The Weak (2,2)-Labelling Problem for graphs with forbidden induced structures

Julien Bensmail, Hervé Hocquard, Pierre-Marie Marcille

LaBRI, Université de Bordeaux
JGA 2022, November 17

Labellings and i-sums

Definition

An (α, β)-labelling of a graph G is a function $\ell: E(G) \rightarrow\{1, \ldots, \alpha\} \times\{1, \ldots, \beta\}$, where the label is a couple of a color and a value.

Definition

The i-sums of a vertex u, denoted $\sigma_{i}(u)$, is the sum of the values of its incident edges labelled with color i. Formally,

$$
\sigma_{i}(u)=\sum_{\substack{e \in A(u) \\ \ell(e)[0]=i}} \ell(e)[1]
$$

where $A(u)$ is the set of edges incident to u.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Distinguishing labellings

Definition

We said it is distinguishing if for every two adjacent vertices u and v of G, there is an $i \in\{1, \ldots, \alpha\}$ such that the i-sums of u and v differ.

Conjectures

There are a few conjectures about "all" graphs admitting an (α, β)-labelling.
1-2-3 Conjecture (Karonski et al., 2004)
All graphs admit a (1,3)-labelling.
(2, 2)-Conjecture (Baudon et al., 2019)
All graphs admit a (2,2)-labelling.

Observation
The 1-2-3 Conjecture implies the (2,2)-Conjecture.

Current knowledge

number of colours

Current knowledge

number of colours

Current knowledge

number of colours

Current knowledge

Current knowledge

Current knowledge

Some known cases and our contribution

- The 1-2-3 Conjecture is known to hold for 3-colorable graphs.
- Hence, the $(2,2)$-Conjecture holds for 3 -colorable graphs.
- The (2,2)-Conjecture in fact holds for 4-colorable graphs.

Theorem (Bensmail, Hocquard, M., 2022+)
The (2,2)-Conjecture holds for $2 K_{2}$-free and $K_{1,3}$-free graphs.

$2 K_{2}$-free graphs

Definition

A graph is $2 K_{2}$-free if it does not have an induced $2 K_{2}$ subgraph, that is that for every pair of edges $u v$ and $x y$, either $u x, u y, v x$ or $v y$ is an edge of the graph.

We want to show the (2,2)-Conjecture for those graphs. Remember it holds for 4-colorable graphs.

Theorem
Every $2 K_{2}$-free graph with chromatic number 5 admits a distinguishing (2,2)-labelling.

Outline of the proof

Isolate a maximum independent set to deal with a 4-colorable subgraph.

Outline of the proof

Use the 4-coloring to compute a (2,2)-labelling.

Outline of the proof

Ensure those vertices have a large red sum.

Outline of the proof

Label the remaining edges with mostly blue labels.

Outline of the proof

We labelled each edge so that every subset of the partition has these distinguishing properties.

$2 K_{2}$-free graphs of high chromatic number

Theorem

Every $2 K_{2}$-free graph with chromatic number at least 6 admits a distinguishing $(2,2)$-labelling.

The proof is very similar...

Outline of the proof

Separate a maximum independent set of the graph.

Outline of the proof

Separate another maximum independent set of the remaining subgraph.

Outline of the proof

A tri-partition is a partition of a 4-colorable graph into 3 subsets V_{0}, V_{1}, V_{2} such that every vertex has at least one neighbor in the next set, and more neighbors in the next set than in its own set.

Outline of the proof

Label each one of those subgraphs and the edges between them.

Outline of the proof

Label each one of those subgraphs and the edges between them.

Outline of the proof

Label each one of those subgraphs and the edges between them.

Outline of the proof

Label each one of those subgraphs and the edges between them.

Outline of the proof

Verify some properties that ensure the distinguishing result.

Claw-free graphs

We also prove a similar result for $K_{1,3}-$ free graphs.
Theorem
The (2,2)-Conjecture holds for $K_{1,3}-$ free graphs.
The proof is very similar, but more technical:

- Each set can now have multiple complex connected components.
- In the case of large chromatic number, the two independent sets can have multiple connected components.

Perspectives and conclusion

A few perspectives :

- Proving the $(2,2)$-Conjecture for other graph classes with forbidden induced structures, such as triangle-free graphs.
- Proving the 1-2-3 Conjecture for claw-free and $2 K_{2}$-free graphs.

Perspectives and conclusion

A few perspectives :

- Proving the $(2,2)$-Conjecture for other graph classes with forbidden induced structures, such as triangle-free graphs.
- Proving the 1-2-3 Conjecture for claw-free and $2 K_{2}$-free graphs.

Thank you for your attention!

