
Parameterized verification of many identical
probabilistic timed processes
Nathalie Bertrand1 and Paulin Fournier2

1 Inria Rennes, France
nathalie.bertrand@inria.fr

2 ENS Cachan Antenne de Bretagne, France
paulin.fournier@eleves.bretagne.ens-cachan.fr

Abstract
Parameterized verification aims at validating a system’s model irrespective of the value of a para-
meter. We introduce a model for networks of identical probabilistic timed processes, where the
number of processes is a parameter. Each process is a probabilistic single-clock timed automaton
and communicates with the others by broadcasting. The number of processes either is constant
(static case), or evolves over time through random disappearances and creations (dynamic case).
An example of relevant parameterized verification problem for these systems is whether, inde-
pendently of the number of processes, a configuration where one process is in a target state is
reached almost-surely under all scheduling policies. On the one hand, most parameterized veri-
fication problems turn out to be undecidable in the static case (even for untimed processes). On
the other hand, we prove their decidability in the dynamic case.

1998 ACM Subject Classification D.2.4 Software/Program verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, G.3 Probabilities and Statistics

Keywords and phrases model checking, Markov decision processes, parameterized verification

1 Introduction

Automated verification of reactive programs started in the 80’s with simple models, and
specifically finite state automata. It was successfully applied to hardware validation. Later,
the focus on software verification called the need for techniques tackling infinite-state systems.
The infinite nature is mainly caused by two reasons: either the program handles data
structures over infinite domains (e.g. counters, dense-time clocks, queues or stacks), or it runs
on a network of an arbitrary number of processes. In the latter case, parameterized verification
aims at verifying the system independently of its actual instantiation, that is, independently
of the number of processes involved. Our contribution falls in these two categories: we
investigate the parameterized verification of a class of programs over infinite domains.

Already in the 80’s, Apt and Kozen showed the undecidability of very general parameter-
ized model-checking problems [7]. For more specific models and properties, one can however
achieve some decidability, see e.g. [12] where networks of identical finite-state automata are
model-checked against regular properties. This framework was later extended to networks of
identical timed automata for which safety properties are decidable if the timed automata
have a single clock [5] and undecidable otherwise [4]. Broadcasts protocols form a model
with an unbounded number of processes that communicate by rendez-vous or broadcast. For
broadcast protocols, safety properties are decidable, and liveness properties are undecid-
able [15]. More recently, a series of papers, initiated with [14], investigates the parameterized
verification of a model of networks, e.g. suitable for the representation of ad-hoc networks.
The nodes in the network are modeled by finite automata that communicate through multiple

© Nathalie Bertrand and Paulin Fournier;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Parameterized verification of probabilistic timed processes

broadcasts. The decidability status of reachability and coverability problems depends on the
topology and its evolution [14]. Later, the positive results have been extended to networks of
single-clock timed automata [3].

Simultaneous to the extension of verification techniques to infinite-state models, and
with the common objective to verify more complex systems, the models and problems
moved from boolean to quantitative. A prominent class of quantitative systems is the one
of probabilistic models. Finite-state probabilistic models have been extensively studied
and mature tools perform their verification (see [10, Chapter 10] and references therein).
However, to the best of our knowledge, the parameterized verification of probabilistic systems
hasn’t been investigated yet. The model-checking of PCTL formulas against Markov chains
with parametric coefficients was first investigated in [13], and the recent work [17] studies
the verification of probabilistic programs with parameters. Both use parameters to model
unknown probabilities and differ from our setting of parameterized verification where the
parameter is the number of processes in a network.

We introduce a modeling formalism that combines infinite-state space, due to an unknown
number of processes in the network as well as data structures with infinite domains, and
probabilistic behaviors. Probabilistic timed networks are formed of many identical probabilistic
timed automata [18] with a single clock, and interaction between the processes is modeled
by message broadcasting. Moreover, in order to represent some mobility in the network, we
further introduce dynamic probabilistic timed networks, where processes can disappear and
be created, according to fixed probability laws.

A potential application domain for our model is the one of wireless sensor networks (WSN)
that consist of a large number of nodes measuring and transmitting data. The number of
nodes is a significant parameter while setting up the network, since it affects the performance
by influencing the risks of collisions in communications. Most protocols for WSN include
probabilistic choices and timing constraints. Also, in many cases the number of nodes in the
network evolves over time due to nodes breaking down, or nodes refilling their battery using
e.g. solar energy. Moreover, in some applications, the placement of sensors and their exact
number is unknown. We therefore advocate that (dynamic) probabilistic timed networks
with a parametric number of processes make a quite suitable model for WSN protocols.
So far, the automated verification of such protocols has been performed for a fixed, and
rather small, number of nodes, as in [16] where Prism [18] is used to verify the contention
resolution protocol in IEEE standard 802.15.4. In comparison, the parameterized verification
of probabilistic timed networks would provide answers for an arbitrary number of processes.

Given a probabilistic timed network, we consider relevant parameterized verification
problems, such as the following. For a target state of the process model, can a configuration
with some process in the target state be reached almost surely, whatever the initial number of
processes and for every scheduling policy? Equivalently, the problem is whether independently
of the number of processes, the minimum probability to reach a target configuration is 1.
Beyond this particular problem, we consider all variants of qualitative questions, i.e. where
the minimum or maximum probabilities are compared to the thresholds 0 or 1.

