integer migration

cost, stored in the vmlotab array. These costs are accounted for in the com-

munication cost function to minimize as multiples of the individual migration

cost emraval. Since this value is provided as a floating point number, migra-

tion costs can be set as fractions or as non-integer multiples of the cut metric

communication costs stored as integer edge loads.

On return, every cell of the new mapping array defined by SCOTCH mapInit

that contained a −1 holds the number of the target vertex to which the cor-

responding source vertex is mapped. The numbering of target values is not

based: target vertices are numbered from 0 to the number of target vertices,

minus 1.

Return values

SCOTCH graphRemapFixedCompute returns 0 if the remapping has been suc-

cessfully computed, and 1 else. In this latter case, the mapping array may

however have been partially or completely filled, with some −1’s removed, but

its contents are not significant.

114

8.8.10 SCOTCH graphTabLoad

Synopsis

int SCOTCH graphTabLoad (const SCOTCH Graph * grafptr,

SCOTCH Num * parttab,

FILE * stream)

scotchfgraphmapload (doubleprecision (*) grafdat,

integer*num (*) parttab,

integer fildes,

integer ierr)

Description

The SCOTCH graphTabLoad routine fills the parttab part array pointed to by

parttab with the mapping data available in the Scotch mapping format (see

section 6.5) from stream stream.

This routine allows users to fill plain partition arrays rather than opaque

mapping structures, as routine SCOTCH graphMapLoad does.

The parttab array should have been previously allocated, of a size sufficient

to hold as many SCOTCH Num integers as there are vertices in the source graph.

Upon completion, array cells contain the indices of the parts to which ver-

tices belong according to the input mapping stream, or -1 if they were not

mentioned in the stream. If the source graph has vertex labels attached to its

vertices, mapping indices in the input stream are assumed to be vertex labels

as well.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

mapping file.

Return values

SCOTCH graphMapLoad returns 0 if the mapping structure has been success-

fully loaded from stream, and 1 else.

8.9 High-level graph ordering routines

This routine provides high-level functionality and frees the user from the burden of

calling in sequence several of the low-level routines described in the next section.

8.9.1 SCOTCH graphOrder

Synopsis

115

int SCOTCH graphOrder (const SCOTCH Graph * grafptr,

const SCOTCH Strat * straptr,

SCOTCH Num * permtab,

SCOTCH Num * peritab,

SCOTCH Num * cblkptr,

SCOTCH Num * rangtab,

SCOTCH Num * treetab)

scotchfgraphorder (doubleprecision (*) grafdat,

doubleprecision (*) stradat,

integer*num (*) permtab,

integer*num (*) peritab,

integer*num cblknbr,

integer*num (*) rangtab,

integer*num (*) treetab,

integer ierr)

Description

The SCOTCH graphOrder routine computes a block ordering of the unknowns

of the symmetric sparse matrix the adjacency structure of which is represented

by the source graph structure pointed to by grafptr, using the ordering

strategy pointed to by stratptr, and returns ordering data in the scalar

pointed to by cblkptr and the four arrays permtab, peritab, rangtab and

treetab.

The permtab, peritab, rangtab and treetab arrays should have been pre-

viously allocated, of a size sufficient to hold as many SCOTCH Num integers as

there are vertices in the source graph, plus one in the case of rangtab. Any

of the five output fields can be set to NULL if the corresponding information is

not needed. Since, in Fortran, there is no null reference, passing a reference

to grafptr in these fields will have the same effect.

On return, permtab holds the direct permutation of the unknowns, that is,

vertex i of the original graph has index permtab[i] in the reordered graph,

while peritab holds the inverse permutation, that is, vertex i in the reordered

graph had index peritab[i] in the original graph. All of these indices are

numbered according to the base value of the source graph: permutation indices

are numbered from baseval to vertnbr + baseval − 1, that is, from 0 to

vertnbr− 1 if the graph base is 0, and from 1 to vertnbr if the graph base

is 1.

The three other result fields, *cblkptr, rangtab and treetab, contain data

related to the block structure. *cblkptr holds the number of column blocks

of the produced ordering, and rangtab holds the starting indices of each of the

permuted column blocks, in increasing order, so that column block i starts at

index rangtab[i] and ends at index (rangtab[i+1]−1), inclusive, in the new

ordering. treetab holds the separators tree structure, that is, treetab[i]

is the index of the father of column block i in the separators tree, or −1 if

column block i is the root of the separators tree. Please refer to Section 8.2.5

for more information.

Return values

116

SCOTCH graphOrder returns 0 if the ordering of the graph has been successfully

computed, and 1 else. In this last case, the rangtab, permtab, and peritab

arrays may however have been partially or completely filled, but their contents

are not significant.

8.10 Low-level graph ordering routines

All of the following routines operate on a SCOTCH Ordering structure that contains

references to the permutation arrays to be filled during the graph ordering process.

8.10.1 SCOTCH graphOrderCheck

Synopsis

int SCOTCH graphOrderCheck (const SCOTCH Graph * grafptr,

const SCOTCH Ordering * ordeptr)

scotchfgraphordercheck (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer ierr)

Description

The SCOTCH graphOrderCheck routine checks the consistency of the given

SCOTCH Ordering structure pointed to by ordeptr.

Return values

SCOTCH graphOrderCheck returns 0 if ordering data are consistent, and 1 else.

8.10.2 SCOTCH graphOrderCompute

Synopsis

int SCOTCH graphOrderCompute (const SCOTCH Graph * grafptr,

SCOTCH Ordering * ordeptr,

const SCOTCH Strat * straptr)

scotchfgraphordercompute (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphOrderCompute routine computes a block ordering of the

graph structure pointed to by grafptr, using the ordering strategy pointed

to by stratptr, and stores its result in the ordering structure pointed to by

ordeptr.

On return, the ordering structure holds a block ordering of the given graph

(see section 8.10.5 for a description of the ordering fields).

117

Return values

SCOTCH graphOrderCompute returns 0 if the ordering has been successfully

computed, and 1 else. In this latter case, the ordering arrays may however

have been partially or completely filled, but their contents are not significant.

8.10.3 SCOTCH graphOrderComputeList

Synopsis

int SCOTCH graphOrderComputeList (const SCOTCH Graph * grafptr,

SCOTCH Ordering * ordeptr,

SCOTCH Num listnbr,

SCOTCH Num * listtab,

const SCOTCH Strat * straptr)

scotchfgraphordercompute (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer*num listnbr,

integer*num (*) listtab,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH graphOrderComputeList routine computes a block ordering of a

subgraph of the graph structure pointed to by grafptr, using the ordering

strategy pointed to by stratptr, and stores its result in the ordering structure

pointed to by ordeptr. The induced subgraph is described by means of a

vertex list: listnbr holds the number of vertices to keep in the induced

subgraph, the indices of which are given, in any order, in the listtab array.

On return, the ordering structure holds a block ordering of the induced sub-

graph (see section 8.2.5 for a description of the ordering fields). To compute

this ordering, graph ordering methods such as the minimum degree and mini-

mum fill methods will base on the original degree of the induced graph vertices,

their non-induced neighbors being considered as halo vertices (see Section 4.4

for more information on halo vertices).

Because an ordering always refers to the full graph, the ordering com-

puted by SCOTCH graphOrderComputeList is divided into two distinct parts:

the induced graph vertices are ordered by applying to the induced graph

the strategy provided by the stratptr parameter, while non-induced ver-

tex are ordered consecutively with the highest available indices. Conse-

quently, the permuted indices of induced vertices range from baseval to

(listnbr + baseval − 1), while the permuted indices of the remaining ver-

tices range from (listnbr+ baseval) to (vertnbr+ baseval− 1), inclusive.

The separation tree yielded by SCOTCH graphOrderComputeList reflects this

property: it is made of two branches, the first one corresponding to the in-

duced subgraph, and the second one to the remaining vertices. Since these

two subgraphs are not considered to be connected, both will have their own

root, represented by a −1 value in the treetab array of the ordering.

118

Return values

SCOTCH graphOrderComputeList returns 0 if the ordering has been success-

fully computed, and 1 else. In this latter case, the ordering arrays may however

have been partially or completely filled, but their contents are not significant.

8.10.4 SCOTCH graphOrderExit

Synopsis

void SCOTCH graphOrderExit (const SCOTCH Graph * grafptr,

SCOTCH Ordering * ordeptr)

scotchfgraphorderexit (doubleprecision (*) grafdat,

doubleprecision (*) ordedat)

Description

The SCOTCH graphOrderExit function frees the contents of a SCOTCH

Ordering structure previously initialized by SCOTCH graphOrderInit. All

subsequent calls to SCOTCH graphOrder* routines other than SCOTCH graph

OrderInit, using this structure as parameter, may yield unpredictable results.

8.10.5 SCOTCH graphOrderInit

Synopsis

int SCOTCH graphOrderInit (const SCOTCH Graph * grafptr,

SCOTCH Ordering * ordeptr,

SCOTCH Num * permtab,

SCOTCH Num * peritab,

SCOTCH Num * cblkptr,

SCOTCH Num * rangtab,

SCOTCH Num * treetab)

scotchfgraphorderinit (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer*num (*) permtab,

integer*num (*) peritab,

integer*num cblknbr,

integer*num (*) rangtab,

integer*num (*) treetab,

integer ierr)

Description

The SCOTCH graphOrderInit routine fills the ordering structure pointed to by

ordeptr with all of the data that are passed to it. Thus, all subsequent calls

to ordering routines such as SCOTCH graphOrderCompute, using this ordering

structure as parameter, will place ordering results in fields permtab, peritab,

*cblkptr, rangtab or treetab, if they are not set to NULL.

119

permtab is the ordering permutation array, of size vertnbr, peritab is the

inverse ordering permutation array, of size vertnbr, cblkptr is the pointer

to a SCOTCH Num that will receive the number of produced column blocks,

rangtab is the array that holds the column block span information, of size

vertnbr+1, and treetab is the array holding the structure of the separators

tree, of size vertnbr. See the above manual page of SCOTCH graphOrder, as

well as section 8.2.5, for an explanation of the semantics of all of these fields.

The SCOTCH graphOrderInit routine should be the first function to be called

upon a SCOTCH Ordering structure for ordering graphs. When the ordering

structure is no longer of use, the SCOTCH graphOrderExit function must be

called, in order to to free its internal structures.

Return values

SCOTCH graphOrderInit returns 0 if the ordering structure has been success-

fully initialized, and 1 else.

8.10.6 SCOTCH graphOrderLoad

Synopsis

int SCOTCH graphOrderLoad (const SCOTCH Graph * grafptr,

SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfgraphorderload (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH graphOrderLoad routine fills the SCOTCH Ordering structure

pointed to by ordeptr with the ordering data available in the Scotch order-

ing format (see section 6.6) from stream stream.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

ordering file.

Return values

SCOTCH graphOrderLoad returns 0 if the ordering structure has been success-

fully loaded from stream, and 1 else.

8.10.7 SCOTCH graphOrderSave

Synopsis

int SCOTCH graphOrderSave (const SCOTCH Graph * grafptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

120

scotchfgraphordersave (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH graphOrderSave routine saves the contents of the SCOTCH

Ordering structure pointed to by ordeptr to stream stream, in the Scotch

ordering format (see section 6.6).

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

ordering file.

Return values

SCOTCH graphOrderSave returns 0 if the ordering structure has been success-

fully written to stream, and 1 else.

8.10.8 SCOTCH graphOrderSaveMap

Synopsis

int SCOTCH graphOrderSaveMap (const SCOTCH Graph * grafptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfgraphordersavemap (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH graphOrderSaveMap routine saves the block partitioning data as-

sociated with the SCOTCH Ordering structure pointed to by ordeptr to stream

stream, in the Scotch mapping format (see section 6.5). A target domain

number is associated with every block, such that all node vertices belonging

to the same block are shown as belonging to the same target vertex. The

resulting mapping file can be used by the gout program (see Section 7.3.12)

to produce pictures showing the different separators and blocks.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-

ber of the Unix file descriptor fildes associated with the logical unit of the

mapping file.

Return values

SCOTCH graphOrderSaveMap returns 0 if the ordering structure has been suc-

cessfully written to stream, and 1 else.

