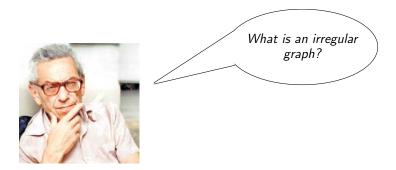
Strongly locally irregular graphs and decompositions

Julien Bensmail^a, <u>Clara Marcille^b</u>

a: I3S/INRIA, Université Côte d'Azur, France b: LaBRI, Université de Bordeaux, France

Journées Graphes et Algorithmes, 20 November 2024



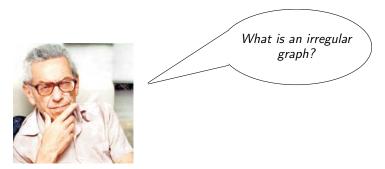


Figure: Some guy thinking [Chartrand, Erdös and Oellermann 88].

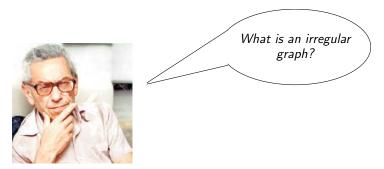


Figure: Some guy thinking [Chartrand, Erdös and Oellermann 88].

Observation

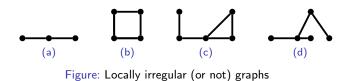
There is no graph other than K_1 where every two vertices have different degree.

Locally irregular (l.i.) graphs

A graph is *locally* irregular if every two adjacent vertices have distinct degree.

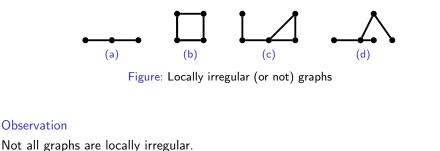
Locally irregular (I.i.) graphs

A graph is *locally* irregular if every two adjacent vertices have distinct degree.



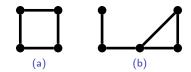
Locally irregular (I.i.) graphs

A graph is *locally* irregular if every two adjacent vertices have distinct degree.



Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.



Definition

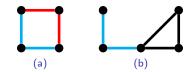
A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.

Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.

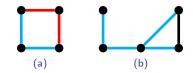
Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.



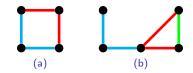
Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.



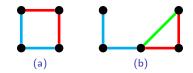
Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.



Definition

A decomposition of a graph G is a partition of the edges of G. A locally irregular decomposition (l.i. decomposition) is a decomposition in locally irregular graphs.



Strong local irregularity

Strong local irregularity

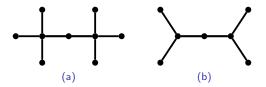
Definition

A graph is *strongly locally irregular* (s.l.i. for short) if the degrees of every two adjacent vertices differ by at least 2.

Strong local irregularity

Definition

A graph is *strongly locally irregular* (s.l.i. for short) if the degrees of every two adjacent vertices differ by at least 2.

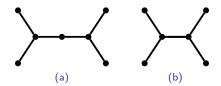


S.I.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.

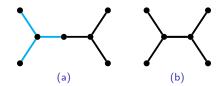
S.I.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.



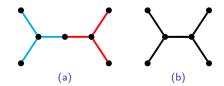
S.I.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.



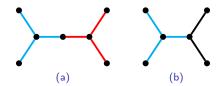
S.I.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.



S.I.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.



S.l.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.

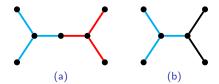


Figure: A strongly locally irregular graph and one that is not s.li.

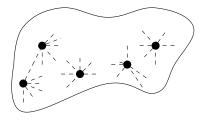
Theorem

Given a graph G, deciding if G admits a s.l.i. decomposition is NP-hard.

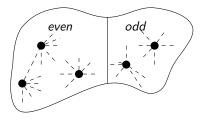
This stays true for planar graphs of maximum degree 4.

Theorem

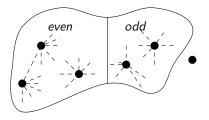
Theorem



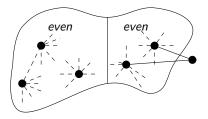
Theorem



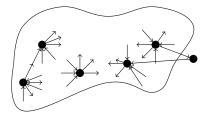
Theorem



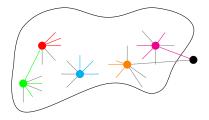
Theorem



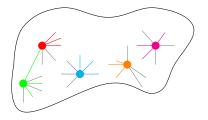
Theorem



Theorem



Theorem



Theorem

If G is a graph with minimum degree at least 6, then G admits a s.l.i. decomposition.

Theorem

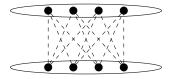
If G is a bipartite graph with minimum degree 3, then G admits a s.l.i. decomposition.

Theorem

If G is a graph with minimum degree at least 6, then G admits a s.l.i. decomposition.

Theorem

If G is a bipartite graph with minimum degree 3, then G admits a s.l.i. decomposition.



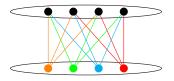
Some decomposable classes

Theorem

If G is a graph with minimum degree at least 6, then G admits a s.l.i. decomposition.

Theorem

If G is a bipartite graph with minimum degree 3, then G admits a s.l.i. decomposition.