On the one hand we prove that most qualitative verification problems are undecidable
when the topology is static, that is if the number of processes is constant (but unknown).
These undecidability results already hold in the untimed case, i.e. when the individual
processes are Markov decision processes (MDP) rather than probabilistic timed automata.
To establish the undecidability results, we explain how a probabilistic network can simulate
a 2-counter machine, using the processes to encode the counter values. On the other hand,
in the dynamic case, we provide a decision procedure for all the parameterized verification

N. Bertrand and P. Fournier 3

problems of interest. In each case, the termination of the algorithm is ensured by a dedicated
well-quasi-ordering on configurations of the network, and the correctness of the algorithm
relies on a finite attractor property in our model. We also establish a complexity lower-bound
by reducing the reachability problem in lossy channel systems: the qualitative parameterized
verification problems in the dynamic case are non-primitive recursive.

The rest of the paper is organized as follows. We define the model of dynamic probabilistic
timed networks in Section 2 together with the parameterized verification problems we consider.
Section 3 is devoted to showing the undecidability in the static case. In Section 4 we establish
the decidability results in the dynamic case. We conclude by mentioning open questions and
future work.

2 Modeling probabilistic protocols

Given E, an at most countable set, we write Dist(E) for the set of discrete probability
distributions over E, that is, functions δ : E → [0, 1] such that

∑
e∈E δ(e) = 1.

For an arbitrary set E, we write M(E) for the set of multisets over E, i.e. the set of
multiplicity functions f : E → N. We also write f = 〈x, x, x, y〉 for the multiset f defined
as f(x) = 3, f(y) = 1 and ∀z ∈ E \ {x, y}, f(z) = 0. We now introduce simple operations
on multisets. For f ∈ M(E) and x ∈ E we write f + x for the multiset f ′ defined by
f ′(x) = f(x) + 1 and f ′(y) = f(y) otherwise. Symmetrically, and assuming f(x) > 0, f − x
is a notation for f ′ such that f ′ + x = f .

Given a clock x, we write G(x) for the set of guards over x, i.e. conjunctions of atomic
constraints of the form x ∼ k for ∼∈ {<,≤, >,≥,=} and k ∈ N. The trivial guard, consisting
of no constraints, is written true. A clock is said to satisfy a guard, denoted x |= g if it’s
value satisfies all the constraints of the guard. The set of possible updates for clock x is
Up = {x := 0, ∅}: x is either reset or left unchanged. We write up(x) the result on x of the
update up ∈ Up.

2.1 Probabilistic timed networks
I Definition 1 (Probabilistic one-clock timed protocol). A probabilistic one-clock timed protocol
(or for short probabilistic timed protocol) is a tuple P = (Q, q0, x,Σ,∆) where

Q is a finite set of control states, and q0 ∈ Q is initial,
x is a clock,
Σ is a finite message alphabet with a subset Σε of internal labels,
∆ is the finite probabilistic edge relation, partitioned into

internal actions: ∆i ⊆ Q× G(x)× Σε × Dist(Up×Q),
broadcasts: ∆b ⊆ Q× G(x)×!(Σ \ Σε)× Up×Q,
receptions: ∆r ⊆ Q× G(x)×?(Σ \ Σε)× Up×Q.

A simple example of probabilistic timed protocol modelling mutual exclusion over two
resources is given in Figure 1. Internal actions are {αi | i ∈ J0, 2K}, and broadcast actions
are {βi, βi′ | i ∈ {1, 2}}. This example will be further developed in the sequel.

I Remark. In our model, a control state can be the source of several internal actions,
each giving rise to a probability distribution for the successor state, whereas broadcasts and
receptions are deterministic. This is not a real restriction, since systems with nondeterministic
and probabilistic choices for broadcast and receptions can be encoded in our model by
introducing intermediary states and additional internal actions.

4 Parameterized verification of probabilistic timed processes

idle

r1

r2

cs1

cs2

end
x := 0

x := 0p

1− p
α0

?1

?2

β1′ : x > 1, !1, x := 0

β2′ : x > 1, !2, x := 0

β1 : x < 1, !1, x := 0

β2 : x < 1, !2, x := 0

α 1

α
2

?1, x := 0

?2, x := 0

Figure 1 A probabilistic timed protocol modeling mutual exclusion over two resources

Probabilistic timed protocols are probabilistic timed automata [18] with a single clock.
We introduced a new terminology to highlight this particularity, and more importantly, to
emphasize the communicative nature of probabilistic timed protocols.

I Definition 2 (Probabilistic timed network). A probabilistic timed network PN , is composed
of N ∈ N>0 copies, called processes, of a probabilistic timed protocol P.

The intuitive interpretation of a probabilistic timed network PN is that N processes arranged
in a clique execute the probabilistic timed protocol P simultaneously.