121

8.10.9 SCOTCH graphOrderSaveTree

Synopsis

int SCOTCH graphOrderSaveTree (const SCOTCH Graph * grafptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfgraphordersavetree (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH graphOrderSaveTree routine saves the tree hierarchy informa-

tion associated with the SCOTCH Ordering structure pointed to by ordeptr

to stream stream.

The format of the tree output file resembles the one of a mapping or ordering

file: it is made up of as many lines as there are vertices in the ordering. Each

of these lines holds two integer numbers. The first one is the index or the

label of the vertex, and the second one is the index of its parent node in the

separators tree, or −1 if the vertex belongs to a root node.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the tree

mapping file.

Return values

SCOTCH graphOrderSaveTree returns 0 if the separators tree structure has

been successfully written to stream, and 1 else.

8.11 Mesh handling routines

8.11.1 SCOTCH meshAlloc

Synopsis

SCOTCH Mesh * SCOTCH meshAlloc (void)

Description

The SCOTCH meshAlloc function allocates a memory area of a size sufficient

to store a SCOTCH Mesh structure. It is the user’s responsibility to free this

memory when it is no longer needed, using the SCOTCH memFree routine. The

allocated space must be initialized before use, by means of the SCOTCH mesh

Init routine.

Return values

SCOTCH meshAlloc returns the pointer to the memory area if it has been

successfully allocated, and NULL else.

122

8.11.2 SCOTCH meshBuild

Synopsis

int SCOTCH meshBuild (SCOTCH Mesh * meshptr,

const SCOTCH Num velmbas,

const SCOTCH Num vnodbas,

const SCOTCH Num velmnbr,

const SCOTCH Num vnodnbr,

const SCOTCH Num * verttab,

const SCOTCH Num * vendtab,

const SCOTCH Num * velotab,

const SCOTCH Num * vnlotab,

const SCOTCH Num * vlbltab,

const SCOTCH Num edgenbr,

const SCOTCH Num * edgetab)

scotchfmeshbuild (doubleprecision (*) meshdat,

integer*num velmbas,

integer*num vnodbas,

integer*num velmnbr,

integer*num vnodnbr,

integer*num (*) verttab,

integer*num (*) vendtab,

integer*num (*) velotab,

integer*num (*) vnlotab,

integer*num (*) vlbltab,

integer*num edgenbr,

integer*num (*) edgetab,

integer*num ierr)

Description

The SCOTCH meshBuild routine fills the source mesh structure pointed to by

meshptr with all of the data that is passed to it.

velmbas and vnodbas are the base values for the element and node ver-

tices, respectively. velmnbr and vnodnbr are the number of element and

node vertices, respectively, such that either velmbas+velmnbr = vnodnbr or

vnodbas+vnodnbr = velmnbr holds, and typically min(velmbas, vnodbas) is

0 for structures built from C and 1 for structures built from Fortran. verttab

is the adjacency index array, of size (velmnbr+ vnodnbr+ 1) if the edge ar-

ray is compact (that is, if vendtab equals vendtab + 1 or NULL), or of size

(velmnbr+ vnodnbr1) else. vendtab is the adjacency end index array, of size

(velmnbr+ vnodnbr) if it is disjoint from verttab. velotab is the element

vertex load array, of size velmnbr if it exists. vnlotab is the node vertex load

array, of size vnodnbr if it exists. vlbltab is the vertex label array, of size

(velmnbr+vnodnbr) if it exists. edgenbr is the number of arcs (that is, twice

the number of edges). edgetab is the adjacency array, of size at least edgenbr

(it can be more if the edge array is not compact).

The vendtab, velotab, vnlotab and vlbltab arrays are optional, and a NULL

123

pointer can be passed as argument whenever they are not defined. Since, in

Fortran, there is no null reference, passing the scotchfmeshbuild routine a

reference equal to verttab in the velotab, vnlotab or vlbltab fields makes

them be considered as missing arrays. Setting vendtab to refer to one cell

after verttab yields the same result, as it is the exact semantics of a compact

vertex array.

To limit memory consumption, SCOTCH meshBuild does not copy array data,

but instead references them in the SCOTCH Mesh structure. Therefore, great

care should be taken not to modify the contents of the arrays passed to

SCOTCH meshBuild as long as the mesh structure is in use. Every update

of the arrays should be preceded by a call to SCOTCH meshExit, to free in-

ternal mesh structures, and eventually followed by a new call to SCOTCH

meshBuild to re-build these internal structures so as to be able to use the

new mesh.

To ensure that inconsistencies in user data do not result in an erroneous behav-

ior of the libScotch routines, it is recommended, at least in the development

stage, to call the SCOTCH meshCheck routine on the newly created SCOTCH

Mesh structure, prior to any other calls to libScotch routines.

Return values

SCOTCH meshBuild returns 0 if the mesh structure has been successfully set

with all of the input data, and 1 else.

8.11.3 SCOTCH meshCheck

Synopsis

int SCOTCH meshCheck (const SCOTCH Mesh * meshptr)

scotchfmeshcheck (doubleprecision (*) meshdat,

integer ierr)

Description

The SCOTCH meshCheck routine checks the consistency of the given SCOTCH

Mesh structure. It can be used in client applications to determine if a mesh

that has been created from used-generated data by means of the SCOTCH

meshBuild routine is consistent, prior to calling any other routines of the

libScotch library.

Return values

SCOTCH meshCheck returns 0 if mesh data are consistent, and 1 else.

8.11.4 SCOTCH meshData

Synopsis

124

void SCOTCH meshData (const SCOTCH Mesh * meshptr,

SCOTCH Num * vebaptr,

SCOTCH Num * vnbaptr,

SCOTCH Num * velmptr,

SCOTCH Num * vnodptr,

SCOTCH Num ** verttab,

SCOTCH Num ** vendtab,

SCOTCH Num ** velotab,

SCOTCH Num ** vnlotab,

SCOTCH Num ** vlbltab,

SCOTCH Num * edgeptr,

SCOTCH Num ** edgetab,

SCOTCH Num * degrptr)

scotchfmeshdata (doubleprecision (*) meshdat,

integer*num (*) indxtab,

integer*num velobas,

integer*num vnlobas,

integer*num velmnbr,

integer*num vnodnbr,

integer*idx vertidx,

integer*idx vendidx,

integer*idx veloidx,

integer*idx vnloidx,

integer*idx vlblidx,

integer*num edgenbr,

integer*idx edgeidx,

integer*num degrmax)

Description

The SCOTCH meshData routine is the dual of the SCOTCH meshBuild routine.

It is a multiple accessor that returns scalar values and array references.

vebaptr and vnbaptr are pointers to locations that will hold the mesh base

value for elements and nodes, respectively (the minimum of these two val-

ues is typically 0 for structures built from C and 1 for structures built from

Fortran). velmptr and vnodptr are pointers to locations that will hold the

number of element and node vertices, respectively. verttab is the pointer

to a location that will hold the reference to the adjacency index array, of

size (∗velmptr+ ∗vnodptr+ 1) if the adjacency array is compact, or of size

(∗velmptr+∗vnodptr) else. vendtab is the pointer to a location that will hold

the reference to the adjacency end index array, and is equal to verttab+ 1

if the adjacency array is compact. velotab and vnlotab are pointers to

locations that will hold the reference to the element and node vertex load

arrays, of sizes *velmptr and *vnodptr, respectively. vlbltab is the pointer

to a location that will hold the reference to the vertex label array, of size

(∗velmptr+ ∗vnodptr). edgeptr is the pointer to a location that will hold

the number of arcs (that is, twice the number of edges). edgetab is the pointer

to a location that will hold the reference to the adjacency array, of size at least

edgenbr. degrptr is the pointer to a location that will hold the maximum

vertex degree computed across all element and node vertices.

125

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow

users to access mesh arrays. The scotchfmeshdata routine is passed an inte-

ger array, the first element of which is used as a base address from which all

other array indices are computed. Therefore, instead of returning references,

the routine returns integers, which represent the starting index of each of the

relevant arrays with respect to the base input array, or vertidx, the index

of verttab, if they do not exist. For instance, if some base array myarray

(1) is passed as parameter indxtab, then the first cell of array verttab will

be accessible as myarray(vertidx). In order for this feature to behave prop-

erly, the indxtab array must be word-aligned with the mesh arrays. This is

automatically enforced on most systems, but some care should be taken on

systems that allow one to access data that is not word-aligned. On such sys-

tems, declaring the array after a dummy doubleprecision array can coerce

the compiler into enforcing the proper alignment. Also, on 32 64 architec-

tures, such indices can be larger than the size of a regular INTEGER. This is

why the indices to be returned are defined by means of a specific integer type.

See Section 8.1.5 for more information on this issue.

8.11.5 SCOTCH meshExit

Synopsis

void SCOTCH meshExit (SCOTCH Mesh * meshptr)

scotchfmeshexit (doubleprecision (*) meshdat)

Description

The SCOTCH meshExit function frees the contents of a SCOTCH Mesh structure

previously initialized by SCOTCH meshInit. All subsequent calls to SCOTCH

mesh* routines other than SCOTCH meshInit, using this structure as parame-

ter, may yield unpredictable results.

8.11.6 SCOTCH meshGraph

Synopsis

int SCOTCH meshGraph (const SCOTCH Mesh * meshptr,

SCOTCH Graph * grafptr)

scotchfmeshgraph (doubleprecision (*) meshdat,

doubleprecision (*) grafdat,

integer ierr)

Description

126

The SCOTCH meshGraph routine builds a graph from a mesh. It creates in the

SCOTCH Graph structure pointed to by grafptr a graph having as many ver-

tices as there are nodes in the SCOTCH Mesh structure pointed to by meshptr,

and where there is an edge between any two graph vertices if and only if

there exists in the mesh an element containing both of the associated nodes.

Consequently, all of the elements of the mesh are turned into cliques in the

resulting graph.

In order to save memory space as well as computation time, in the current

implementation of SCOTCH meshGraph, some mesh arrays are shared with the

graph structure. Therefore, one should make sure that the graph must no

longer be used after the mesh structure is freed. The graph structure can be

freed before or after the mesh structure, but must not be used after the mesh

structure is freed.

Return values

SCOTCH meshGraph returns 0 if the graph structure has been successfully al-

located and filled, and 1 else.

8.11.7 SCOTCH meshInit

Synopsis

int SCOTCH meshInit (SCOTCH Mesh * meshptr)

scotchfmeshinit (doubleprecision (*) meshdat,

integer ierr)

Description

The SCOTCH meshInit function initializes a SCOTCH Mesh structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Mesh structure. When the mesh data is no longer of

use, call function SCOTCH meshExit to free its internal structures.

Return values

SCOTCH meshInit returns 0 if the mesh structure has been successfully ini-

tialized, and 1 else.

8.11.8 SCOTCH meshLoad

Synopsis

int SCOTCH meshLoad (SCOTCH Mesh * meshptr,

FILE * stream,

SCOTCH Num baseval)

scotchfmeshload (doubleprecision (*) meshdat,

integer fildes,

integer*num baseval,

integer ierr)

127

Description

The SCOTCH meshLoad routine fills the SCOTCH Mesh structure pointed to by

meshptr with the source mesh description available from stream stream in

the Scotch mesh format (see section 6.2).

To ease the handling of source mesh files by programs written in C as well as

in Fortran, The base value of the mesh to read can be set to 0 or 1, by setting

the baseval parameter to the proper value. A value of -1 indicates that the

mesh base should be the same as the one provided in the mesh description

that is read from stream.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the mesh

file.

Return values

SCOTCH meshLoad returns 0 if the mesh structure has been successfully allo-

cated and filled with the data read, and 1 else.

8.11.9 SCOTCH meshSave

Synopsis

int SCOTCH meshSave (const SCOTCH Mesh * meshptr,

FILE * stream)

scotchfmeshsave (doubleprecision (*) meshdat,

integer fildes,

integer ierr)

Description

The SCOTCH meshSave routine saves the contents of the SCOTCH Mesh structure

pointed to by meshptr to stream stream, in the Scotch mesh format (see

section 6.2).

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the mesh

file.

Return values

SCOTCH meshSave returns 0 if the mesh structure has been successfully written

to stream, and 1 else.