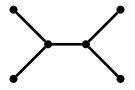
Theorem

Theorem

Theorem

Theorem

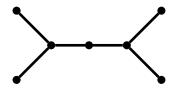
Theorem



Theorem

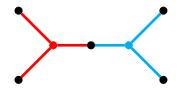
Theorem

Theorem



Theorem

Theorem



The $\chi_{\rm s.l.i.}$ parameter

Definition

For a graph G, we denote $\chi_{s.l.i.}(G)$ the smallest k such that G admits a s.l.i. k-edge-colouring.

The $\chi_{\rm s.l.i.}$ parameter

Definition

For a graph G, we denote $\chi_{s.l.i.}(G)$ the smallest k such that G admits a s.l.i. k-edge-colouring.

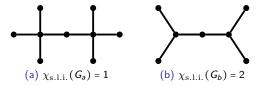


Figure: Graphs with their respective value of $\chi_{s.l.i.}$.

The $\chi_{\rm s.l.i.}$ parameter

Definition

For a graph G, we denote $\chi_{s.l.i.}(G)$ the smallest k such that G admits a s.l.i. k-edge-colouring.

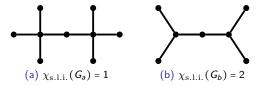


Figure: Graphs with their respective value of $\chi_{\rm s.l.i.}$.

Theorem

Given a graph G, deciding if $\chi_{s.l.i.}(G) \leq 2$ is NP-hard.

This stays true even if G is bipartite.

Graphs with high $\chi_{\rm s.l.i.}$

Graphs with high $\chi_{\rm s.l.i.}$

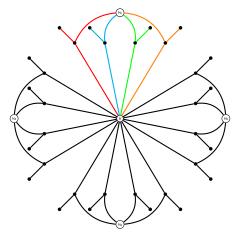


Figure: A graph G with $\chi_{s.l.i.}(G) = 16$.

Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.

Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

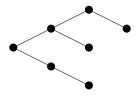
For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.

Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.

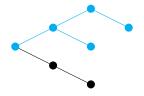


Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.

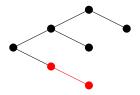


Theorem

If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.

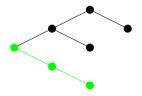


Theorem

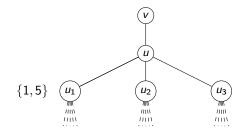
If T is a s.l.i. decomposable tree, then $\chi_{s.l.i.}(T) \leq 16$.

Theorem

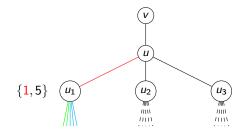
For any tree T and any fixed integer $k \ge 1$, we can determine in time $\mathcal{O}(n^k)$ whether $\chi_{s.l.i.}(T) \le k$ holds.



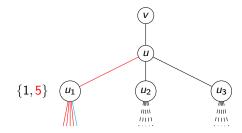
Induction hypothesis



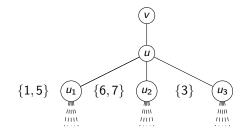
Induction hypothesis



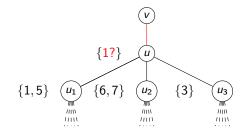
Induction hypothesis



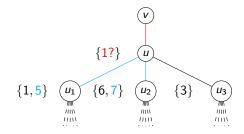
Induction hypothesis



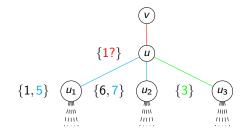
Induction hypothesis



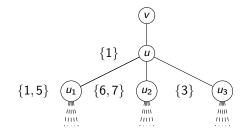
Induction hypothesis



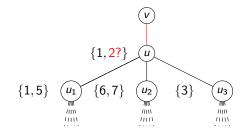
Induction hypothesis



Induction hypothesis



Induction hypothesis



We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

• characterization of s.l.i. decomposability is non-trivial (unless P=NP);

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;
- \bullet upper bound on the associated parameter $\chi_{\rm s.l.i.}$ on trees.

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;
- upper bound on the associated parameter $\chi_{\rm s.l.i.}$ on trees.

Open questions:

• Constant upper bound on $\chi_{s.l.i.}(G)$ for any s.l.i. decomposable graph G?

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;
- upper bound on the associated parameter $\chi_{\rm s.l.i.}$ on trees.

Open questions:

- Constant upper bound on $\chi_{s.l.i.}(G)$ for any s.l.i. decomposable graph G?
- Strong exceptions of minimum degree 4 or 5?

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;
- upper bound on the associated parameter $\chi_{\rm s.l.i.}$ on trees.

Open questions:

- Constant upper bound on $\chi_{s.l.i.}(G)$ for any s.l.i. decomposable graph G?
- Strong exceptions of minimum degree 4 or 5?
- Better bound on $\chi_{s.l.i.}$ for s.l.i. decomposable trees (conjectured that it is 5)?

We introduced a new type of decomposition as a solution to the question of irregularity of graphs, and proved that:

- characterization of s.l.i. decomposability is non-trivial (unless P=NP);
- some sufficient conditions for s.l.i. decomposability;
- upper bound on the associated parameter $\chi_{\rm s.l.i.}$ on trees.

Open questions:

- Constant upper bound on $\chi_{s.l.i.}(G)$ for any s.l.i. decomposable graph G?
- Strong exceptions of minimum degree 4 or 5?
- Better bound on $\chi_{s.l.i.}$ for s.l.i. decomposable trees (conjectured that it is 5)?

Thank you!