I Example 3. On the simple example from Figure 1 modeling mutual exclusion over two
resources, each process starts in state idle and can at any time request a resource. The
choice of the allocated resource is probabilistic. The requesting process must then stay in
the corresponding request state (ri) at least one time unit before moving to the critical
section state (csi) representing usage of resource i. If a requesting process receives a message
indicating that the resource is already used, it moves back to the initial state idle. Hence,
when granted the access to a resource, a process may use it for at least 1 time unit, and can
inform the others by broadcast that he is still using it to be granted an other time unit.

Let us detail the semantics of the probabilistic timed network PN . A configuration is a
finite multiset γ ∈M(Q× R+) over the set of pairs composed of a control state and a real
value for the clock. Intuitively, if configuration γ contains exactly two occurrences of (q, 0.5),
written γ(q, 0.5) = 2, then two processes have current state q and current clock value x = 0.5.
Moreover, since N processes are involved in the network,

∑
(q,x)|γ(q,x)>0 γ(q, x) = N . In the

sequel, the set of configurations with N processes is written ConfN .
The semantics of PN is given in terms of a timed Markov decision process JPN K =

(ConfN , γN0 ,TN ,Act ∪ R+), where γN0 is the initial configuration, defined by γN0 (q0, 0) = N

and γN0 (q, x) = 0 otherwise; TN is the set of transitions (defined in the sequel); and actions
are partitioned into time elapsing R+, and discrete actions Act = Q × R+ ×∆ ∪ {unlock}
where unlock is a special action. From any configuration γ ∈ ConfN , the set of possible
discrete actions depends on the control state and clock value of the processes in γ, which
explains the typing of discrete actions: Q× R+ ×∆. Informally, when performing a discrete
action from configuration γ, first a process is selected nondeterministically, and second, a
(communication or internal) transition enabled for that process is performed. However, since
we do not distinguish processes with same control state and same clock value, the intuitive
semantics of discrete steps is rather to select a pair (q, x) with γ(q, x) > 0 and then to fire for
some process in state (q, x) an enabled action. Messages are broadcast to all other processes,
whereas internal actions only affect the chosen process. Moreover, in order to forbid finite
runs, we use a special action unlock that is enabled only when no other discrete action is
enabled, even after some time elapsing.

N. Bertrand and P. Fournier 5

We now define formally the transition function TN and exemplify it on the example
protocol from Figure 1 for the configuration γex = 〈(idle, 2), (r1, 0.3), (r1, 0.4), (cs1, 0.8)〉.
TN is composed of the following transitions:

time elapse: For every delay τ ∈ R+ and every configuration γ ∈ ConfN , there exists a
deterministic transition in the Markov decision process JPN K from γ to γ′ defined by
γ′(q, x+ τ) = γ(q, x) (denoted γ′ = γ + τ), for all states q ∈ Q and clock values x ∈ R+.
In such a case we write γ τ−→ γ′.
E.g.: γex

0.1−−→ 〈(idle, 2.1), (r1, 0.4), (r1, 0.5), (cs1, 0.9)〉
internal: For every internal action α = (q, g, ε, δ) ∈ ∆i, every γ ∈ ConfN and every clock
value x ∈ R+, such that γ(q, x) > 0 and x |= g, αx is enabled from γ in the Markov
decision process JPN K and yields a distribution µ defined by µ(γ′|γ, αx) = δ(up, q′) where
γ′ = γ − (q, x) + (q′, up(x)). Note that several α actions can be available in γ, for various
clock values x; this is why in JPN K, we attach the subscript x to α. Here, we write
γ

αx,µ(γ′|γ,αx)−−−−−−−−−→ γ′.
E.g.: γex

α0
2,1−p−−−−→ 〈(r2, 0), (r1, 0.3), (r1, 0.4), (cs1, 0.8)〉

communication: For every broadcast β = (q, g, !a, up, q′) ∈ ∆b, every γ ∈ ConfN and
every clock value x ∈ R+ such that γ(q, x) > 0 and x |= g, βx is enabled from γ and is a
deterministic transition from γ to γ′ in the Markov decision process JPN K, where γ′ is
obtained in three steps
γ1 = γ − (q, x) (the process responsible for the broadcast is treated separately)
γ2(r′, y′) =

∑
{γ1(r, y) | ∃(r, g′, ?a, up′, r′) ∈ ∆r ∧ y |= g′ ∧ up′(y) = y′} (all other

processes receive the message)
γ′ = γ2 + (q′, up(x)).

For such communications, we write γ βx−→ γ′.
E.g.: γex

β1
0.8−−→ 〈(idle, 2), (idle, 0.3), (idle, 0.4), (cs1, 0)〉

deadlock: Any configuration γ ∈ ConfN such that for every τ ∈ R+ there is no enabled
actions from γ + τ , is called a deadlock configuration. Action unlock is then enabled from
γ, and does not change the configuration. Here, we write γ unlock−−−−→ γ.
E.g.:〈(end, 2), (end, 0.3), (end, 1.4)〉 unlock−−−−→ 〈(end, 2), (end, 0.3), (end, 1.4)〉

2.2 Dynamic probabilistic timed networks
Probabilistic timed networks from Definition 2 are networks where the number of processes
is constant. We now discuss a reasonable way to introduce dynamism in the network. In the
application to wireless sensor networks, the number of nodes can change during the execution
of the system, since nodes can break down or run out of battery, but also, can be newly
inserted or refill their battery. We therefore propose a model of probabilistic timed networks,
in which the number of processes evolves over time, and in which, disappearances and
creations of processes are independent random events following given probability distributions.
Abstracting dynamism by random events seems a good trade-off between simplicity and
realism of the model.