8.11.10 SCOTCH meshSize

Synopsis

128

void SCOTCH meshSize (const SCOTCH Mesh * meshptr,

SCOTCH Num * velmptr,

SCOTCH Num * vnodptr,

SCOTCH Num * edgeptr)

scotchfmeshsize (doubleprecision (*) meshdat,

integer*num velmnbr,

integer*num vnodnbr,

integer*num edgenbr)

Description

The SCOTCH meshSize routine fills the three areas of type SCOTCH Num pointed

to by velmptr, vnodptr and edgeptr with the number of element vertices,

node vertices and arcs (that is, twice the number of edges) of the given mesh

pointed to by meshptr, respectively.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

This routine is useful to get the size of a mesh read by means of the SCOTCH

meshLoad routine, in order to allocate auxiliary arrays of proper sizes. If the

whole structure of the mesh is wanted, function SCOTCH meshData should be

preferred.

8.11.11 SCOTCH meshStat

Synopsis

void SCOTCH meshStat (const SCOTCH Mesh * meshptr,

SCOTCH Num * vnlominptr,

SCOTCH Num * vnlomaxptr,

SCOTCH Num * vnlosumptr,

double * vnloavgptr,

double * vnlodltptr,

SCOTCH Num * edegminptr,

SCOTCH Num * edegmaxptr,

double * edegavgptr,

double * edegdltptr,

SCOTCH Num * ndegminptr,

SCOTCH Num * ndegmaxptr,

double * ndegavgptr,

double * ndegdltptr)

129

scotchfmeshstat (doubleprecision (*) meshdat,

integer*num vnlomin,

integer*num vnlomax,

integer*num vnlosum,

doubleprecision vnloavg,

doubleprecision vnlodlt,

integer*num edegmin,

integer*num edegmax,

doubleprecision edegavg,

doubleprecision edegdlt,

integer*num ndegmin,

integer*num ndegmax,

doubleprecision ndegavg,

doubleprecision ndegdlt)

Description

The SCOTCH meshStat routine produces some statistics regarding the mesh

structure pointed to by meshptr. vnlomin, vnlomax, vnlosum, vnloavg and

vnlodlt are the minimum node vertex load, the maximum node vertex load,

the sum of all node vertex loads, the average node vertex load, and the vari-

ance of the node vertex loads, respectively. edegmin, edegmax, edegavg and

edegdlt are the minimum element vertex degree, the maximum element ver-

tex degree, the average element vertex degree, and the variance of the element

vertex degrees, respectively. ndegmin, ndegmax, ndegavg and ndegdlt are the

minimum element vertex degree, the maximum element vertex degree, the av-

erage element vertex degree, and the variance of the element vertex degrees,

respectively.

8.12 High-level mesh ordering routines

This routine provides high-level functionality and frees the user from the burden of

calling in sequence several of the low-level routines described afterward.

8.12.1 SCOTCH meshOrder

Synopsis

int SCOTCH meshOrder (const SCOTCH Mesh * meshptr,

const SCOTCH Strat * straptr,

SCOTCH Num * permtab,

SCOTCH Num * peritab,

SCOTCH Num * cblkptr,

SCOTCH Num * rangtab,

SCOTCH Num * treetab)

130

scotchfmeshorder (doubleprecision (*) meshdat,

doubleprecision (*) stradat,

integer*num (*) permtab,

integer*num (*) peritab,

integer*num cblknbr,

integer*num (*) rangtab,

integer*num (*) treetab,

integer ierr)

Description

The SCOTCH meshOrder routine computes a block ordering of the unknowns of

the symmetric sparse matrix the adjacency structure of which is represented

by the elements that connect the nodes of the source mesh structure pointed to

by meshptr, using the ordering strategy pointed to by stratptr, and returns

ordering data in the scalar pointed to by cblkptr and the four arrays permtab,

peritab, rangtab and treetab.

The permtab, peritab, rangtab and treetab arrays should have been pre-

viously allocated, of a size sufficient to hold as many SCOTCH Num integers as

there are node vertices in the source mesh, plus one in the case of rangtab.

Any of the five output fields can be set to NULL if the corresponding infor-

mation is not needed. Since, in Fortran, there is no null reference, passing a

reference to meshptr in these fields will have the same effect.

On return, permtab holds the direct permutation of the unknowns, that is,

node vertex i of the original mesh has index permtab[i] in the reordered

mesh, while peritab holds the inverse permutation, that is, node vertex i

in the reordered mesh had index peritab[i] in the original mesh. All of

these indices are numbered according to the base value of the source mesh:

permutation indices are numbered from min(velmbas, vnodbas) to vnodnbr+

min(velmbas, vnodbas) − 1, that is, from 0 to vnodnbr− 1 if the mesh base

is 0, and from 1 to vnodnbr if the mesh base is 1. The base value for mesh

orderings is taken as min(velmbas, vnodbas), and not just as vnodbas, such

that orderings that are computed on some mesh have exactly the same index

range as orderings that would be computed on the graph obtained from the

original mesh by means of the SCOTCH meshGraph routine.

The three other result fields, *cblkptr, rangtab and treetab, contain data

related to the block structure. *cblkptr holds the number of column blocks

of the produced ordering, and rangtab holds the starting indices of each of the

permuted column blocks, in increasing order, so that column block i starts at

index rangtab[i] and ends at index (rangtab[i+1]−1), inclusive, in the new

ordering. treetab holds the separators tree structure, that is, treetab[i]

is the index of the father of column block i in the separators tree, or −1 if

column block i is the root of the separators tree. Please refer to Section 8.2.5

for more information.

Return values

SCOTCH meshOrder returns 0 if the ordering of the mesh has been successfully

computed, and 1 else. In this last case, the rangtab, permtab, and peritab

arrays may however have been partially or completely filled, but their contents

are not significant.

131

8.13 Low-level mesh ordering routines

All of the following routines operate on a SCOTCH Ordering structure that contains

references to the permutation arrays to be filled during the mesh ordering process.

8.13.1 SCOTCH meshOrderCheck

Synopsis

int SCOTCH meshOrderCheck (const SCOTCH Mesh * meshptr,

const SCOTCH Ordering * ordeptr)

scotchfmeshordercheck (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

integer ierr)

Description

The SCOTCH meshOrderCheck routine checks the consistency of the given

SCOTCH Ordering structure pointed to by ordeptr.

Return values

SCOTCH meshOrderCheck returns 0 if ordering data are consistent, and 1 else.

8.13.2 SCOTCH meshOrderCompute

Synopsis

int SCOTCH meshOrderCompute (const SCOTCH Mesh * meshptr,

SCOTCH Ordering * ordeptr,

const SCOTCH Strat * straptr)

scotchfmeshordercompute (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH meshOrderCompute routine computes a block ordering of the

mesh structure pointed to by grafptr, using the mapping strategy pointed

to by stratptr, and stores its result in the ordering structure pointed to by

ordeptr.

On return, the ordering structure holds a block ordering of the given mesh

(see section 8.13.4 for a description of the ordering fields).

Return values

SCOTCH meshOrderCompute returns 0 if the ordering has been successfully

computed, and 1 else. In this latter case, the ordering arrays may however

have been partially or completely filled, but their contents are not significant.

132

8.13.3 SCOTCH meshOrderExit

Synopsis

void SCOTCH meshOrderExit (const SCOTCH Mesh * meshptr,

SCOTCH Ordering * ordeptr)

scotchfmeshorderexit (doubleprecision (*) meshdat,

doubleprecision (*) ordedat)

Description

The SCOTCH meshOrderExit function frees the contents of a SCOTCH Ordering

structure previously initialized by SCOTCH meshOrderInit. All subsequent

calls to SCOTCH meshOrder* routines other than SCOTCH meshOrderInit, us-

ing this structure as parameter, may yield unpredictable results.

8.13.4 SCOTCH meshOrderInit

Synopsis

int SCOTCH meshOrderInit (const SCOTCH Mesh * meshptr,

SCOTCH Ordering * ordeptr,

SCOTCH Num * permtab,

SCOTCH Num * peritab,

SCOTCH Num * cblkptr,

SCOTCH Num * rangtab,

SCOTCH Num * treetab)

scotchfmeshorderinit (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

integer*num (*) permtab,

integer*num (*) peritab,

integer*num cblknbr,

integer*num (*) rangtab,

integer*num (*) treetab,

integer ierr)

Description

The SCOTCH meshOrderInit routine fills the ordering structure pointed to by

ordeptr with all of the data that are passed to it. Thus, all subsequent calls

to ordering routines such as SCOTCH meshOrderCompute, using this ordering

structure as parameter, will place ordering results in fields permtab, peritab,

*cblkptr, rangtab or treetab, if they are not set to NULL.

permtab is the ordering permutation array, of size vnodnbr, peritab is the

inverse ordering permutation array, of size vnodnbr, cblkptr is the pointer

to a SCOTCH Num that will receive the number of produced column blocks,

rangtab is the array that holds the column block span information, of size

vnodnbr+1, and treetab is the array holding the structure of the separators

133

tree, of size vnodnbr. See the above manual page of SCOTCH meshOrder, as

well as section 8.2.5, for an explanation of the semantics of all of these fields.

The SCOTCH meshOrderInit routine should be the first function to be called

upon a SCOTCH Ordering structure for ordering meshes. When the ordering

structure is no longer of use, the SCOTCH meshOrderExit function must be

called, in order to to free its internal structures.

Return values

SCOTCH meshOrderInit returns 0 if the ordering structure has been success-

fully initialized, and 1 else.

8.13.5 SCOTCH meshOrderSave

Synopsis

int SCOTCH meshOrderSave (const SCOTCH Mesh * meshptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfmeshordersave (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH meshOrderSave routine saves the contents of the SCOTCH

Ordering structure pointed to by ordeptr to stream stream, in the Scotch

ordering format (see section 6.6).

Return values

SCOTCH meshOrderSave returns 0 if the ordering structure has been success-

fully written to stream, and 1 else.

8.13.6 SCOTCH meshOrderSaveMap

Synopsis

int SCOTCH meshOrderSaveMap (const SCOTCH Mesh * meshptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfmeshordersavemap (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

134

The SCOTCH meshOrderSaveMap routine saves the block partitioning data as-

sociated with the SCOTCH Ordering structure pointed to by ordeptr to stream

stream, in the Scotch mapping format (see section 6.5). A target domain

number is associated with every block, such that all node vertices belonging

to the same block are shown as belonging to the same target vertex.

This mapping file can then be used by the gout program (see section 7.3.12)

to produce pictures showing the different separators and blocks. Since gout

only takes graphs as input, the mesh has to be converted into a graph by

means of the gmk msh program (see section 7.3.8).

Return values

SCOTCH meshOrderSaveMap returns 0 if the ordering structure has been suc-

cessfully written to stream, and 1 else.

8.13.7 SCOTCH meshOrderSaveTree

Synopsis

int SCOTCH meshOrderSaveTree (const SCOTCH Mesh * meshptr,

const SCOTCH Ordering * ordeptr,

FILE * stream)

scotchfmeshordersavetree (doubleprecision (*) meshdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH meshOrderSaveTree routine saves the tree hierarchy information

associated with the SCOTCH Ordering structure pointed to by ordeptr to

stream stream.

The format of the tree output file resembles the one of a mapping or ordering

file: it is made up of as many lines as there are node vertices in the ordering.

Each of these lines holds two integer numbers. The first one is the index or

the label of the node vertex, starting from baseval, and the second one is the

index of its parent node in the separators tree, or −1 if the vertex belongs to

a root node.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the tree

mapping file.

Return values

SCOTCH meshOrderSaveTree returns 0 if the separators tree structure has been

successfully written to stream, and 1 else.

135

8.14 Strategy handling routines

8.14.1 SCOTCH stratAlloc

Synopsis

SCOTCH Strat * SCOTCH stratAlloc (void)

Description

The SCOTCH stratAlloc function allocates a memory area of a size sufficient

to store a SCOTCH Strat structure. It is the user’s responsibility to free this

memory when it is no longer needed, using the SCOTCH memFree routine. The

allocated space must be initialized before use, by means of the SCOTCH strat

Init routine.

Return values

SCOTCH stratAlloc returns the pointer to the memory area if it has been

successfully allocated, and NULL else.

