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Introduction

Antimagic labellings

8 4 3

2 5 1

9 7 6

9
2

7 5

6 18

4
3

19 16 10

22 8 15

Definition

A labelling is said to be (locally) distinguishing if any pair of (adjacent) vertices
have different resulting sum.

We will get back to all this terminology later.
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Labellings

Labellings

Definition

A k-labelling of a graph G is a function ℓ ∶ E(G)→ {1, . . . , k}.

Definition

We call resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).
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Labellings

Labellings

Definition

A k-labelling of a graph G is a function ℓ ∶ E(G)→ {1, . . . , k}.

Definition

We call resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).

Definition (related to Irregularity Strength)

We say a labelling ℓ is distinguishing if for every two vertices u and v of G ,
σℓ(u) ≠ σℓ(v).
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Labellings

Definition

A k-labelling of a graph G is a function ℓ ∶ E(G)→ {1, . . . , k}.

Definition

We call resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).

Definition (Local)

We say a labelling ℓ is distinguishing if for every two adjacent vertices u and v of
G , σℓ(u) ≠ σℓ(v).
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Equitable Labellings

Equitable Labellings

Definition
A k-labelling is said to be equitable if for all 1 ≤ i , j ≤ k , the number of edges with
label i and the number of edges with label j differ by at most 1.

In particular, a locally Antimagic labelling can be defined as a special case of
equitable ∣E(G)∣-labelling!

Definition

We denote χΣ(G) the smallest integer k such that G admits an equitable
k-labelling.

Theorem (consequence of Lyngsie and Zhong, 2018)

If G is a "nice" graph, then χΣ(G) ≤ ∣E(G)∣.
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Equitable Labellings

Examples

An equitable labelling which happens to be antimagic:
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Equitable Labellings

Conjecture and contribution

Theorem (consequence of Lyngsie and Zhong, 2018)

If G is a nice graph, then χΣ(G) ≤ ∣E(G)∣.

Conjecture (Bensmail, Fioravantes, Mc Inerney, Nisse, 2021)

If G is a nice graph different from K4, then χΣ(G) ≤ 3.

Theorem (Bensmail, M., 2024+)

If G is a nice graph, then χΣ(G) ≤ ⌊
∣E(G)∣

2 ⌋ + 2.
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Proof of the main result

Preliminary work

We consider the sequence of labels L = (1,1,2,2, . . . , k + 1, k + 1, k + 2, k + 2)
(where k = ⌊ ∣E(G)∣2 ⌋).

?

? ?

?

?

? ?

???44

Here, L = (1,1,2,2,3,3,4,5,5,6,6).

Question
How do we carry the fact that some edges received a label?
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Proof of the main result

Weight function

Solution
We will keep the information by updating a weight function.

4

4

?

? ?

?

?

? ?

?

We now consider the weighted graph (G , c) where c is the weight function.
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Proof of the main result

Ideas of the proof

Proceed by induction on the number of vertices.

Build a partial labelling of the graph, and extend it.
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Proof of the main result

Ideas of the proof

Proceed by induction on the number of vertices.
Build a partial labelling of the graph, and extend it.

Problem
Once all the edges incident to u have been labelled, there is no way to change
σℓ(u).
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Proof of the main result

Ideas of the proof

Proceed by induction on the number of vertices.
Build a partial labelling of the graph, and extend it.

Ensure that the vertex at hand will have a resulting sum smaller than all vertices
treated later in the induction.
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Proof of the main result

Ideas of the proof

Proceed by induction on the number of vertices.
Build a partial labelling of the graph, and extend it.

Ensure that the vertex at hand will have a resulting sum smaller than all vertices
treated later in the induction.

Problem
Maybe G − u has a component isomorphic to K2.
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Proof of the main result

Ideas of the proof

Proceed by induction on the number of vertices.
Build a partial labelling of the graph, and extend it.

Ensure that a vertex will have a resulting sum smaller than the vertex treated
later in the induction.

Handle exceptions on the way.
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Proof of the main result

Vertex of lowest potential

We want to find the vertex with the lowest potential resulting sum:

4

14

3

1

9

For instance, consider L = (6,7,7,8,8,9,9). Each vertex is annoted with its
current weight.
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Proof of the main result

Vertex of lowest potential

We want to find the vertex with the lowest potential resulting sum:

4

14

3

1

9

Here, the minimum possible resulting sum for this vertex is 1 + 6 + 7 = 14.
For instance, consider L = (6,7,7,8,8,9,9). Each vertex is annoted with its
current weight.
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Proof of the main result

Vertex of lowest potential

We want to find the vertex with the lowest potential resulting sum:

4

14

3

1

9

Here, the minimum possible resulting sum for this vertex is 3 + 6 = 9.
For instance, consider L = (6,7,7,8,8,9,9). Each vertex is annoted with its
current weight.
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Proof of the main result

Vertex of lowest potential

We want to find the vertex with the lowest potential resulting sum:

4

14

3

1

9

6

For instance, consider L = (7,7,8,8,9,9). Each vertex is annoted with its current
weight.
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Proof of the main result

Vertex of lowest potential

We want to find the vertex with the lowest potential resulting sum:

10

14

1

9

For instance, consider L = (7,7,8,8,9,9). Each vertex is annoted with its current
weight.
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):

3

14

13

6
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):

3

14

13

6

We choose a vertex of highest degree amongst vertices of lowest potential.
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):

3

14

13

6

?

?

?

How to assign each label?
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):
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14
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How to assign each label?
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):

15

15

7

Problem
A component isomorphic to K2 with constant weight cannot be labelled.
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (2,3,3,4,4):

16

14

7
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):

7

16

14

7

Problem
Two adjacent vertices of lowest potential can be in conflict.
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (1,1,2,2,3,3,4,4):
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Proof of the main result

Handling exceptions

Consider this weighted graph with L = (2,3,3,4,4):

15

14

8
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Proof of the main result

Conclusion

We essentially improved the bound on equitable labellings by a factor of 2.
The question of a constant bound remains completely open.
The tools we used do not generelize nicely to multiplicity higher than 2.
More work can be done to characterize the graphs that cannot be done with
a sequence of ∣E(G) + 1∣ labels and multiplicity 2.

Thank you for your attention!
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Proof of the main result

The extra labels

They are some configurations where you can not use the smallest labels. Assume
for instance the sequence of labels is (1,1,2,2,3,3)
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