I Definition 4 (Dynamic probabilistic timed network). A dynamic probabilistic timed network,
written PN0

Λ is composed of initially N0 copies of P, together with a pair of disappearance
and creation rates Λ = (λ−, λ+) ∈ (0, 1)2.

The rates λ+ and λ− represent dynamic creation and disappearance of processes according
to fixed probabilistic laws: after each discrete action , each process disappears with probability

6 Parameterized verification of probabilistic timed processes

λ−, followed by the creation of k processes (in control state q0 with clock value 0) with
probability λk+(1− λ+), for every integer k ∈ N. Obviously if λ+ = λ− = 0, the number of
processes is constant and we recover the model of (static) probabilistic timed network from
Definition 2.

The formal semantics of a dynamic probabilistic timed network PN0
Λ is obtained from

the ones of PN for each N ∈ N. More precisely JPN0
Λ K is a timed Markov decision process

(Conf, γN0
0 ,T,Act ∪ R+), where the transition function T is defined based on the TN ’s and

the rates Λ ((see below)). The set of configurations is Conf =
⋃
N ConfN , and the set of

discrete actions in the MDP is still Act = Q×R+×∆∪{unlock}. The initial configuration is
still γN0

0 defined by γ0(q0, 0) = N0 and γ0(q, x) = 0 otherwise. Note that the only difference
between two instances of the dynamic probabilistic timed network, JPN0

Λ K and JPN
′
0

Λ K, lies in
their respective initial state.

We now detail the transition function T. For every γ ∈ Conf, α ∈ Act ∪ R+ and every
transition γ α,p−−→ γ′ (in TN , for N the size of γ), there are transitions γ α,p·p′−−−−→ γ′′ in T for
every configuration γ′′ that can be obtained from γ′ through disappearance followed by
creation of processes, with the appropriate probability. Most likely, γ′′ contains a different
number of processes than γ and γ′. Let us explain how the probability p′ is defined. We write
p−(γ1, γ2) for the probability to obtain γ2 from γ1 when processes disappear; recall that each
process can disappear with probability λ−. Similarly, p+(γ1, γ2) is the probability to obtain
γ2 from γ1 when processes are created; recall that for every integer k, k processes are created
(in (q0, 0)) with probability λk+(1− λ+). Using these notations, the probability to move from
γ′ to γ′′ by disappearance and creation of processes is p′ =

∑
γ1

p−(γ′, γ1) · p+(γ1, γ
′′).

An execution in JPN0
Λ K is a finite or infinite sequence ρ = γ0 → γ1 → γ2 · · · , where the

transitions correspond to time elapsing, internal actions, communications or the special
action unlock.

2.3 Schedulers
Schedulers (also called strategies or policies) resolve the non-determinism in Markov decision
processes. We restrict to stationary deterministic schedulers (sometimes also called pure
memoryless schedulers), that make their decision based on the current configuration only.

I Definition 5 (Scheduler). A scheduler for the timed Markov decision process JPN0
Λ K =

(Conf, γN0
0 ,T,Act ∪ R+) is a function σ : Conf → R+ × Act, specifying in each configuration

the delay and discrete action to perform, and such that

(i) whenever σ(γ) = (τ, (q, x, α)), then (γ + τ)(q, x) > 0 and α is enabled in (q, x), and
(ii) whenever σ(γ) = (τ, unlock), γ is a deadlock configuration.

Recall that Act = (Q×R+×∆)∪{unlock}. In words, a scheduler resolves the nondeterminism
by choosing in each configuration a delay τ , followed by some discrete action. Condition (i)
ensures that σ only chooses enabled discrete actions; moreover, thanks to condition (ii), if
the system is deadlock, σ chooses the special action unlock.

The dynamic probabilistic timed network PN0
Λ together with a fixed scheduler σ give

rise to a Markov chain with state space Conf, and in which the probability measure over
executions of PN0

Λ , defined in a standard way, is written Pσ.

2.4 Problem formulation
We are now in a position to introduce relevant verification questions for dynamic probabilistic
timed networks. In this paper, we focus on qualitative reachability problems.

N. Bertrand and P. Fournier 7

Let qf ∈ Q, and ρ an execution of PN0
Λ . Execution ρ satisfies ♦qf , denoted ρ |= ♦qf , if

there exists a configuration γ along ρ with γ(qf , x) > 0 for some arbitrary clock value x.
Given a scheduler σ for PN0

Λ , we write Pσ(PN0
Λ |= ♦qf) for the probability under σ of the set

of executions ρ with ρ |= ♦qf . Further, minσ Pσ(PN0
Λ |= ♦qf) (resp. maxσ Pσ(PN0

Λ |= ♦qf))
denotes the minimum (resp. maximum) of these values among all possible schedulers.