8.14.2 SCOTCH stratExit

Synopsis

void SCOTCH stratExit (SCOTCH Strat * archptr)

scotchfstratexit (doubleprecision (*) stradat)

Description

The SCOTCH stratExit function frees the contents of a SCOTCH Strat struc-

ture previously initialized by SCOTCH stratInit. All subsequent calls to

SCOTCH strat routines other than SCOTCH stratInit, using this structure

as parameter, may yield unpredictable results.

8.14.3 SCOTCH stratInit

Synopsis

int SCOTCH stratInit (SCOTCH Strat * straptr)

scotchfstratinit (doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH stratInit function initializes a SCOTCH Strat structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Strat structure. When the strategy data is no longer

of use, call function SCOTCH stratExit to free its internal structures.

136

Return values

SCOTCH stratInit returns 0 if the strategy structure has been successfully

initialized, and 1 else.

8.14.4 SCOTCH stratSave

Synopsis

int SCOTCH stratSave (const SCOTCH Strat * straptr,

FILE * stream)

scotchfstratsave (doubleprecision (*) stradat,

integer fildes,

integer ierr)

Description

The SCOTCH stratSave routine saves the contents of the SCOTCH Strat struc-

ture pointed to by straptr to stream stream, in the form of a text string.

The methods and parameters of the strategy string depend on the type of the

strategy, that is, whether it is a bipartitioning, mapping, or ordering strategy,

and to which structure it applies, that is, graphs or meshes.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor fildes associated with the logical unit of the output

file.

Return values

SCOTCH stratSave returns 0 if the strategy string has been successfully writ-

ten to stream, and 1 else.

8.15 Strategy creation routines

Strategy creation routines parse the user-provided strategy string and populate the

given opaque strategy object with a tree-shaped structure that represents the parsed

expression. It is this structure that will be later traversed by the generic routines for

partitioning, mapping or ordering, so as to determine which specific partitioning,

mapping or ordering method to be called on a subgraph being considered.

Because strategy creation routines call third-party lexical analyzers that may

have been implemented in a non-reentrant way, no guarantee is given on the reen-

trance of these routines. Consequently, strategy creation routines that might be

called simultaneously by multiple threads should be protected by a mutex.

8.15.1 SCOTCH stratGraphBipart

Synopsis

int SCOTCH stratGraphBipart (SCOTCH Strat * straptr,

const char * string)

137

scotchfstratgraphbipart (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratGraphBipart routine fills the strategy structure pointed

to by straptr with the graph bipartitioning strategy string pointed to by

string. From this point, the strategy structure can only be used as a graph

bipartitioning strategy, to be used by function SCOTCH archBuild, for in-

stance.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratGraphBipart returns 0 if the strategy string has been success-

fully set, and 1 else.

8.15.2 SCOTCH stratGraphClusterBuild

Synopsis

int SCOTCH stratGraphClusterBuild (SCOTCH Strat * straptr,

const SCOTCH Num flagval,

const SCOTCH Num pwgtmax,

const double densmin,

const double bbalval)

scotchfstratgraphclusterbuild (doubleprecision (*) stradat,

integer*num flagval,

integer*num pwgtmax,

doubleprecision densmin,

doubleprecision bbalval,

integer ierr)

Description

The SCOTCH stratGraphClusterBuild routine fills the strategy structure

pointed to by straptr with a default clustering strategy tuned according

to the preference flags passed as flagval, the maximum cluster vertex weight

pwgtmax, the minimum edge density densmin, and the bipartition imbalance

ratio bbalval. From this point, the strategy structure can only be used as a

mapping strategy, to be used by a mapping function such as SCOTCH graph

Map.

Recursive bipartitioning will be applied to the graph, every bipartition allow-

ing for an imbalance tolerance of bbalval. Recursion will stop if either cluster

size becomes smaller than pwgtmax, or cluster edge density becomes higher

than densmin, which represents the fraction of edges internal to the cluster

with respect to a complete graph. See Section 8.3.1 for a description of the

available flags.

138

Return values

SCOTCH stratGraphClusterBuild returns 0 if the strategy string has been

successfully set, and 1 else.

8.15.3 SCOTCH stratGraphMap

Synopsis

int SCOTCH stratGraphMap (SCOTCH Strat * straptr,

const char * string)

scotchfstratgraphmap (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratGraphMap routine fills the strategy structure pointed to by

straptr with the graph mapping strategy string pointed to by string. From

this point, the strategy structure can only be used as a mapping strategy, to

be used by function SCOTCH graphMap, for instance.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratGraphMap returns 0 if the strategy string has been successfully

set, and 1 else.

8.15.4 SCOTCH stratGraphMapBuild

Synopsis

int SCOTCH stratGraphMapBuild (SCOTCH Strat * straptr,

const SCOTCH Num flagval,

const SCOTCH Num partnbr,

const double balrat)

scotchfstratgraphmapbuild (doubleprecision (*) stradat,

integer*num flagval,

integer*num partnbr,

doubleprecision balrat,

integer ierr)

Description

The SCOTCH stratGraphMapBuild routine fills the strategy structure pointed

to by straptr with a default mapping strategy tuned according to the pref-

erence flags passed as flagval and to the desired number of parts partnbr

and imbalance ratio balrat. From this point, the strategy structure can

139

only be used as a mapping strategy, to be used by function SCOTCH graph

Map, for instance. See Section 8.3.1 for a description of the available flags.

Return values

SCOTCH stratGraphMapBuild returns 0 if the strategy string has been suc-

cessfully set, and 1 else.

8.15.5 SCOTCH stratGraphPartOvl

Synopsis

int SCOTCH stratGraphPartOvl (SCOTCH Strat * straptr,

const char * string)

scotchfstratgraphpartovl (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratGraphPartOvl routine fills the strategy structure pointed

to by straptrwith the graph partitioning with overlap strategy string pointed

to by string. From this point, the strategy structure can only be used as a

partitioning with overlap strategy, to be used by function SCOTCH graphPart

Ovl only.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratGraphPartOvl returns 0 if the strategy string has been success-

fully set, and 1 else.

8.15.6 SCOTCH stratGraphPartOvlBuild

Synopsis

int SCOTCH stratGraphPartOvlBuild (SCOTCH Strat * straptr,

const SCOTCH Num flagval,

const SCOTCH Num partnbr,

const double balrat)

scotchfstratgraphpartovlbuild (doubleprecision (*) stradat,

integer*num flagval,

integer*num partnbr,

doubleprecision balrat,

integer ierr)

Description

140

The SCOTCH stratGraphPartOvlBuild routine fills the strategy structure

pointed to by straptr with a default partitioning with overlap strategy tuned

according to the preference flags passed as flagval and to the desired number

of parts partnbr and imbalance ratio balrat. From this point, the strategy

structure can only be used as a partitioning with overlap strategy, to be used

by function SCOTCH graphPartOvl only. See Section 8.3.1 for a description of

the available flags.

Return values

SCOTCH stratGraphPartOvlBuild returns 0 if the strategy string has been

successfully set, and 1 else.

8.15.7 SCOTCH stratGraphOrder

Synopsis

int SCOTCH stratGraphOrder (SCOTCH Strat * straptr,

const char * string)

scotchfstratgraphorder (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratGraphOrder routine fills the strategy structure pointed to

by straptr with the graph ordering strategy string pointed to by string.

From this point, the strategy structure can only be used as a graph ordering

strategy, to be used by function SCOTCH graphOrder, for instance.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratGraphOrder returns 0 if the strategy string has been successfully

set, and 1 else.

8.15.8 SCOTCH stratGraphOrderBuild

Synopsis

int SCOTCH stratGraphOrderBuild (SCOTCH Strat * straptr,

const SCOTCH Num flagval,

const SCOTCH Num levlnbr,

const double balrat)

scotchfstratgraphorderbuild (doubleprecision (*) stradat,

integer*num flagval,

integer*num levlnbr,

doubleprecision balrat,

integer ierr)

141

Description

The SCOTCH stratGraphOrderBuild routine fills the strategy structure

pointed to by straptr with a default sequential ordering strategy tuned ac-

cording to the preference flags passed as flagval and to the desired nested

dissection imbalance ratio balrat. From this point, the strategy structure can

only be used as an ordering strategy, to be used by function SCOTCH graph

Order, for instance.

See Section 8.3.1 for a description of the available flags. When any of the

SCOTCH STRATLEVELMIN or SCOTCH STRATLEVELMAX flags is set, the levlnbr

parameter is taken into account.

Return values

SCOTCH stratGraphOrderBuild returns 0 if the strategy string has been suc-

cessfully set, and 1 else.

8.15.9 SCOTCH stratMeshOrder

Synopsis

int SCOTCH stratMeshOrder (SCOTCH Strat * straptr,

const char * string)

scotchfstratmeshorder (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratMeshOrder routine fills the strategy structure pointed to by

straptr with the mesh ordering strategy string pointed to by string. From

this point, strategy strat can only be used as a mesh ordering strategy, to

be used by function SCOTCH meshOrder, for instance.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratMeshOrder returns 0 if the strategy string has been successfully

set, and 1 else.

8.15.10 SCOTCH stratMeshOrderBuild

Synopsis

int SCOTCH stratMeshOrderBuild (SCOTCH Strat * straptr,

const SCOTCH Num flagval,

const double balrat)

142

scotchfstratmeshorderbuild (doubleprecision (*) stradat,

integer*num flagval,

doubleprecision balrat,

integer ierr)

Description

The SCOTCH stratMeshOrderBuild routine fills the strategy structure pointed

to by straptr with a default ordering strategy tuned according to the prefer-

ence flags passed as flagval and to the desired nested dissection imbalance

ratio balrat. From this point, the strategy structure can only be used as

an ordering strategy, to be used by function SCOTCH meshOrder, for instance.

See Section 8.3.1 for a description of the available flags.

Return values

SCOTCH stratMesdOrderBuild returns 0 if the strategy string has been suc-

cessfully set, and 1 else.

8.16 Geometry handling routines

Since the Scotch project is based on algorithms that rely on topology data only,

geometry data do not play an important role in the libScotch library. They are

only relevant to programs that display graphs, such as the gout program. However,

since all routines that are used by the programs of the Scotch distributions have

an interface in the libScotch library, there exist geometry handling routines in it,

which manipulate SCOTCH Geom structures.

Apart from the routines that create, destroy or access SCOTCH Geom structures,

all of the routines in this section are input/output routines, which read or write

both SCOTCH Graph and SCOTCH Geom structures. We have chosen to define the

interface of the geometry-handling routines such that they also handle graph or

mesh topology because some external file formats mix these data, and that we

wanted our routines to be able to read their data on the fly from streams that can

only be read once, such as communication pipes. Having both aspects taken into

account in a single call makes the writing of file conversion tools, such as gcv and

mcv, very easy. When the file format from which to read or into which to write

mixes both sorts of data, the geometry file pointer can be set to NULL, as it will not

be used.

8.16.1 SCOTCH geomAlloc

Synopsis

SCOTCH Geom * SCOTCH geomAlloc (void)

Description

The SCOTCH geomAlloc function allocates a memory area of a size sufficient

to store a SCOTCH Geom structure. It is the user’s responsibility to free this

memory when it is no longer needed, using the SCOTCH memFree routine. The

143

allocated space must be initialized before use, by means of the SCOTCH geom

Init routine.

Return values

SCOTCH geomAlloc returns the pointer to the memory area if it has been

successfully allocated, and NULL else.

8.16.2 SCOTCH geomInit

Synopsis

int SCOTCH geomInit (SCOTCH Geom * geomptr)

scotchfgeominit (doubleprecision (*) geomdat,

integer ierr)

Description

The SCOTCH geomInit function initializes a SCOTCH Geom structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Geom structure. When the geometrical data is no longer

of use, call function SCOTCH geomExit to free its internal structures.

Return values

SCOTCH geomInit returns 0 if the geometrical structure has been successfully

initialized, and 1 else.

8.16.3 SCOTCH geomExit

Synopsis

void SCOTCH geomExit (SCOTCH Geom * geomptr)

scotchfgeomexit (doubleprecision (*) geomdat)

Description

The SCOTCH geomExit function frees the contents of a SCOTCH Geom structure

previously initialized by SCOTCH geomInit. All subsequent calls to SCOTCH

Geom routines other than SCOTCH geomInit, using this structure as param-

eter, may yield unpredictable results.

