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Detection Problems in Graphs Introduction to Monitoring

Monitoring Networks through Distances

Bridget

Lest

Nocturne Sallie

Cagliostro

We make the following hypotheses:
messages have a timestamp;
every step takes the same time;
messages take a shortest path;
everyone knows their distance to
others.

Link with networks
This object simulates probes monitoring a network: if the value of the ping
between two probes increases, then one can know a failure happened.

Goal
We want to minimise the number of probes.
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Detection Problems in Graphs Introduction to Monitoring

Monitoring Edge Geodetics

Definition (MEG-set) [FNRS23]

A set M of vertices monitors an edge e
if e lies on all shortest paths between
two vertices of M.

Theorem [Haslegrave, 2023]

Deciding for a graph G and a natural number k whether meg(G) ≤ k is
NP-complete.
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Detection Problems in Graphs Vital Vertices in MEG-sets

Vital Vertices

Definition
A vertex of G is vital if it belongs to all MEG-sets of G .

Theorem [FMMSST24]

We can find the set of vital vertices of a graph in polynomial time.

The set of vital vertices
is enough for:

cographs;
split graphs;
block graphs;
interval graphs.

Trees CliquesSplit

Proper
interval

IntervalW-Pchordal Block

Chordal Cographs

Even-holefree
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Detection Problems in Graphs Vital Vertices in MEG-sets

Idea of the Interval Graphs Result

Lemma [FMMSST24]

In an interval graph, a vertex is vital if and only if its neighbourhood has diameter
at most 4.

Lemma [FMMSST24]

All interval graphs have a representation where the leftmost and rightmost
intervals are vital vertices.

Main Theorem [FMMSST24]

The set of vital vertices of an interval graph is a MEG-set.
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Detection Problems in Graphs Complexity Aspects of MEG-sets

Complexity Aspects of MEG-sets

Theorem [Haslegrave, 2023]

Deciding for a graph G and a natural number k whether meg(G) ≤ k is
NP-complete.

Our results ([FMSST25]):
MEG-set is XP by solution size.
MEG-set is FPT by clique-width
plus diameter.
MEG-set is FPT by tree-width on
chordal graphs.

Parameterised Complexity

For a graph G , there is a
polynomial-time algorithm to:

find a MEG-set of G of size
meg(G) ⋅

√
n lnm, but

not of size c ⋅meg(G) for any
c > 1.

Approximation Algorithms
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Detection Problems in Graphs Monitoring Oriented Graphs

Oriented version

In fact, we only need to be able to define paths to study monitoring.

Definition [DFMPS25+]

A set M of vertices monitors an arc Ð→a
if Ð→a lies on all shortest paths between
two vertices of M.

Problem Complexity
k-mag NP

Is-Extremal P
MAG+ NP
Vital P

Complete characterisation for:
paths;
cycles;
tournaments;
trees;
transitive graphs.
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Our results on monitoring:
polynomial characterisation of vital vertices;

polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;

parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;

generalised notions to oriented graphs.
Some open perspectives:

hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;

investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;

investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Detection Problems in Graphs Conclusion

Conclusion on Monitoring

Our results on monitoring:
polynomial characterisation of vital vertices;
polynomial-time algorithm to find minimum MEG-sets for several classes of
graphs;
parameterised algorithm for this problem;
generalised notions to oriented graphs.

Some open perspectives:
hardness of MEG-sets on chordal graphs;
investigate solution size as a parameter;
investigate useless vertices.

Clara Marcille Distinction and Detection in Graphs June 2025 10 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs

Distinction Problems in Graphs

Distinction Problems Local Irregularity

Labellings

Decompositions

Strong Decomp.

(k, l)-colourings Vector labellings

Clara Marcille Distinction and Detection in Graphs June 2025 11 / 25



Distinction Problems in Graphs Introduction

Distinguishing Vertices in Graphs

Clara Marcille Distinction and Detection in Graphs June 2025 12 / 25



Distinction Problems in Graphs Introduction

Distinguishing Vertices in Graphs

Clara Marcille Distinction and Detection in Graphs June 2025 12 / 25



Distinction Problems in Graphs Introduction

Distinguishing Vertices in Graphs

Clara Marcille Distinction and Detection in Graphs June 2025 12 / 25



Distinction Problems in Graphs Introduction

Distinguishing Vertices in Graphs

Clara Marcille Distinction and Detection in Graphs June 2025 12 / 25



Distinction Problems in Graphs Introduction

Local Irregularity

Definition
A graph is locally irregular if every two adjacent vertices have different degrees.