We define the following family of decision problems, for opt ∈ {min,max}, b ∈ {0, 1}
and ∼∈ {<,=, >}

Reach∼b
opt

Input: A probabilistic timed protocol P, a rate pair Λ, and a control state qf ∈ Q.
Question: Does there exist N0 ∈ N>0 such that optσ Pσ(PN0

Λ |= ♦qf) ∼ b?

Note that we state the decision problems in an existential way; however negating the condition
∼ b, we equivalently deal with universal quantification over network sizes.

3 Decidability status in the static case

In this section, we consider the static case, i.e., when λ− = λ+ = 0, and start by establishing
simple decidability results.

I Proposition 6. The problems Reach=0
max, Reach<1

max, and Reach>0
max are decidable for

static probabilistic timed networks.

Proof. First, remark that maxσ Pσ(PN |= ♦qf) ≤ maxσ Pσ(PN+1 |= ♦qf). Indeed in the
network PN+1, some schedulers only involve N processes. Hence, there exists N such that
maxσ Pσ(PN |= ♦qf) = 0 if and only if maxσ Pσ(P1 |= ♦qf) = 0. And the same holds for the
case < 1. The decidability of Reach=0

max, and Reach<1
max thus derive from the decidability

of maxσ Pσ(M |= ♦qf) = 0 (resp. < 1) for M a finite-state Markov decision process [18, 10].
For Reach>0

max, observe that, for N ∈ N, maxσ Pσ(PN |= ♦qf) > 0 if and only if there
exists a scheduler σ with Pσ(PN |= ♦qf) > 0 if and only if there exists an execution ρ in PN
with ρ |= ♦qf . The decidability of Reach>0

max is therefore a consequence of the decidability of
the parameterized reachability problem in the non-probabilistic case, established in [3]. J

We now consider the remaining cases, and prove their undecidability, already for the
restricted class of untimed probabilistic networks.

I Theorem 7. The problems Reach=1
max, Reach=0

min, Reach>0
min, Reach<1

min and Reach=1
min

are undecidable for static probabilistic (timed) networks.

Proof sketch. Let us explain the key ideas of the undecidability proof for Reach<1
min, which

is inspired by techniques from [1]. We reduce from the halting problem of a deterministic
infinitely testing 2-counter machineM, which is known to be undecidable [19]. FromM,
we build a probabilistic protocol P, such that, for every N ∈ N>0, the network PN weakly
simulatesM: each execution either faithfully simulatesM or a simulation error is detected,
and some process is in an error state.

First, one process is selected to play the role of the controller, that keeps track of the
control state in M. The other processes will serve to encode the values of the counters,
and are grouped in state idle. The increment of counter ci is represented by moving a
process from idle to state ci where the counter value is encoded. This can be done by two
communications: one from the controller to the processes in idle, followed by one from one
“counter” process to the controller. For the test to zero decrement operation of counter ci,

8 Parameterized verification of probabilistic timed processes

the controller randomly guesses whether the counter value is zero or not. If it guesses zero
while ci > 0, all processes in ci move to an error state errz. Symmetrically, if it guesses
non-zero while ci = 0, the infeasibility of the decrement will force the controller to move to
an other error state err. If the guess is correct, the simulation continues, and no process are
in error states. The only way to avoid error states is thus to faithfully simulateM. Indeed,
in the probabilistic protocol P , the only blocking state for the controller is kacc, representing
the accepting state ofM, and from all other states it can reach state err. As a consequence,
all maximal executions reach err except for the ones which faithfully simulateM and end in
kacc. Moreover, for N large enough there exists an execution ρ in PN simulating π the unique
maximal execution of M. Assuming M terminates, π is finite, and thus ρ has a positive
probability under some scheduler σ. We derive that minσ Pσ(PN |= ♦(err ∪ errz)) < 1.

Assume now that M does not terminate, and thus its unique execution π contains
infinitely many zero tests, with a non-zero counter value. Under any scheduler σ, the
probability of executions simulating faithfully π is then zero. As a consequence reaching an
error state is almost-sure, for all schedulers.

The undecidability of Reach<1
min derives from the observation that this construction

ensures: ∃N ∈ N>0 minσ Pσ(PN |= ♦(errz ∪ err)) < 1 ⇐⇒ M terminates. J

4 Decidability status in the dynamic case

We now turn to dynamic probabilistic timed networks, and will see that the decidability
of the qualitative parameterized verification problems is recovered thanks to probabilistic
disappearance and creation of processes. To establish this result, we first abstract the
Markov decision process JPN0

Λ K into a discrete MDP, using an ad-hoc region abstraction
which preserves the extremal probabilities. Then, we prove that the so-called region MDP
enjoys the finite attractor property, and that it can be equipped with a well-quasi-ordering on
its configurations. These two properties entail the decidability of the qualitative verification
questions in the region MDP that are equivalent to the initial parameterized verification
problems in the network.

4.1 Region abstraction
The classical region abstraction for timed automata, presented in the seminal paper [6], is
based on the observation that the relevant information in clock valuations consists of the
integer part of each clock (up to the maximal constant appearing in guards) and the ordering
of their fractional parts. In our context, since the number of processes is unbounded (hence
the number of clocks is unbounded), the region abstraction cannot be used directly. Still,
based on classical regions, we present an equivalence relation over configurations.