8.16.4 SCOTCH geomData

Synopsis

void SCOTCH geomData (const SCOTCH Geom * geomptr,

SCOTCH Num * dimnptr,

double ** geomtab)

144

scotchfgeomdata (doubleprecision (*) geomdat,

doubleprecision (*) indxtab,

integer*num dimnnbr,

integer*idx geomidx)

Description

The SCOTCH geomData routine is a multiple accessor to the contents of

SCOTCH Geom structures.

dimnptr is the pointer to a location that will hold the number of dimensions

of the graph vertex or mesh node vertex coordinates, and will therefore be

equal to 1, 2 or 3. geomtab is the pointer to a location that will hold the

reference to the geometry coordinates, as defined in section 8.2.4.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow

users to access the coordinate array. The scotchfgeomdata routine is passed

an integer array, the first element of which is used as a base address from

which all other array indices are computed. Therefore, instead of returning a

reference, the routine returns an integer, which represents the starting index

of the coordinate array with respect to the base input array. For instance, if

some base array myarray(1) is passed as parameter indxtab, then the first

cell of array geomtab will be accessible as myarray(geomidx). In order for

this feature to behave properly, the indxtab array must be double-precision-

aligned with the geometry array. This is automatically enforced on most

systems, but some care should be taken on systems that allow one to access

data that is not double-aligned. On such systems, declaring the array after

a dummy doubleprecision array can coerce the compiler into enforcing the

proper alignment. Also, on 32 64 architectures, such indices can be larger

than the size of a regular INTEGER. This is why the indices to be returned

are defined by means of a specific integer type. See Section 8.1.5 for more

information on this issue.

8.16.5 SCOTCH graphGeomLoadChac

Synopsis

int SCOTCH graphGeomLoadChac (SCOTCH Graph * grafptr,

SCOTCH Geom * geomptr,

FILE * grafstream,

FILE * geomstream,

const char * string)

scotchfgraphgeomloadchac (doubleprecision (*) grafdat,

doubleprecision (*) geomdat,

integer graffildes,

integer geomfildes,

character (*) string)

145

Description

The SCOTCH graphGeomLoadChac routine fills the SCOTCH Graph structure

pointed to by grafptrwith the source graph description available from stream

grafstream in the Chaco graph format [25]. Since this graph format does

not handle geometry data, the geomptr and geomstream fields are not used,

as well as the string field.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor graffildes associated with the logical unit of the

graph file.

Return values

SCOTCH graphGeomLoadChac returns 0 if the graph structure has been suc-

cessfully allocated and filled with the data read, and 1 else.

8.16.6 SCOTCH graphGeomSaveChac

Synopsis

int SCOTCH graphGeomSaveChac (const SCOTCH Graph * grafptr,

const SCOTCH Geom * geomptr,

FILE * grafstream,

FILE * geomstream,

const char * string)

scotchfgraphgeomsavechac (doubleprecision (*) grafdat,

doubleprecision (*) geomdat,

integer graffildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH graphGeomSaveChac routine saves the contents of the SCOTCH

Graph structure pointed to by grafptr to stream grafstream, in the Chaco

graph format [25]. Since this graph format does not handle geometry data,

the geomptr and geomstream fields are not used, as well as the string field.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor graffildes associated with the logical unit of the

graph file.

Return values

SCOTCH graphGeomSaveChac returns 0 if the graph structure has been suc-

cessfully written to grafstream, and 1 else.

8.16.7 SCOTCH graphGeomLoadHabo

Synopsis

146

int SCOTCH graphGeomLoadHabo (SCOTCH Graph * grafptr,

SCOTCH Geom * geomptr,

FILE * grafstream,

FILE * geomstream,

const char * string)

scotchfgraphgeomloadhabo (doubleprecision (*) grafdat,

doubleprecision (*) geomdat,

integer graffildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH graphGeomLoadHabo routine fills the SCOTCH Graph structure

pointed to by grafptrwith the source graph description available from stream

grafstream in the Harwell-Boeing square assembled matrix format [10]. Since

this graph format does not handle geometry data, the geomptr and geom

stream fields are not used. Since multiple graph structures can be encoded

sequentially within the same file, the string field contains the string repre-

sentation of an integer number that codes the rank of the graph to read within

the Harwell-Boeing file. It is equal to “0” in most cases.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor graffildes associated with the logical unit of the

graph file.

Return values

SCOTCH graphGeomLoadHabo returns 0 if the graph structure has been suc-

cessfully allocated and filled with the data read, and 1 else.

8.16.8 SCOTCH graphGeomLoadScot

Synopsis

int SCOTCH graphGeomLoadScot (SCOTCH Graph * grafptr,

SCOTCH Geom * geomptr,

FILE * grafstream,

FILE * geomstream,

const char * string)

scotchfgraphgeomloadscot (doubleprecision (*) grafdat,

doubleprecision (*) geomdat,

integer graffildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH graphGeomLoadScot routine fills the SCOTCH Graph and SCOTCH

Geom structures pointed to by grafptr and geomptr with the source graph

147

description and geometry data available from streams grafstream and geom

stream in the Scotch graph and geometry formats (see sections 6.1 and 6.3,

respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the numbers

of the Unix file descriptors graffildes and geomfildes associated with the

logical units of the graph and geometry files.

Return values

SCOTCH graphGeomLoadScot returns 0 if the graph topology and geometry

have been successfully allocated and filled with the data read, and 1 else.

8.16.9 SCOTCH graphGeomSaveScot

Synopsis

int SCOTCH graphGeomSaveScot (const SCOTCH Graph * grafptr,

const SCOTCH Geom * geomptr,

FILE * grafstream,

FILE * geomstream,

const char * string)

scotchfgraphgeomsavescot (doubleprecision (*) grafdat,

doubleprecision (*) geomdat,

integer graffildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH graphGeomSaveScot routine saves the contents of the SCOTCH

Graph and SCOTCH Geom structures pointed to by grafptr and geomptr to

streams grafstream and geomstream, in the Scotch graph and geometry

formats (see sections 6.1 and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the numbers

of the Unix file descriptors graffildes and geomfildes associated with the

logical units of the graph and geometry files.

Return values

SCOTCH graphGeomSaveScot returns 0 if the graph topology and geometry

have been successfully written to grafstream and geomstream, and 1 else.

8.16.10 SCOTCH meshGeomLoadHabo

Synopsis

int SCOTCH meshGeomLoadHabo (SCOTCH Mesh * meshptr,

SCOTCH Geom * geomptr,

FILE * meshstream,

FILE * geomstream,

const char * string)

148

scotchfmeshgeomloadhabo (doubleprecision (*) meshdat,

doubleprecision (*) geomdat,

integer meshfildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH meshGeomLoadHabo routine fills the SCOTCH Mesh structure

pointed to by meshptr with the source mesh description available from stream

meshstream in the Harwell-Boeing square elemental matrix format [10]. Since

this mesh format does not handle geometry data, the geomptr and geom

stream fields are not used. Since multiple mesh structures can be encoded

sequentially within the same file, the string field contains the string repre-

sentation of an integer number that codes the rank of the mesh to read within

the Harwell-Boeing file. It is equal to “0” in most cases.

Fortran users must use the PXFFILENO or FNUM functions to obtain the number

of the Unix file descriptor meshfildes associated with the logical unit of the

mesh file.

Return values

SCOTCH meshGeomLoadHabo returns 0 if the mesh structure has been success-

fully allocated and filled with the data read, and 1 else.

8.16.11 SCOTCH meshGeomLoadScot

Synopsis

int SCOTCH meshGeomLoadScot (SCOTCH Mesh * meshptr,

SCOTCH Geom * geomptr,

FILE * meshstream,

FILE * geomstream,

const char * string)

scotchfmeshgeomloadscot (doubleprecision (*) meshdat,

doubleprecision (*) geomdat,

integer meshfildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH meshGeomLoadScot routine fills the SCOTCH Mesh and SCOTCH

Geom structures pointed to by meshptr and geomptr with the source mesh

description and node geometry data available from streams meshstream and

geomstream in the Scotch mesh and geometry formats (see sections 6.2

and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the numbers

of the Unix file descriptors meshfildes and geomfildes associated with the

logical units of the mesh and geometry files.

149

Return values

SCOTCH meshGeomLoadScot returns 0 if the mesh topology and node geometry

have been successfully allocated and filled with the data read, and 1 else.

8.16.12 SCOTCH meshGeomSaveScot

Synopsis

int SCOTCH meshGeomSaveScot (const SCOTCH Mesh * meshptr,

const SCOTCH Geom * geomptr,

FILE * meshstream,

FILE * geomstream,

const char * string)

scotchfmeshgeomsavescot (doubleprecision (*) meshdat,

doubleprecision (*) geomdat,

integer meshfildes,

integer geomfildes,

character (*) string)

Description

The SCOTCH meshGeomSaveScot routine saves the contents of the SCOTCH

Mesh and SCOTCH Geom structures pointed to by meshptr and geomptr to

streams meshstream and geomstream, in the Scotch mesh and geometry

formats (see sections 6.2 and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the numbers

of the Unix file descriptors meshfildes and geomfildes associated with the

logical units of the mesh and geometry files.

Return values

SCOTCH meshGeomSaveScot returns 0 if the mesh topology and node geometry

have been successfully written to meshstream and geomstream, and 1 else.

8.17 Other data structure handling routines

8.17.1 SCOTCH mapAlloc

Synopsis

SCOTCH Mapping * SCOTCH mapAlloc (void)

Description

The SCOTCH mapAlloc function allocates a memory area of a size sufficient to

store a SCOTCH Mapping structure. It is the user’s responsibility to free this

memory when it is no longer needed, using the SCOTCH memFree routine.

150

Return values

SCOTCH mapAlloc returns the pointer to the memory area if it has been suc-

cessfully allocated, and NULL else.

8.17.2 SCOTCH orderAlloc

Synopsis

SCOTCH Ordering * SCOTCH orderAlloc (void)

Description

The SCOTCH orderAlloc function allocates a memory area of a size sufficient

to store a SCOTCH Ordering structure. It is the user’s responsibility to free

this memory when it is no longer needed, using the SCOTCH memFree routine.

Return values

SCOTCH orderAlloc returns the pointer to the memory area if it has been

successfully allocated, and NULL else.

8.18 Error handling routines

The handling of errors that occur within library routines is often difficult, because

library routines should be able to issue error messages that help the application

programmer to find the error, while being compatible with the way the application

handles its own errors.

To match these two requirements, all the error and warning messages pro-

duced by the routines of the libScotch library are issued using the user-definable

variable-length argument routines SCOTCH errorPrint and SCOTCH errorPrintW.

Thus, one can redirect these error messages to his own error handling routines, and

can choose if he wants his program to terminate on error or to resume execution

after the erroneous function has returned.

In order to free the user from the burden of writing a basic error handler

from scratch, the libscotcherr.a library provides error routines that print error

messages on the standard error stream stderr and return control to the applica-

tion. Application programmers who want to take advantage of them have to add

-lscotcherr to the list of arguments of the linker, after the -lscotch argument.

8.18.1 SCOTCH errorPrint

Synopsis

void SCOTCH errorPrint (const char * const errstr, ...)

Description

The SCOTCH errorPrint function is designed to output a variable-length ar-

gument error string to some stream.

151

8.18.2 SCOTCH errorPrintW

Synopsis

void SCOTCH errorPrintW (const char * const errstr, ...)

Description

The SCOTCH errorPrintW function is designed to output a variable-length

argument warning string to some stream.

8.18.3 SCOTCH errorProg

Synopsis

void SCOTCH errorProg (const char * progstr)

Description

The SCOTCH errorProg function is designed to be called at the beginning of a

program or of a portion of code to identify the place where subsequent errors

take place. This routine is not reentrant, as it is only a minor help function.

It is defined in libscotcherr.a and is used by the standalone programs of

the Scotch distribution.

8.19 Miscellaneous routines

8.19.1 SCOTCH memCur

Synopsis

SCOTCH Idx SCOTCH memCur (void)

scotchfmemcur (integer*idx memcur)

Description

When Scotch is compiled with the COMMON MEMORY TRACE flag set, the

SCOTCH memCur routine returns the amount of memory, in bytes, that is cur-

rently allocated by Scotch on the current processing element, either by itself

or on the behalf of the user. Else, the routine returns -1.

