
Alternative proof of the average number of

occupied corners

May 22, 2015

We present here the initial proof of the Theorem 5, i.e in average there is
one occupied corner per tree-like tableau in Tn.

Tree-like tableaux

In this first part we recall basic notions and tools about tree-like tableaux. All
the details can be found in the article [ABN13].

Definition 1 (Tree-like tableau). A tree-like tableau is a filling of Young dia-
gram with points inside some cells, with three rules:

1. the top left cell has a point called the root point;

2. for each non root point, there is a point above it in the same column or to
its left in the same row, but not both at the same time;

3. there is no empty row or column.

The size of a tree-like tableau is its number of points. We denote by Tn the
set of the tree-like tableaux of size n. In a tree-like tableau, we call border edges,
the edges of the Southeast border. A tree-like tableau of size n has n+ 1 border
edges, we index them from 1 to n+ 1 as it is done in Figure 1. The border edge
numbered by i in a tree-like tableau T is denoted by ei(T). In the rest of the
article, when there is no ambiguity, the tableau T might be omitted in all the
notations.

The set of tree-like tableaux has an inductive structure given by an insertion
algorithm called Insertpoint which constructs a tree-like tableau of size n + 1
from a tree-like tableau of size n and the choice of one of its border edges. We
briefly present the algorithm in order for the article to be self-contained. A
more detailed presentation is given in [ABN13].
The special point plays an important role in Insertpoint, it is the right-most
point among those at the bottom of a column. We denote by sp(T) the index
of the horizontal border edge under the special point of a tree-like tableau T .
In the figures of this article, the special point might be indicated by a square

1

1 2

4

6

3

5

7

8

1

Figure 1: A tree-like tableau of size 7.

around it. The second notion we need is the ribbon, it is a connected set of
empty cells (with respect to adjacency) containing no 2 × 2 squares. Now we
can introduce the insertion algorithm.

Definition 2 (Insertpoint). Let T be a tree-like tableau of size n and ei one of
its border edges. First, if ei is horizontal (resp. vertical) we insert a row (resp.
column) of empty cells, just below (resp. to the right of) ei, starting from the left
(resp. top) border of T and ending below (resp. to the right of) ei. Moreover we
put a point in the right-most (resp. bottom) cell. We obtain a tree-like tableau
T ′ of size n + 1. Then, depending on the relative ordering of i and sp(T), we
define Insertpoint(T, ei), denoted also by Insertpoint(T, i).

1. If i > sp, then Insertpoint(T, ei) = T ′;

2. otherwise, we add to T ′ a ribbon along the border, from the new point to
the special point of T . This new tree-like tableau will be Insertpoint(T, ei).

An example of the two possible insertions is given in Figure 2 where the cells
of the new row/column are shaded and the cells of the ribbon are marked by
crosses.

e1

e7

1

(a) A tree-like tableau.

+ +

+

1

(b) Insertion at e1.

1

(c) Insertion at e7.

Figure 2: Insertion algorithm applied to T at e1 and e7.

Remark 3. We notice that the new point is the special point of the new tableau.
In addition, the index of the horizontal border edge under the new point is equal
to the one we chose during the algorithm, in other words:

sp(Insertpoint(T, i)) = i.

2

Enumeration of occupied corners

First of all, let us define occupied corners.

Definition 4 (Occupied corner). In a tree-like tableau T , the corners are the
cells for which the bottom and the right edges are border edges. Moreover, we
say that a corner is occupied, if it contains a point. We denote by oc(T) the
number of occupied corners of T , we extend this notation to a subset X of Tn
as follows, oc(X) =

∑
T∈X oc(T).

Figure 3 gives us an example of a tree-like tableau T for which oc(T) = 2.

1

Figure 3: A tree-like tableau with 4 corners, 2 of which are occupied.

Theorem 5. The number of occupied corners in the set of tree-like tableaux of
size n is given by,

oc(Tn) = n!.