For x ∈ R+ a non-negative real, we denote bxc its integer part and {x} its fractional part.
Note that x = bxc+ {x}.

IDefinition 8 (Region equivalence). Let b ∈ N. Two configurations γ1 = 〈(q1, x1), . . . , (qn, xn)〉
and γ2 = 〈(p1, y1), . . . , (pm, ym)〉 are region equivalent, denoted γ1 ≈b γ2 if there exists a
bijection h : J1, nK→ J1,mK such that the following conditions hold, ∀i, j ∈ J1, nK:

(i) qi = ph(i): states of processes agree,
(ii) (bxic ≤ b) ∨ (byh(i)c ≤ b)⇒ byh(i)c = bxic: integer part of clocks agree up to b,
(iii) ({xi} = 0)⇔ ({yh(i)} = 0): clocks with integer value agree,
(iv) for ∼∈ {<,=, >}, ({xi} ∼ {xj})⇔ ({yh(i)} ∼ {yh(j)}): the two orderings of fractional

parts coincide.

N. Bertrand and P. Fournier 9

In Definition 8, the region equivalence is indexed by a bound b. For a given protocol P
this bound is set as the maximal constant appearing in guards. For simplicity, we omit
it in what follows and simply write ≈. Given γ ∈ Conf a configuration, [γ] denotes its
equivalence class for ≈, and is called a region-configuration. As an example with b = 1,
〈(q1, 0), (q2, 2.1)〉 ≈ 〈(q1, 0), (q2, 4.5)〉 6≈ 〈(q1, 0.8), (q2, 4.5)〉.

Similarly to classical regions in timed automata, two region-equivalent configurations
exhibit similar future behaviors in PN0

Λ . This is formalized in the following proposition:

I Proposition 9. Let γ1 and γ2 be two configurations. If γ1 ≈ γ2, then γ1 and γ2 are
time-abstract bisimilar, i.e.:
∀τ1 ∈ R+, ∀γ1

τ1−→ γ′1, ∃τ2 ∈ R+, ∃γ′2 ∈ [γ′1] such that γ2
τ2−→ γ′2;

∀α ∈ Act, ∀γ1
α,p−−→ γ′1, ∃γ′2 ∈ [γ′1] such that γ2

α,p−−→ γ′2.

Thanks to Proposition 9, the MDP JPN0
Λ K can be abstracted into its quotient by ≈, a

countable MDP, formally defined as follows:

I Definition 10 (Region MDP). The region MDP of a dynamic network PN0
Λ is R(JPN0

Λ K) =
(Conf≈, [γN0

0],T≈,Act≈) defined from JPN0
Λ K = (Conf, γN0

0 ,TΛ,Act) by Conf≈ = {[γ] | γ ∈
Conf}, Act≈ = Act ∪ {TSucc}, and T≈ ⊆ Conf≈ × Act≈ × Dist(Conf≈) is such that

[γ1] TSucc−−−→ [γ2] ∈ T≈ as soon as ∃τ ∈ R+, ∃γ1
τ−→ γ2 ∈ TΛ such that γ1 6≈ γ2 and

∀τ ′ ≤ τ, γ1 + τ ′ ∈ [γ1] ∪ [γ2];
[γ1] α,p−−→ [γ2] ∈ T≈ as soon as ∃x, ∃γ1

αx,p
′

−−−→ γ2 ∈ TΛ, and p =
∑
γ′2≈γ2

{p′ | γ1
αx,p

′

−−−→ γ′2},
Remark that the region MDP R(JPN0

Λ K) is well-defined, thanks to Proposition 9. First,
the successor by TSucc is well-defined, since the next time-successor is uniform inside an
equivalence class for ≈. Second, the existence of successors by discrete actions are also
uniform inside an equivalence class, and the sum

∑
γ′2≈γ2

{p′ | γ1
αx,p

′

−−−→ γ′2} does not depend
on γ1 but only on [γ1]. Last, the above sum is well-defined since there are only finitely many
γ′2 such that γ′2 ≈ γ2 and γ1

αx,p
′

−−−→ γ′2.
A scheduler for R(JPN0

Λ K) is a mapping U : Conf≈ → Act≈ resolving the non-determinism
and such that U([γ]) is enabled in [γ]. Given qf ∈ Q a state of the protocol P, we write
R(JPN0

Λ K) |= ♦qf for the set of executions in R(JPN0
Λ K) that eventually visit some [γ] with

γ(qf , x) > 0 for some x ∈ R+. When a scheduler U is fixed, PU (R(JPN0
Λ K) |= ♦qf) is the

probability in R(JPN0
Λ K) under U of reaching qf . As intended, the region MDP R(JPN0

Λ K) is
equivalent to JPN0

Λ K in the following sense:

I Proposition 11. Let ∼∈ {<,=, >} and b ∈ {0, 1}.

∃σ Pσ(PN0
Λ |= ♦qf) ∼ b⇐⇒ ∃U PU (R(JPN0

Λ K) |= ♦qf) ∼ b .