The returned figure does not account for the memory that has been allocated

by the user and made visible to Scotch by means of routines such as SCOTCH

dgraphBuild calls. This memory is not under the control of Scotch, and

it is the user’s responsibility to free it after calling the relevant SCOTCH *

Exit routines.

Some third-party software used by Scotch, such as the strategy string parser,

may allocate some memory for internal use and never free it. Consequently,

152

there may be small discrepancies between memory occupation figures returned

by Scotch and those returned by third-party tools. However, these discrep-

ancies should not exceed a few kilobytes.

While memory occupation is internally recorded in a variable of type intptr

t, it is output as a SCOTCH Idx for the sake of interface homogeneity, especially

for Fortran. It is therefore the installer’s responsibility to make sure that

the support integer type of SCOTCH Idx is large enough to not overflow. See

section 8.1.5 for more information.

8.19.2 SCOTCH memFree

Synopsis

void SCOTCH memFree (void * dataptr)

Description

The SCOTCH memFree routine frees the memory space allocated by routines

such as SCOTCH graphAlloc, SCOTCH meshAlloc, or SCOTCH stratAlloc.

The standard free routine of the libc must not be used for this purpose. Else,

the allocated memory will not be considered as properly released by memory

accounting routines SCOTCH memCur and SCOTCH memMax, and segmentation

errors would happen when the COMMON MEMORY CHECK compile flag is set.

8.19.3 SCOTCH memMax

Synopsis

SCOTCH Idx SCOTCH memMax (void)

scotchfmemmax (integer*idx memcur)

Description

When Scotch is compiled with the COMMON MEMORY TRACE flag set, the

SCOTCH memMax routine returns the maximum amount of memory, in bytes,

ever allocated by Scotch on the current processing element, either by itself

or on the behalf of the user. Else, the routine returns -1.

The returned figure does not account for the memory that has been allocated

by the user and made visible to Scotch by means of routines such as SCOTCH

dgraphBuild calls. This memory is not under the control of Scotch, and

it is the user’s responsibility to free it after calling the relevant SCOTCH *

Exit routines.

Some third-party software used by Scotch, such as the strategy string parser,

may allocate some memory for internal use and never free it. Consequently,

there may be small discrepancies between memory occupation figures returned

by Scotch and those returned by third-party tools. However, these discrep-

ancies should not exceed a few kilobytes.

153

While memory occupation is internally recorded in a variable of type intptr

t, it is output as a SCOTCH Idx for the sake of interface homogeneity, especially

for Fortran. It is therefore the installer’s responsibility to make sure that

the support integer type of SCOTCH Idx is large enough to not overflow. See

section 8.1.5 for more information.

8.19.4 SCOTCH numSizeof

Synopsis

int SCOTCH numSizeof (void)

scotchfnumsizeof (integer size)

Description

The SCOTCH numSizeof routine returns the size, in bytes, of a SCOTCH Num.

This information is useful to export the interface of the libScotch to inter-

preted languages, without access to the “scotch.h” include file.

8.19.5 SCOTCH randomReset

Synopsis

void SCOTCH randomReset (void)

scotchfrandomreset ()

Description

The SCOTCH randomReset routine resets the seed of the pseudo-random gener-

ator used by the graph partitioning routines of the libScotch library. Two

consecutive calls to the same libScotch partitioning or ordering routines,

separated by a call to SCOTCH randomReset, will always yield the same re-

sults.

8.19.6 SCOTCH randomSeed

Synopsis

void SCOTCH randomSeed (SCOTCH Num seedval)

scotchfrandomseed (integer*num seedval)

Description

The SCOTCH randomSeed routine sets to seedval the seed of the pseudo-

random generator used internally by several algorithms of Scotch. All sub-

sequent calls to SCOTCH randomReset will use this value to reset the pseudo-

random generator.

154

This routine needs only to be used by users willing to evaluate the robustness

and quality of partitioning algorithms with respect to the variability of random

seeds. Else, depending whether Scotch has been compiled with any of the

flags COMMON RANDOM FIXED SEED or SCOTCH DETERMINISTIC set or not, either

the same pseudo-random seed will be always used, or a process-dependent seed

will be used, respectively.

8.19.7 SCOTCH version

Synopsis

int SCOTCH version (int * const versptr,

int * const relaptr,

int * const patcptr)

scotchfversion (integer versval,

integer relaval,

integer patcval)

Description

The SCOTCH version routine writes the version, release and patchlevel num-

bers of the Scotch library that is currently being used, to integer values

*versptr, *relaptr and patcptr, respectively. This routine is mainly use-

ful for applications willing to record runtime information, such as the library

against which they are dynamically linked.

8.20 MeTiS compatibility library

The MeTiS compatibility library provides stubs which redirect some calls to MeTiS

routines to the corresponding Scotch counterparts. In order to use this feature,

the only thing to do is to re-link the existing software with the libscotchmetis

library, and eventually with the original MeTiS library if the software uses MeTiS

routines which do not need to have Scotch equivalents, such as graph transforma-

tion routines. In that latter case, the “-lscotchmetis” argument must be placed

before the “-lmetis” one (and of course before the “-lscotch” one too), so that

routines that are redefined by Scotch are chosen instead of their MeTiS counter-

part. When no other MeTiS routines than the ones redefined by Scotch are used,

the “-lmetis” argument can be omitted. See Section 10 for an example.

8.20.1 METIS EdgeND

Synopsis

void METIS EdgeND (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const numflag,

const SCOTCH Num * const options,

SCOTCH Num * const perm,

SCOTCH Num * const iperm)

155

metis edgend (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num numflag,

integer*num (*) options,

integer*num (*) perm,

integer*num (*) iperm)

Description

The METIS EdgeND function performs a nested dissection ordering of the graph

passed as arrays xadj and adjncy, using the default Scotch ordering strat-

egy. The options array is not used. The perm and iperm arrays have the

opposite meaning as in Scotch: the MeTiS perm array holds what is called

“inverse permutation” in Scotch, while iperm holds what is called “direct

permutation” in Scotch.

While Scotch has also both node and edge separation capabilities, all of

the three MeTiS stubs METIS EdgeND, METIS NodeND and METIS NodeWND call

the same Scotch routine, which uses the Scotch default ordering strategy

proved to be efficient in most cases.

8.20.2 METIS NodeND

Synopsis

void METIS NodeND (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const numflag,

const SCOTCH Num * const options,

SCOTCH Num * const perm,

SCOTCH Num * const iperm)

metis nodend (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num numflag,

integer*num (*) options,

integer*num (*) perm,

integer*num (*) iperm)

Description

The METIS NodeND function performs a nested dissection ordering of the graph

passed as arrays xadj and adjncy, using the default Scotch ordering strat-

egy. The options array is not used. The perm and iperm arrays have the

opposite meaning as in Scotch: the MeTiS perm array holds what is called

“inverse permutation” in Scotch, while iperm holds what is called “direct

permutation” in Scotch.

156

While Scotch has also both node and edge separation capabilities, all of

the three MeTiS stubs METIS EdgeND, METIS NodeND and METIS NodeWND call

the same Scotch routine, which uses the Scotch default ordering strategy

proved to be efficient in most cases.

8.20.3 METIS NodeWND

Synopsis

void METIS NodeWND (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const vwgt,

const SCOTCH Num * const numflag,

const SCOTCH Num * const options,

SCOTCH Num * const perm,

SCOTCH Num * const iperm)

metis nodwend (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num (*) vwgt,

integer*num numflag,

integer*num (*) options,

integer*num (*) perm,

integer*num (*) iperm)

Description

The METIS NodeWND function performs a nested dissection ordering of the

graph passed as arrays xadj, adjncy and vwgt, using the default Scotch

ordering strategy. The options array is not used. The perm and iperm

arrays have the opposite meaning as in Scotch: the MeTiS perm array holds

what is called “inverse permutation” in Scotch, while iperm holds what is

called “direct permutation” in Scotch.

While Scotch has also both node and edge separation capabilities, all of

the three MeTiS stubs METIS EdgeND, METIS NodeND and METIS NodeWND call

the same Scotch routine, which uses the Scotch default ordering strategy

proved to be efficient in most cases.

8.20.4 METIS PartGraphKway

Synopsis

157

void METIS PartGraphKway (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const vwgt,

const SCOTCH Num * const adjwgt,

const SCOTCH Num * const wgtflag,

const SCOTCH Num * const numflag,

const SCOTCH Num * const nparts,

const SCOTCH Num * const options,

SCOTCH Num * const edgecut,

SCOTCH Num * const part)

metis partgraphkway (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num (*) vwgt,

integer*num (*) adjwgt,

integer*num wgtflag,

integer*num numflag,

integer*num nparts,

integer*num (*) options,

integer*num edgecut,

integer*num (*) part)

Description

The METIS PartGraphKway function performs a mapping onto the complete

graph of the graph represented by arrays xadj, adjncy, vwgt and adjwgt,

using the default Scotch mapping strategy. The options array is not used.

The part array has the same meaning as the parttab array of Scotch.

All of the three MeTiS stubs METIS PartGraphKway, METIS PartGraph

Recursive and METIS PartGraphVKway call the same Scotch routine, which

uses the Scotch default mapping strategy proved to be efficient in most cases.

8.20.5 METIS PartGraphRecursive

Synopsis

void METIS PartGraphRecursive (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const vwgt,

const SCOTCH Num * const adjwgt,

const SCOTCH Num * const wgtflag,

const SCOTCH Num * const numflag,

const SCOTCH Num * const nparts,

const SCOTCH Num * const options,

SCOTCH Num * const edgecut,

SCOTCH Num * const part)

158

metis partgraphrecursive (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num (*) vwgt,

integer*num (*) adjwgt,

integer*num wgtflag,

integer*num numflag,

integer*num nparts,

integer*num (*) options,

integer*num edgecut,

integer*num (*) part)

Description

The METIS PartGraphRecursive function performs a mapping onto the com-

plete graph of the graph represented by arrays xadj, adjncy, vwgt and

adjwgt, using the default Scotch mapping strategy. The options array

is not used. The part array has the same meaning as the parttab array

of Scotch. To date, the computation of the edgecut field requires extra

processing, which increases running time to a small extent.

All of the three MeTiS stubs METIS PartGraphKway, METIS PartGraph

Recursive and METIS PartGraphVKway call the same Scotch routine, which

uses the Scotch default mapping strategy proved to be efficient in most cases.

8.20.6 METIS PartGraphVKway

Synopsis

void METIS PartGraphVKway (const SCOTCH Num * const n,

const SCOTCH Num * const xadj,

const SCOTCH Num * const adjncy,

const SCOTCH Num * const vwgt,

const SCOTCH Num * const vsize,

const SCOTCH Num * const wgtflag,

const SCOTCH Num * const numflag,

const SCOTCH Num * const nparts,

const SCOTCH Num * const options,

SCOTCH Num * const volume,

SCOTCH Num * const part)

metis partgraphvkway (integer*num n,

integer*num (*) xadj,

integer*num (*) adjncy,

integer*num (*) vwgt,

integer*num (*) vsize,

integer*num wgtflag,

integer*num numflag,

integer*num nparts,

integer*num (*) options,

integer*num volume,

integer*num (*) part)

159

Description

The METIS PartGraphVKway function performs a mapping onto the complete

graph of the graph represented by arrays xadj, adjncy, vwgt and vsize, using

the default Scotch mapping strategy. The options array is not used. The

part array has the same meaning as the parttab array of Scotch.

Since Scotch does not have methods for explicitely reducing the communi-

cation volume according to the metric of METIS PartGraphVKway, this routine

creates a temporary edge weight array such that each edge (u, v) receives a

weight equal to mboxvsize(u) +mboxvsize(v). Consequently, edges which

are incident to highly communicating vertices will be less likely to be cut.

However, the communication volume value returned by this routine is ex-

actly the one which would be returned by MeTiS with respect to the output

partition. Users interested in minimizing the exact communication volume

should consider using hypergraphs, implemented in Scotch as meshes (see

Section 8.2.3).

All of the three MeTiS stubs METIS PartGraphKway, METIS PartGraph

Recursive and METIS PartGraphVKway call the same Scotch routine, which

uses the Scotch default mapping strategy proved to be efficient in most cases.