Observation
Not all graphs are locally irregular.
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Multigraphs
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Lower Bound 4 [SŠ21]
Upper Bound 220 [LPS18]
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Strong Local Irregularity

Definition [BM25+]

A graph is strongly locally irregular (s.l.i. for short) if the degrees of every two
adjacent vertices differ by at least 2.

S.l.i. decomposition

If a graph is not s.l.i., then we can try to decompose it into s.l.i. graphs.

Theorem [BM25+]

Deciding whether a graph can be decomposed into s.l.i. graphs is NP-complete.
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Our Results on s.l.i. Decompositions

Theorem [BM25+]

Deciding whether χs.l.i.(G) ≤ 2 holds for a bipartite graph G is NP-complete.

Class Decomposability Lower Bound Upper Bound
All graphs NP 16 Unknown
Trees P 5 16
Subcubic P 7 7
δ ≥ 5 P Unknown Unknown
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χs.l.i. of Trees

Theorem [BM25+]

If T is a s.l.i. decomposable tree, then χs.l.i.(T ) ≤ 16.

Theorem [BM25+]

For any tree T and any fixed integer k ≥ 1, we can determine in time O(nk)
whether χs.l.i.(T ) ≤ k holds.

In a rooted tree, a shrub is the subtree induced by an edge.
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Distinction Problems in Graphs Strong Local Irregularity

Mending Shrub Cuttings Together

Dynamic programming

For a shrub uui , we compute all the possible degrees of ui in the colour of uui in
some loosely s.l.i. decomposition.

d(u) =
a1 + a2 + a3

v

u

u2 u3u1{1,5}

u2

u3

u1

a2

a3

a1 − 1

1

2

0
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Distinction Problems in Graphs (k, l)-colourings

Having both a Labelling and a Decomposition

Intuition [BB+19]
If we use both a k-decomposition and a l-labelling, then we may reach better
bounds.

(1,1)

(2,3)

(0,1)(0,5)

(3,2)

2
1

1

2

2
1

[BHMM25] We prove it for:
cacti graphs;
subcubic outerplanar graphs;
graphs of maximum average
degree less than 9

4 ;
powers of cycles;
complete k-partite graphs.

Strong (2,2) Conjecture [BB+19]
"All" graphs admit a strong (2,2)-colouring.
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Distinction Problems in Graphs Polarised Labellings

Polarised Labellings of Graphs

Intuition [BHMM25]

We interpret the two colours as a polarity.

0

−1

1

−5 −1
2

1

1

2

2
1

Properness

We can consider
either:

the sum, or
the absolute
value.

Signature

The signature is
either:

fixed, or
can be chosen.

proper abs-proper
fixed signature ≤ 5 ≤ 9
free signature ≤ 3 [Keu24] ≤ 3 [Keu24]

Conjecture (optimal)

← These upper bounds are 2.
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Distinction Problems in Graphs Vector Colourings

(k , l)-colourings in a Euclidean Space

We also introduce a way to encapsulate all previous definitions, as a generalisation
of (k , l)-colourings.

u v

wx

Theorem (informal)

Given a graph G and two vectors, deciding whether G can be properly
edge-coloured with these two vectors is NP-hard.
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Distinction Problems in Graphs Conclusion

Conclusion on Irregularity

Our work on local irregularity:
stronger irregularity and decompositions;

results supporting the Strong (2,2) Conjecture;
a general formalism for unified statements of previously known results;
a way to accommodate irregularity for signed graphs.