The right-to-left implication of the equivalence is the easiest: From a scheduler U in the region
MDP, one can define a scheduler σ for the original network by mimicking the discrete actions,
and transforming the abstract delays (TSucc) into concrete ones. The other implication is
more subtle since a scheduler in the network may well take different decisions for equivalent
configurations. Yet, we can prove that for qualitative properties, one can always consider
schedulers that are region-uniform.

A consequence of Proposition 11 is that for opt ∈ {min,max},

optσPσ(PN0
Λ |= ♦qf) ∼ b ⇐⇒ optUPU (R(JPN0

Λ K) |= ♦qf) ∼ b .

Therefore the parameterized verification problems are equivalent in the dynamic probabilistic
timed network and its region MDP.

10 Parameterized verification of probabilistic timed processes

4.2 Deciding parameterized problems on the region MDP
Using Proposition 11, the qualitative reachability problems are equivalent in PN0

Λ and in
R(JPN0

Λ K). We now expose how to decide them in the region MDP. The decidability relies on
two key arguments: first, R(JPN0

Λ K) admits a finite attractor, and second, in R(JPN0
Λ K), the

predecessor operator is effective and preserves upward-closure for some well-quasi-ordering.
The decidability can then be derived by applying similar techniques as for nondeterministic
and probabilistic lossy channel systems [9, 11].

The finite attractor property was introduced originally for probabilistic lossy channel
systems (pLCS) and states that Markov chains induced by pLCS admit a finite recurrent
set [2, 8]. Roughly said, some results for finite Markov chains extend to infinite Markov
chains with a finite attractor. A Markov chain is said to have a finite attractor, if there exists
a finite set of states that is visited infinitely often almost-surely (i.e., with probability 1).
Further, a Markov decision process has a finite attractor if there exists a finite set of states
which is an attractor under all possible schedulers.

I Proposition 12. The set {[∅]} ⊆ 2Conf≈ is an attractor for R(JPN0
Λ K).

I Remark. In the region MDP, the empty region-configuration [∅], with no process, forms an
attractor. Since any initial region-configuration [γN0

0] = [〈(q0, 0)N0〉] can be reached, with
positive probability, from the empty region-configuration, this entails that along infinite
executions, almost-surely, all possible initial region-configurations [γN0

0] are visited infinitely
often. A consequence is that the validity of a qualitative property does not depend on
the initial number of processes N0. Moreover the extremal probabilities of reaching a
configuration with some process in qf is either 0 or 1.

These observations can be thought as drawbacks of the dynamic probabilistic timed
network model. Yet, we argue that the setting and the decidability results to come can easily
be adapted to the case where a fixed number of processes cannot disappear. This would lead
to a realistic model which, for example, can represent a system with fixed antennas and a
parametric number of wireless devices that disappear and are created following probabilistic
laws. More importantly, it would yield a system still with a finite attractor (the finite set of
possible states for the antennas), but in which the reachability probabilities can be different
from 0 and 1. The fact that the empty region-configuration forms a finite attractor, should
thus not be seen as an unrealistic feature.

Now that the existence of a finite attractor has been established, we define an appropriate
partial order � on Conf≈. Intuitively, region-configuration c is smaller than c′, if we can
remove some processes of a configuration of γ′ ∈ c′ and obtain a configuration γ ∈ c. We
also add a side-condition on the clocks with integer value, which is necessary to obtain a
good property on the predecessor operator. Formally:

I Definition 13 (Ordering on region-configurations). The order �⊆ Conf≈×Conf≈ is defined
as follows: for c, c′ ∈ Conf≈, c � c′ if there exists γ ∈ c and γ′ ∈ c′ such that:

(i) ∀q ∈ Q, ∀x ∈ R+, γ(q, x) ≤ γ′(q, x); and
(ii)

∑
q∈Q

∑
n∈N γ(q, n) = 0 =⇒

∑
q∈Q

∑
n∈N γ

′(q, n) = 0.

Adapting the proof of Higman’s lemma, one obtains:

I Proposition 14. The partial order � is a well-quasi-ordering.

We now consider the upward-closure operator ↑ w.r.t. �: given C ⊆ Conf≈,

↑ C = {c′ ∈ Conf≈ | ∃c ∈ C such that c � c′} .

N. Bertrand and P. Fournier 11

A set C ⊆ Conf≈ is said to be upward-closed whenever C =↑ C. Since � is a well-quasi-
ordering, any non-decreasing sequence of upward-closed sets eventually stabilizes. This
property will be useful in the sequel.

Last we define, in the region MDP, the predecessor operator: for c ∈ Conf≈, Pre(c)
denotes the set of region-configurations c′ ∈ Conf≈ that can reach c in one step. It happens
that for any upward-closed set C ⊆ Conf≈, the set Pre(C) can be computed, and is itself
upward closed.

I Proposition 15. Pre preserves upward-closure, is effective and satisfies Pre(C) = Pre(↑ C).

Propositions 12, 14 and 15 are decisive to obtain the decidability of parameterized
verification problems in the region MDP R(JPN0

Λ K). Combined with Proposition 11 we obtain
the main contribution of this paper:

I Theorem 16. The problems Reach∼b
opt are decidable for dynamic probabilistic timed

networks, and are non-primitive recursive.