9 Installation

Version 6.0 of the Scotch software package is distributed as free/libre software

under the CeCILL-C free/libre software license [6], which is very similar to the

GNU LGPL license. Therefore, it is no longer distributed as a set of binaries, but

instead in the form of a source distribution, which can be downloaded from the

Scotch web page at http://www.labri.fr/~pelegrin/scotch/ .

All Scotch users are welcome to send an e-mail to the author so that they

can be added to the Scotch mailing list, and be automatically informed of new

releases and publications.

The extraction process will create a scotch 6.0.5 directory, containing several

subdirectories and files. Please refer to the files called LICENSE EN.txt or LICENCE

FR.txt, as well as file INSTALL EN.txt, to see under which conditions your distri-

bution of Scotch is licensed and how to install it.

9.1 Thread issues

To enable the use of POSIX threads in some routines, the SCOTCH PTHREAD flag

must be set. If your MPI implementation is not thread-safe, make sure this flag is

not defined at compile time.

9.2 File compression issues

To enable on-the-fly compression and decompression of various formats, the rel-

evant flags must be defined. These flags are COMMON FILE COMPRESS BZ2 for

bzip2 (de)compression, COMMON FILE COMPRESS GZ for gzip (de)compression, and

160

COMMON FILE COMPRESS LZMA for lzma decompression. Note that the correspond-

ing development libraries must be installed on your system before compile time,

and that compressed file handling can take place only on systems which support

multi-threading or multi-processing. In the first case, you must set the SCOTCH

PTHREAD flag in order to take advantage of these features.

On Linux systems, the development libraries to install are libbzip2 1-devel for

the bzip2 format, zlib1-devel for the gzip format, and liblzma0-devel for the

lzma format. The names of the libraries may vary according to operating systems

and library versions. Ask your system engineer in case of trouble.

9.3 Machine word size issues

The integer values handled by Scotch are based on the SCOTCH Num type, which

equates by default to the int C type, corresponding to the INTEGER Fortran type,

both of which being of machine word size. To coerce the length of the SCOTCH

Num integer type to 32 or 64 bits, one can use the “-DINTSIZE32” or “-DINTSIZE64”

flags, respectively, or else use the “-DINT=” definition, at compile time. For instance,

adding “-DINT=long” to the CFLAGS variable in the Makefile.inc file to be placed

at the root of the source tree will make all SCOTCH Num integers become long C

integers.

Whenever doing so, make sure to use integer types of equivalent length to declare

variables passed to Scotch routines from caller C and Fortran procedures. Also,

because of API conflicts, the MeTiS compatibility library will not be usable. It is

usually safer and cleaner to tune your C and Fortran compilers to make them inter-

pret int and INTEGER types as 32 or 64 bit values, than to use the aforementioned

flags and coerce type lengths in your own code.

Fortran users also have to take care of another size issue: since there are no

pointers in Fortran 77, the Fortran interface of some routines converts pointers to

be returned into integer indices with respect to a given array (e.g. see sections 8.6.9,

8.11.4 and 8.16.4). For 32 64 architectures, such indices can be larger than the

size of a regular INTEGER. This is why the indices to be returned are defined by

means of a specific integer type, SCOTCH Idx. To coerce the length of this index

type to 32 or 64 bits, one can use the “-DIDXSIZE32” or “-DIDXSIZE64” flags,

respectively, or else use the “-DIDX=” definition, at compile time. For instance,

adding “-DIDX="long long"” to the CFLAGS variable in the Makefile.inc file to

be placed at the root of the source tree will equate all SCOTCH Idx integers to C long

long integers. By default, when the size of SCOTCH Idx is not explicitly defined, it

is assumed to be the same as the size of SCOTCH Num.

10 Examples

This section contains chosen examples destined to show how the programs of the

Scotch project interoperate and can be combined. It is supposed that the current

directory is directory “scotch 6.0” of the Scotch distribution. Character “%”

represents the shell prompt.

• Partition source graph brol.grf into 7 parts, and save the result to file

/tmp/brol.map.

% echo cmplt 7 > /tmp/k7.tgt

% gmap brol.grf /tmp/k7.tgt /tmp/brol.map

161

This can also be done in a single piped command:

% echo cmplt 7 | gmap brol.grf - /tmp/brol.map

If compressed data handling is enabled, read the graph as a gzip compressed

file, and output the mapping as a bzip2 file, on the fly:

% echo cmplt 7 | gmap brol.grf.gz - /tmp/brol.map.bz2

• Partition source graph brol.grf into two uneven parts of respective weights
4
11 and 7

11 , and save the result to file /tmp/brol.map.

% echo cmpltw 2 4 7 > /tmp/k2w.tgt

% gmap brol.grf /tmp/k2w.tgt /tmp/brol.map

This can also be done in a single piped command:

% echo cmpltw 2 4 7 | gmap brol.grf - /tmp/brol.map

If compressed data handling is enabled, use gzip compressed streams on the

fly:

% echo cmpltw 2 4 7 | gmap brol.grf.gz - /tmp/brol.map.gz

• Map a 32 by 32 bidimensional grid source graph onto a 256-node hypercube,

and save the result to file /tmp/brol.map.

% gmk m2 32 32 | gmap - tgt/h8.tgt /tmp/brol.map

• Build the Open Inventor file graph.iv that contains the display of a

source graph the source and geometry files of which are named graph.grf

and graph.xyz.

% gout -Mn -Oi graph.grf graph.xyz - graph.iv

Although no mapping data is required because of the “-Mn” option, note the

presence of the dummy input mapping file name “-”, which is needed to

specify the output visualization file name.

• Given the source and geometry files graph.grf and graph.xyz of a source

graph, map the graph on a 8 by 8 bidimensional mesh and display the

mapping result on a color screen by means of the public-domain ghostview

PostScript previewer.

% gmap graph.grf tgt/m8x8.tgt | gout graph.grf graph.xyz

’-Op{c,f,l}’ | ghostview -

• Build a 24-node Cube-Connected-Cycles graph target architecture which will

be frequently used. Then, map compressed source file graph.grf.gz onto it,

and save the result to file /tmp/brol.map.

% amk ccc 3 | acpl - /tmp/ccc3.tgt

% gunzip -c graph.grf.gz | gmap - /tmp/ccc3.tgt /tmp/brol.map

162

To speed up target architecture loading in the future, the decomposition-

defined target architecture is compiled by means of acpl.

• Build an architecture graph which is the subgraph of the 8-node de Bruijn

graph restricted to vertices labeled 1, 2, 4, 5, 6, map graph graph.grf onto

it, and save the result to file /tmp/brol.map.

% (gmk ub2 3; echo 5 1 2 4 5 6) | amk grf -L | gmap graph.grf -

/tmp/brol.map

Note how the two input streams of program amk grf (that is, the de Bruijn

source graph and the five-elements vertex label list) are concatenated into a

single stream to be read from the standard input.

• Compile and link the user application brol.c with the libScotch library,

using the default error handler.

% cc brol.c -o brol -lscotch -lscotcherr -lm

Note that the mathematical library should also be included, after all of the

Scotch libraries.

• Recompile a program that used MeTiS so that it uses Scotch instead.

% cc brol.c -o brol -I${metisdir} -lscotchmetis -lscotch

-lscotcherr -lmetis -lm

Note that the “-lscotchmetis” option must be placed before the “-lmetis”

one, so that routines that are redefined by Scotch are selected instead of

their MeTiS counterpart. When no other MeTiS routines than the ones re-

defined by Scotch are used, the “-lmetis” option can be omitted. The

“-I${metisdir}” option may be necessary to provide the path to the orig-

inal metis.h include file, which contains the prototypes of all of the MeTiS

routines.

11 Adding new features to Scotch

Since Scotch is free/libre software, users have the ability to add new features to it.

Moreover, as Scotch is intended to be a testbed for new partitioning and ordering

algorithms, it has been developed in a very modular way, to ease the development

and inclusion of new partitioning and ordering methods to be called within Scotch

strategies.

All of the source code for partitioning and ordering methods for graphs and

meshes is located in the src/libscotch/ source subdirectory. Source file names

have a very regular pattern, based on the internal data structures they handle.

11.1 Graphs and meshes

The basic structures in Scotch are the Graph and Mesh structures, which model

a simple symmetric graph the definition of which is given in file graph.h, and a

163

simple mesh, in the form of a bipartite graph, the definition of which is given in

file mesh.h, respectively. From this structure are derived enriched graph and mesh

structures:

• Bgraph, in file bgraph.h: graph with bipartition, that is, edge separation,

information attached to it;

• Kgraph, in file kgraph.h: graph with mapping information attached to it;

• Hgraph, in file hgraph.h: graph with halo information attached to it, for

computing graph orderings;

• Vgraph, in file vgraph.h: graph with vertex bipartition information attached

to it;

• Hmesh, in file hmesh.h: mesh with halo information attached to it, for com-

puting mesh orderings;

• Vmesh, in file vmesh.h: graph with vertex bipartition information attached to

it.

As version 6.0 of the libScotch does not provide mesh mapping capabilities, nei-

ther Bmesh nor Kmesh structures have been defined to date, but this work is in

progress, and these features should be available in the upcoming releases.

All of the structures are in fact defined as typedefed types.

11.2 Methods and partition data

Methods are routines which take one of the above structures as input, and update

the fields of the given structure according to the implemented algorithm. Initial

methods will behave irrespective of the former values of the structure (like graph

growing methods, which compute partitions from scratch), while refinement meth-

ods must be provided an existing partition to improve.

In addition to the topological description of the underlying graph, the working

graph and mesh structures comprise variables describing the current state of the

vertex or edge partition. In all cases is provided a partition array called parttax,

of size equal to the number of graph vertices, which tells which part every vertex

is assigned to. Other variables comprise the communication load and the load

imbalance of the current cut, that is, all of the data necessary to measure the

quality of a partition. Some other data are also often provided, such as the number

of vertices in each part and the list of frontier vertices. They are not relevant to

measure the quality of the partition, but to improve the speed of computations.

They are used for instance in the multilevel algorithms to compute incremental

updates of the current partition state, without having to recompute these values

from scratch by considering all of the graph vertices. Implementers of new methods

are highly encouraged to use these variables to speed-up their computations, taking

examples on typical algorithms such as the multilevel or Fiduccia-Mattheyses ones.

11.3 Adding a new method to Scotch

We will assume in this section that the new method to add is a graph separation

method. The procedure explained below is exactly the same for graph bipartition-

ing, graph mapping, graph ordering, mesh separation, or mesh ordering methods.

Please proceed as explained below.

164

1. Write the code of the method itself. First, choose a free two-letter code to

describe your method, say “xy”. In the libscotch source directory, create

files vgraph separate xy.c and vgraph separate xy.h, basing on existing

files such as vgraph separate gg.c and vgraph separate gg.h, for instance.

If the method is complex, it can be split across several other files, which will

be named vgraph separate xy firstmodulename.c, vgraph separate xy

secondmodulename.c, eventually with matching header files.

If the method has parameters, create a structure called VgraphSeparateXy

Param, which contains fields of types that can be handled by the strategy

parser, such as the INT generic integer type (see below), or double, for in-

stance.

The execution of your method should result in the setting or in the updating

of the Vgraph structure that is passed to it. See its definition in vgraph.h

and read several simple graph separation methods, such as vgraph separate

zr.c, to figure out what all of its parameters mean.

At the end of your method, always call, when the SCOTCH DEBUG VGRAPH2

debug flag is set, the vgraphCheck routine, to avoid the spreading of eventual

bugs to other parts of the libScotch library.

2. Add the method to the parser tables. The files to update are vgraph

separate st.c and vgraph separate st.h, where “st” stands for “strat-

egy”.

First, edit vgraph separate st.h. In the VgraphSeparateStMethodType

enumeration, add a line for your new method VGRAPHSEPASTMETHXY. Then,

edit vgraph separate st.c, where all of the remaining actions take place.

In the top of the file, add a #include directive to include vgraph separate

xy.h.

If the method has parameters, create a vgraphseparatedefaultxy C union,

basing on an existing one, and fill it with the default values of your method

parameters.

In the vgraphseparatestmethtab method array, add a line for the new

method. To do so, choose a free single-letter code that will be used to desig-

nate the new method in strategy strings. If the method has parameters, the

last field should be a pointer to the default structure, else it should be set to

NULL.

