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Observation J

There is no graph other than K; where every two vertices have different degree.
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Figure: Locally irregular (or not) graphs

Locally irregular (l.i.) graphs J

Observation
Not all graphs are locally irregular. J
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L.i. decompositions

Definition
A decomposition of a graph G is a partition of the edges of G. A locally irregular
decomposition (1.i. decomposition) is a decomposition in locally irregular graphs.
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adjacent vertices differ by at least 2.
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S.l.i. decomposition J

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.
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Decomposability

S.Li. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.

Qs

Figure: A strongly locally irregular graph and one that is not s.li.

Theorem

Given a graph G, deciding if G admits a s.l.i. decomposition is NP-hard.

This stays true for planar graphs of maximum degree 4.
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Some decomposable classes

Theorem

If G is a graph with minimum degree at least 6, then G admits a s.l.i.
decomposition.
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Subcubic graphs

Theorem

A subcubic graph G is s.l.i decomposable if and only if there exists a bipartition of
G where all vertices of degree less than 2 are in the same part.
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The xs1i. parameter

Definition

For a graph G, we denote xs1i. (G) the smallest k such that G admits a s./.i.
k-edge-colouring.
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Figure: Graphs with their respective value of xs.1.i..

Theorem

Given a graph G, deciding if xs.1.i.(G) < 2 is NP-hard. J

This stays true even if G is bipartite.
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Value of xa.1.1.
Graphs with high ys.1i.
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Value of xa.1.1.
Graphs with high ys.1i.

Figure: A graph G Wlth XS,I.L(G) =16.
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Xs.1i. of trees

Theorem
If T is a s.l.i. decomposable tree, then x41;.(T) < 16. J
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Mending shrub cuttings together

Induction hypothesis

For a shrub wuu;, we can compute all the possible degrees of u; in the color of uu;
in some loosely s.l.i. decomposition.
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We introduced a new type of decomposition as a solution to the question of
irregularity of graphs, and proved that:

@ characterization of s.l.i. decomposability is non-trivial (unless P=NP);
o some sufficient conditions for s.l.i. decomposability;

@ upper bound on the associated parameter xs.1i. on trees.
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o Constant upper bound on x5 (G) for any s.li. decomposable graph G?
@ Strong exceptions of minimum degree 4 or 57

@ Better bound on xs ;. for s.l.i. decomposable trees (conjectured that it is 5)?

Thank you
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