Proof sketch. As an example, we explain how decidability is obtained for Reach>0
max. As

explained above, by Proposition 11, we can consider the same decision problem in the region
MDP. It thus suffices to show the decidability of whether there exists N0 ∈ N and a scheduler
U such that PU (R(JPN0

Λ K) |= ♦qf) > 0. We have the series of equivalences:

∃N0, ∃U PU (R(JPN0
Λ K) |= ♦qf) > 0 ⇐⇒ ∃U PU (R(JP0

ΛK) |= ♦qf) > 0
⇐⇒ [∅] ∈ Pre∗(qf) .

The first equivalence uses Remark 4.2, and more specifically that the qualitative reachability
does not depend on N0 because of the finite attractor property. Now, recall that qf represents
the set where some process is in state qf , and is thus upward-closed. Since the Pre operator
preserves upward-closure and is effective, and because � is a well-quasi-ordering, the set
Pre∗(qf) can be computed effectively by successive iterations of Pre. It then suffices to test
whether the region-configuration [∅] belongs to Pre∗(qf) to decide Reach>0

max.
For the lower-bound, we perform a reduction from the reachability problem in lossy

channel systems, which is known to be non-primitive recursive. J

5 Conclusion

We studied qualitative parameterized verification problems for a model of network of many
identical probabilistic timed processes. Interesting qualitative questions turn out to be
undecidable in the static case, and become decidable under the assumption that processes
can be created and disappear. The complexity of the decision algorithms for parameterized
reachability questions in dynamic probabilistic timed networks is theoretically high, but
it would be worth implementing our decision algorithms into a prototype to demonstrate
whether they can be used in practice on academic case studies.

Interesting research directions for future work, are to consider distributed schedulers,
where the choice of each process is independent of the state of the other processes, and
to tackle quantitative verification problems. For the latter, adapting existing techniques
for Markov chains to Markov decision processes could allow one to approximate maximum
expected time to reachability, or to compute optimal values of the parameter.

12 Parameterized verification of probabilistic timed processes

References
1 P. A. Abdulla, N. Ben Henda, and R. Mayr. Decisive Markov chains. Logical Methods in

Computer Science, 3(4), 2007.
2 P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph. Schnoebelen. Verification of probab-

ilistic systems with faulty communication. Information and Computation, 202(2):141–165,
2005.

3 P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. On the verification
of timed ad hoc networks. In Proc. 9th Int. Conference on Formal Modeling and Analysis
of Timed Systems (ForMATS’11), volume 6919 of LNCS, pages 256–270. Springer, 2011.

4 P. A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In Proc. 19th IEEE
Symposium on Logic in Computer Science (LICS’04), pages 345–354. IEEE Computer
Society, 2004.

5 P. A. Abdulla and B. Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science, 290(1):241–263, 2003.

6 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

7 K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 22:307–309, 1986.

8 C. Baier, N. Bertrand, and Ph. Schnoebelen. A note on the attractor-property of infinite-
state Markov chains. Information Processing Letters, 97(2):58–63, 2006.

9 C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeterministic probabilistic chan-
nel systems against ω-regular linear-time properties. ACM Transactions on Computational
Logic, 9(1), 2007.

10 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
11 N. Bertrand and Ph. Schnoebelen. Computable fixpoints in well-structured symbolic model

checking. Formal Methods in System Design, 2013. To appear.
12 E. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstraction

and regular languages. In Proc. 6th Int. Conference on Concurrency Theory (CONCUR’95),
volume 962 of LNCS, pages 395–407. Springer, 1995.

13 C. Daws. Symbolic and parametric model checking of discrete-time Markov chains. In Proc.
of 1st International Colloquium on Theoretical Aspects of Computing (ICTAC’04), volume
3407 of Lecture Notes in Computer Science, pages 280–294. Springer, 2004.

14 G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In Proc. 21th Int. Conference on Concurrency Theory (CONCUR’10), volume 6269 of
LNCS, pages 313–327. Springer, 2010.

15 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc.
of 14th Annual IEEE Symposium on Logic in Computer Science (LICS’99), pages 352–359.
IEEE Computer Society, 1999.

16 M. Fruth. Probabilistic model checking of contention resolution in the IEEE 802.15.4 low-
rate wireless personal area network protocol. In Proc. 2nd Int. Symposium on Leveraging
Applications of Formal Methods (IsoLA’06), pages 290–297. IEEE, 2006.

17 F. Gretz, J.-P. Katoen, and A. McIver. Operational versus weakest precondition semantics
for the probabilistic guarded command language. In Proc. 9th Int. Conference on Quant-
itative Evaluation of SysTems (QEST’12), 2012.

18 M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Modeling and Verification of
Real-Time Systems: Formalisms and Software Tools, chapter Verification of Real-Time
Probabilistic Systems, pages 249–288. John Wiley & Sons, 2008.

19 M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall International, 1967.

	Introduction
	Modeling probabilistic protocols
	Probabilistic timed networks
	Dynamic probabilistic timed networks
	Schedulers
	Problem formulation

	Decidability status in the static case
	Decidability status in the dynamic case
	Region abstraction
	Deciding parameterized problems on the region MDP

	Conclusion