In other words, on average there is one occupied corner per tree-like tableau.
The reader may check Theorem 5 for the case n = 3 using Figure 4.

1

(a) oc = 2

1

(b) oc =
1

1

(c) oc = 1

1

(d) oc = 1

1

(e) oc = 1

1

(f) oc = 0

Figure 4: Theorem 5 for n=3.

Let T be a tree-like tableau of size n, we denote by [T] the n + 1 tree-like
tableaux we obtain from T using Insertpoint at each of its n + 1 border edges,
i.e [T] = {Insertpoint(T, i) : 1 6 i 6 n + 1}. The main result of the paper
[ABN13] tells us that:

Tn+1 =
⊔

T∈Tn

[T]

The aim is to find a recurrence relation between oc(Tn) and oc(Tn+1). The first
idea was to try to get a recurrence relation between oc(T) and oc([T]) for any

3

tree-like tableaux. But it is difficult to control oc(Insertpoint(T, i)) when ei
is to the Southwest of the special point. Indeed, the ribbon kills the occupied
corners between them. To get around this issue, the idea is to consider a second
algorithm such that for each choice of border edge, each occupied corner is
killed once, only by the first one or only by the second one. We denote by tT
the tree-like tableau obtained from T by an axial symmetry with respect to the
main diagonal of the Young diagram of T . We define the second algorithm,
Insertpointt, as follows:

Insertpointt(T, i) =t Insertpoint(tT, (n + 2− i)).

In the same way there is a special point for Insertpoint, there is one also for
Insertpointt.

Definition 6 (Conjugate special point). The conjugate special point of a tree-
like tableau T is the point corresponding to the special point of tT . It is also the
lowest point among those at the right-most cell of a row. We denote by s̄p(T)
the index of the border edge to the right of the conjugate special point.

In the following figures, the conjugate special point might be indicated by a
diamond. We have the following relation, s̄p(T) = n+ 2− sp(tT) as we can see
in Figure 5. The first parts of both algorithms are the same. For the second

8

4

1

(a) Tree-like tableau
T :
sp = 8 and s̄p = 4

7

3
1

(b) Tree-like tableau
tT :
sp = 7 and s̄p = 3

Figure 5: Relation between the conjugate special point and the special point

part, in the case of Insertpointt, we add a ribbon between the new point and
the conjugate special point if, and only if, the new point is to the Northeast of
the conjugate special point, i.e i > s̄p. Figure 6 gives us an example. Using the
previous notations, we have that:

Insertpointt({T} × J1, n + 1K) =t [tT].

Lemma 7. Let T ∈ Tn, we have:

oc([T]) + oc(t[tT]) = (n− 1)oc(T) + (n + 1− sp(T) + 1) + s̄p(T). (1)

4

7

1

(a) A tree-like tableau
T

+ + +

1

(b) Insertpointt(T, 7)

Figure 6: Example of Insertpointt with a ribbon.

Proof. Suppose that T does not have any occupied corners, i.e oc(T) = 0.
Then Insertpoint(T, i) has an occupied corner if no ribbon is added during the
algorithm, else it has no occupied corner. In other words oc(Insertpoint(T, i)) =
1 if sp 6 i 6 n + 1 and 0 otherwise. Similarly, oc(Insertpointt(T, i)) = 1 if
1 6 i 6 s̄p and 0 otherwise. Hence we have the formula

oc([T]) + oc(t[tT]) = (n + 1− sp(T) + 1) + s̄p(T)

which match with Equation (1).
From now on, let us suppose that oc(T) > 1. The points of occupied corners

of T are at the right-most cell of a row and at the bottom of a column, so all
the occupied corners of T are at the Southwest of the special point and to the
Northeast of the conjugate special point. First, if the conjugate special point
and the special point are the same point, then they correspond to the only
occupied corner of T , thus oc(T) = 1 and s̄p = sp + 1. We observe that for any
choice of i, oc(Insertpoint(T, i)) + oc(Insertpointt(T, i)) = 2, indeed:

− 1 6 i < sp: a ribbon is added to obtain Insertpoint(T, i), hence the new
point is not in a corner and we no longer have the initial corner. Thus
oc(Insertpoint(T, i)) = 0. Conversely, no ribbon is added in the case of
Insertpointt, therefore we have a new occupied corner while keeping the
initial one. As a result, oc(Insertpointt(T, i)) = 2.