If the method has parameters, update the vgraphseparatestparatab pa-

rameter array. Add one data block per parameter. The first field is the name

of the method to which the parameter applies, that is, VGRAPHSEPASTMETH

XY. The second field is the type of the parameter, which can be:

• STRATPARAMCASE: the support type is an int. It receives the index in the

case string, which is provided as the last field of the parameter line, of

the given case character;

• STRATPARAMDOUBLE: the support type is a double;

• STRATPARAMINT: the support type is an INT, which is the generic inte-

ger type handled internally by Scotch. This type has variable extent,

depending on compilation flags, as described in Section 8.1.5;

• STRATPARAMSTRING: a (small) character string;

165

• STRATPARAMSTRAT: strategy. For instance, the graph ordering method

by nested dissection takes a vertex partitioning strategy as one of its

parameters, to compute the vertex separators.

The fourth and fifth fields are the address of the location of the default struc-

ture and the address of the parameter within this default structure, respec-

tively. From these two values can be computed at run time the offset of the

parameter within any instance of the parameter structure, which is used to

fill the actual structures in the parsed strategy evaluation tree. The value of

the sixth parameter depends on the type of the parameter. It should be NULL

for STRATPARAMDOUBLE and STRATPARAMINT parameters, points to the string

of available case letters for STRATPARAMCASE parameters, points to the target

string buffer for STRATPARAMSTRING parameters, and points to the relevant

method parsing table for STRATPARAMSTRAT parameters.

3. Edit the makefile of the libScotch source directory to enable the compilation

and linking of the method. Depending on libScotch versions, this makefile

is either called Makefile or make gen.

4. Compile in debug mode and experiment with your routine, by creating strate-

gies that contain its single-letter code.

5. To change the default strategy string used by the libScotch library, up-

date file library graph order.c, since it is the graph ordering routine which

makes use of graph vertex separation methods to compute separators for the

nested dissection ordering method.

11.4 Licensing of new methods and of derived works

According to the terms of the CeCILL-C license [6] under which the Scotch

software package is distributed, the works that are carried out to improve and

extend the libScotch library must be licensed under the same terms. Basically, it

means that you will have to distribute the sources of your new methods, along with

the sources of Scotch, to any recipient of your modified version of the libScotch,

and that you grant these recipients the same rights of update and redistribution

as the ones that are given to you under the terms of CeCILL-C. Please read it

carefully to know what you can do and cannot do with the Scotch distribution.

You should have received a copy of the CeCILL-C license along with the Scotch

distribution; if not, please browse the CeCILL website at http://www.cecill.

info/licenses.en.html.

Credits

I wish to thank all of the following people:

• Patrick Amestoy collaborated to the design of the Halo Approximate Mini-

mum Degree algorithm [48] that had been embedded into Scotch 3.3, and

provided versions of his Approximate Minimum Degree algorithm, available

since version 3.2, and of his Halo Approximate Minimum Fill algorithm, avail-

able since version 3.4. He designed the mesh versions of the approximate min-

imum degree and approximate minimum fill algorithms, which are available

since version 4.0;

166

• Sébastien Fourestier coded the mapping with fixed vertices, remapping, and

remapping with fixed vertices sequential routines that are available since ver-

sion 6.0;

• Jun-Ho Her coded the graph partitioning with overlap routines that were

introduced in the unpublished 5.2 release, and publicly released in version

6.0;

• Alex Pothen kindly provided a version of his Multiple Minimum Degree algo-

rithm, which was embedded into Scotch from version 3.2 to version 3.4;

• Luca Scarano, visiting Erasmus student from the Universitá degli Studi di

Bologna, coded the multilevel graph algorithm in Scotch 3.1;

• Yves Secretan contributed to the MinGW32 port;

• David Sherman proofread version 3.2 of this manual.

References

[1] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering

algorithm. SIAM J. Matrix Anal. and Appl., 17:886–905, 1996.

[2] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM

J. Sci. Comput., 16(6):1404–1411, 1995.

[3] C. Ashcraft, S. Eisenstat, J. W.-H. Liu, and A. Sherman. A comparison of

three column based distributed sparse factorization schemes. In Proc. Fifth

SIAM Conf. on Parallel Processing for Scientific Computing, 1991.

[4] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recur-

sive spectral bisection for partitioning unstructured problems. Concurrency:

Practice and Experience, 6(2):101–117, 1994.

[5] R. F. Boisvert, R. Pozo, and K. A. Remington. The Matrix Market exchange

formats: initial design. NISTIR 5935, National Institute of Standards and

Technology, December 1996.

[6] CeCILL: “CEA-CNRS-INRIA Logiciel Libre” free/libre software license. Avail-

able from http://www.cecill.info/licenses.en.html.

[7] P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un

solveur de type dissections embôıtées. Numerische Mathematik, 55:463–476,

1989.

[8] C. Chevalier and F. Pellegrini. Improvement of the efficiency of genetic algo-

rithms for scalable parallel graph partitioning in a multi-level framework. In

Proc. EuroPar, Dresden, LNCS 4128, pages 243–252, September 2006.

[9] I. Duff. On algorithms for obtaining a maximum transversal. ACM Trans.

Math. Software, 7(3):315–330, September 1981.

[10] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-

Boeing sparse matrix collection. Technical Report TR/PA/92/86, CERFACS,

Toulouse, France, October 1992.

167

[11] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hyper-

cube by recursive mincut bipartitionning. Journal of Parallel and Distributed

Computing, 10:35–44, 1990.

[12] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Conference,

pages 175–181. IEEE, 1982.

[13] S. Fourestier and F. Pellegrini. Adaptation au repartitionnement de graphes

d’une mthode d’optimisation globale par diffusion. In Proc. RenPar’20, Saint-

Malo, France, May 2011.

[14] M. R. Garey and D. S. Johnson. Computers and Intractablility: A Guide to

the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[15] G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky

factorization. International Journal of Parallel Programming, 18(4):291–314,

1989.

[16] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky

factorization on a local memory multiprocessor. SIAM Journal on Scientific

and Statistical Computing, 9:327–340, 1988.

[17] A. George and J. W.-H. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 31:1–19, 1989.

[18] J. A. George and J. W.-H. Liu. Computer solution of large sparse positive

definite systems. Prentice Hall, 1981.

[19] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. A comparison of several

bandwidth and profile reduction algorithms. ACM Trans. Math. Software,

2:322–330, 1976.

[20] A. Gupta, G. Karypis, and V. Kumar. Scalable parallel algorithms for sparse

linear systems. In Proc. Stratagem’96, Sophia-Antipolis, pages 97–110. INRIA,

July 1996.

[21] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for

sparse matrix factorization. IEEE Trans. Parallel Distrib. Syst., 8(5):502–520,

1997.

[22] S. W. Hammond. Mapping unstructured grid computations to massively parallel

computers. PhD thesis, Rensselaer Polytechnic Institute, Troy, New-York,

February 1992.

[23] B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Tech-

nical Report SAND93–0074, Sandia National Laboratories, January 1993.

[24] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

Technical Report SAND93–1301, Sandia National Laboratories, June 1993.

[25] B. Hendrickson and R. Leland. The Chaco user’s guide. Technical Report

SAND93–2339, Sandia National Laboratories, November 1993.

[26] B. Hendrickson and R. Leland. The chaco user’s guide – version 2.0. Technical

Report SAND94–2692, Sandia National Laboratories, 1994.

168

[27] B. Hendrickson and R. Leland. An empirical study of static load balancing

algorithms. In Proc. SHPCC’94, Knoxville, pages 682–685. IEEE, May 1994.

[28] B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning.

In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific

Computing. IEEE, March 1997.

[29] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested

dissection ordering. SIAM J. Sci. Comput., 20(2):468–489, 1998.

[30] P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and Y. Saad. High performance

complete and incomplete factorizations for very large sparse systems by using

scotch and pastix softwares. In Proc. 11th SIAM Conference on Parallel

Processing for Scientific Computing, San Francisco, USA, February 2004.

[31] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bi-

partite graphs. SIAM Journal of Computing, 2(4):225–231, December 1973.

[32] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-

titioning irregular graphs. Technical Report 95-035, University of Minnesota,

June 1995.

[33] G. Karypis and V. Kumar. MeTiS – unstructured graph partitioning and

sparse matrix ordering system – version 2.0. Technical report, University of

Minnesota, June 1995.

[34] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Technical Report 95-064, University of Minnesota, August 1995.

[35] G. Karypis and V. Kumar. MeTiS – A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-

derings of Sparse Matrices – Version 4.0. University of Minnesota, September

1998.

[36] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning

graphs. BELL System Technical Journal, pages 291–307, February 1970.

[37] M. Laguna, T. A. Feo, and H. C. Elrod. A greedy randomized adaptative

search procedure for the two-partition problem. Operations Research, pages

677–687, July 1994.

[38] C. Leiserson and J. Lewis. Orderings for parallel sparse symmetric factoriza-

tion. In Third SIAM Conference on Parallel Processing for Scientific Comput-

ing, 1987.

[39] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.

SIAM Journal of Numerical Analysis, 16(2):346–358, April 1979.

[40] J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elim-

ination. ACM Trans. Math. Software, 11(2):141–153, 1985.

[41] SGI Open Inventor. Available from http://oss.sgi.com/projects/

inventor/.

[42] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and

architecture graphs. In Proc. SHPCC’94, Knoxville, pages 486–493. IEEE,

May 1994.

169

[43] F. Pellegrini. A parallelisable multi-level banded diffusion scheme for comput-

ing balanced partitions with smooth boundaries. In Proc. EuroPar, Rennes,

LNCS 4641, pages 191–200, August 2007.

[44] F. Pellegrini. PT-Scotch 5.1 User’s guide. Technical report, LaBRI, Uni-

versité Bordeaux I, August 2008. Available from http://www.labri.fr/

~pelegrin/scotch/.

[45] F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bipar-

titioning algorithm for static mapping. Research Report, LaBRI, Université

Bordeaux I, August 1996. Available from http://www.labri.fr/~pelegrin/

papers/scotch_expanalysis.ps.gz.

[46] F. Pellegrini and J. Roman. Scotch: A software package for static mapping

by dual recursive bipartitioning of process and architecture graphs. In Proc.

HPCN’96, Brussels, LNCS 1067, pages 493–498, April 1996.

[47] F. Pellegrini and J. Roman. Sparse matrix ordering with scotch. In Proc.

HPCN’97, Vienna, LNCS 1225, pages 370–378, April 1997.

[48] F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and

halo approximate minimum degree for efficient sparse matrix ordering. In Proc.

Irregular’99, San Juan, LNCS 1586, pages 986–995, April 1999.

[49] François Pellegrini and Cédric Lachat. Process Mapping onto Complex Ar-

chitectures and Partitions Thereof. Research Report RR-9135, Inria Bor-

deaux Sud-Ouest, December 2017. Available from https://hal.inria.fr/

hal-01671156.

[50] A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse

matrix. ACM Trans. Math. Software, 16(4):303–324, December 1990.

[51] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal of Matrix Analysis, 11(3):430–452, July

1990.

[52] E. Rothberg. Performance of panel and block approaches to sparse Cholesky

factorization on the iPSC/860 and Paragon multicomputers. In Proc. SH-

PCC’94, Knoxville, pages 324–333. IEEE, May 1994.

[53] E. Rothberg and A. Gupta. An efficient block-oriented approach to parallel

sparse Cholesky factorization. In Supercomputing’93 Proceedings. IEEE, 1993.

[54] E. Rothberg and R. Schreiber. Improved load distribution in parallel sparse

Cholesky factorization. In Supercomputing’94 Proceedings. IEEE, 1994.

[55] R. Schreiber. Scalability of sparse direct solvers. Technical Report TR 92.13,

RIACS, NASA Ames Research Center, May 1992.

[56] H. D. Simon. Partitioning of unstructured problems for parallel processing.

Computing Systems in Engineering, 2:135–148, 1991.

[57] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations

by optimally ordered triangular factorization. J. Proc. IEEE, 55:1801–1809,

1967.

170

[58] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Parti-

tioning & mapping of unstructured meshes to parallel machine topologies. In

Proc. Irregular’95, number 980 in LNCS, pages 121–126, 1995.

171