Some open perspectives:
investigate properties of strong irregularity and links with other known
parameters;
the Strong (2,2) Conjecture is still open to this day;
prove that "all" graphs admit good polarised 2-labellings;
investigate the full extent of vectors as a mean of irregularity.
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Conclusion

Conclusion

In this thesis, we tackled multiple problems with:
structural approaches (studying simple cases, establishing structural
properties of solutions), and
algorithmic approaches (proving hardness, designing parameterised
algorithms).

This process can be applied on several variants of a problem, with two goals:
establishing relations between the variants to prove more results;
providing a gathering framework to give insights on previous results.
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Conclusion

Published Works

Works on Irregularity:

Going Wide with the 1-2-3

Conjecture, BHM, DAM

On inducing degenerate

sums through 2-labellings,

BHM, G&C

Adding direction

constraints to the 1-2-3

Conjecture, BHM, TCS

On 1-2-3 Conjecture-like

problems in

2-edge-coloured graphs,

BHMM, DM

Irregularity Notions for

Digraphs, BFHM, G&C

Journal

The Weak (2,2)-Labelling

Problem for Graphs with

Forbidden Induced

Structures, BHM

CALDAM23

An Improved Bound for

Equitable Proper

Labellings, BM, IWOCA24

Conferences
Works on Monitoring:

Bounds and extremal graphs for monitoring

edge-geodetic sets in graphs, FMSST, DAM

Journal

Monitoring Edge-Geodetic Sets in Graphs:

Extremal Graphs, Bounds, Complexity,

FMMSST, CALDAM24

Conferences
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Conclusion

What the Future Holds
Submitted works:

The Strong (2, 2)-Conjecture for more classes of graphs, BBGM;

An Improved Bound for Equitable Proper Labellings, BM;

Strongly Locally Irregular Graphs and Decompositions, BM;

Pushing Vertices to Make Graphs Irregular, BMO;

Graph Irregularity via Edge Deletions, BCFMO;

Monitoring arc-geodetic sets of oriented graphs, DFMPS;

Algorithms and complexity for monitoring edge-geodetic sets in graphs, FMSST;

Current perspectives:
exploring the vector formalism for irregularity in inner product spaces;
colourings of anti-prismatic graphs;
parameterised complexity of identifying some χ-bounded classes of graphs;
algorithms for MEG-sets.

Thank you!
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Appendix

Proof of one of our Results

Theorem
If G is a complete k-partite graph other than K2 and K3, then G admits a strong
(2,2)-colouring.

All vertices have a non-zero blue sum and no two adjacent vertices have red sum
equal to 0.

Case k = 3

I1 I2

I3
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Appendix

Proof of one of our Results (part 2)

Theorem
If G is a complete 3-partite graph other than K3, then G admits a strong
(2,2)-colouring such that all vertices have a non-zero blue sum and no two
adjacent vertices have red sum equal to 0.
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Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2



Appendix

Proof of one of our Results (part 2)

Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2



Appendix

Proof of one of our Results (part 2)

Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Ik

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2



Appendix

Proof of one of our Results (part 2)

Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Ik2
2

2
2

2

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2



Appendix

Proof of one of our Results (part 2)

Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Ik2
2

2
2

2

∶ (2(n1 + ⋅ ⋅ ⋅ + nk−1),0)

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2



Appendix

Proof of one of our Results (part 2)

Induction Hypothesis

If G is a complete k-partite graph for k ≥ 4 odd (resp. even), then G admits a
strong (2,2)-colouring such that all vertices have a non-zero blue (resp. red) sum
and no two adjacent vertices have red (resp. blue) sum equal to 0.

Ik2
2

2
2

2

∶ (2(n1 + ⋅ ⋅ ⋅ + nk−1),0)
< 2(n1 + ⋅ ⋅ ⋅ + nk−1)+

2(nk − ni)

Clara Marcille Distinction and Detection in Graphs June 2025 2 / 2


	Detection Problems in Graphs
	Introduction to Monitoring
	Vital Vertices in MEG-sets
	Complexity Aspects of MEG-sets
	Monitoring Oriented Graphs
	Conclusion

	Distinction Problems in Graphs
	Introduction
	Strong Local Irregularity
	(k, l)-colourings
	Polarised Labellings
	Vector Colourings
	Conclusion

	Conclusion
	Appendix
	Appendix