− i = sp or i = sp + 1: the same happens for both algorithm and for both
choices of i, namely, the new occupied corner kills the initial one. Hence
oc(Insertpointt(T, i)) and oc(Insertpoint(T, i)) are equal to 1.

− sp + 1 < i 6 n + 1: the symmetric case of 0 6 i < sp happens here, i.e
oc(Insertpoint(T, i)) = 2 and oc(Insertpoint(T, i)) = 0.

Finally,
oc([T]) + oc(t[tT]) = 2(n + 1),

as sp + 1 = s̄p, we obtain again Equation (1).

5

Suppose now that the two special points are different, since we have at least one
occupied corner, s̄p < sp. We study the case where both special points are not
in a corner. We have two cases:

− 1 6 i 6 s̄p or sp 6 i 6 n+ 1: in both cases one of the two algorithm gives
a tree-like tableau without occupied corner and the other gives a tree-like
tableau with oc(T) + 1 corners. Hence, we have oc(Insertpoint(T, i)) +
oc(Insertpointt(T, i)) = oc(T) + 1.

− s̄p < i < sp: suppose ei is not the edge of an occupied corner, let k be the
number of occupied corners Southwest to ei. Then oc(Insertpoint(T, i)) =
k since the ribbon kills the occupied corners Northeast to ei and also
the new one we could have obtained from the insertion of the new row
or column. By the same argument, oc(Insertpointt(T, i)) = oc(T) − k
so the sum is equal to oc(T). Conversely, if we suppose that ei is the
horizontal or the vertical border edge of an occupied corner, this occu-
pied corner is killed during Insertpoint(T, i) and Insertpointt(T, i), hence
oc(Insertpoint(T, i)) + oc(Insertpointt(T, i)) = oc(T)− 1.

Summing over all positions, we get

oc([T]) + oc(t[tT]) = (n + 1)oc(T) + s̄p(T) + (n + 1− sp(T) + 1)− 2oc(T),

which corresponds to Equation (1).
To end the proof, we need to study the case where the special points can

be in a corner. For example, we study the case where the special point is in
a corner but the conjugate special point is not. The results for 1 6 i < sp
and sp + 1 < i 6 n + 1 are the same keeping in mind that there are only
oc(T)− 1 occupied corners in s̄p < i < sp. The two remaining choices for i give
us oc(Insertpoint(T, i)) + oc(Insertpointt(T, i)) = oc(T), hence we obtain:

oc([T]) + oc(t[tT]) = (n + 1)oc(T) + s̄p− 2(oc(T)− 1) + (n + 1− (sp + 2) + 1)

which corresponds to Equation (1). The remaining two cases give us the same
result.

Proof of Theorem 5. Using that sp(Insertpoint(T, i)) = i and the fact that
Tn =

⊔
T∈Tn−1

[T], for j ∈ J1, nK we have |{T ∈ Tn, sp(T) = j}| = (n−1)!. Since
s̄p = n + 2− sp, we get∑

T∈Tn

s̄p(T)− sp(T) = (n + 2)n!− 2× n(n + 1)

2
× (n− 1)! = n!.

Therefore, if we sum Equation (1) over Tn, we obtain:

2oc(Tn+1) = (n− 1)oc(Tn) + (n + 3)n!. (2)

Finally, as the sequence (n!) satisfies Equation (2) and oc(T1) = 1!, then
oc(Tn) = n! for any positive integer n.

6

References

[ABN13] Jean-Christophe Aval, Adrien Boussicault, and Philippe Nadeau.
Tree-like tableaux. Electron. J. Combin., 20(4):Paper 34, 24, 2013.

7

