On inducing degenerate sums through 2-labellings

Julien Bensmail ${ }^{\text {a }}$, Hervé Hocquard ${ }^{\text {b }}$, Pierre-Marie Marcille ${ }^{\text {b }}$

a: I3S/INRIA, Université Côte d'Azur, France
b: LaBRI, Université de Bordeaux, France

GT GO, March 3, 2023

Labellings

Definition

A k-labelling of a graph G is a function $\ell: E(G) \rightarrow\{1, \ldots, k\}$.

Definition

We call resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We say a labelling ℓ is distinguishing if for every two adjacent vertices u and v of $G, \sigma_{\ell}(u) \neq \sigma_{\ell}(v)$.

Small example

Conjectures and knowledge

These are the main conjectures and theorems in the field:
1-2-3 Conjecture (Karoński et al., 2004)
All graphs admit a distinguishing 3-labelling.

Conjectures and knowledge

These are the main conjectures and theorems in the field:
1-2-3 Conjecture (Karoński et al., 2004)
All graphs admit a distinguishing 3-labelling.

1-2-3-4-5 Theorem (Kalkowski et al., 2010)
All graphs admit a distinguishing 5-labelling.

Conjectures and knowledge

These are the main conjectures and theorems in the field:
1-2-3 Conjecture (Karoński et al., 2004)
All graphs admit a distinguishing 3-labelling.

1-2-3-4-5 Theorem (Kalkowski et al., 2010)
All graphs admit a distinguishing 5-labelling.
And some specific cases. For instance, the 1-2-3 Conjecture is known to hold for 3-colorable graphs.

Labellings (again)

Definition

A k-labelling of a graph G is a function $\ell: E(G) \rightarrow\{1, \ldots, k\}$.

Definition

We can resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We said a labelling ℓ is distinguishing if for every two adjacent vertices u and v of $G, \sigma_{\ell}(u) \neq \sigma_{\ell}(v)$.

Labellings (again)

Definition

A k-labelling of a graph G is a function $\ell: E(G) \rightarrow\{1, \ldots, k\}$.

Definition

We can resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We said a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

Small examples (again)

Definition

We say a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

Small examples (again)

Definition

We say a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:
Degenerate 1-2-3 Theorem (Gao et al., 2015)
All graphs admit a degenerate 3 -labelling.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:
Degenerate 1-2-3 Theorem (Gao et al., 2015)
All graphs admit a degenerate 3 -labelling.
In the same paper, the authors conjectuRed the following:
Degenerate 1-2 Conjecture (Gao et al., 2015)
All graphs admit a degenerate 2-labelling.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:
Degenerate 1-2-3 Theorem (Gao et al., 2015)
All graphs admit a degenerate 3 -labelling.
In the same paper, the authors conjectuRed the following:
Degenerate 1-2 Conjecture (Gao et al., 2015)
All graphs admit a degenerate 2-labelling.
They proved the conjecture for:

- Graphs with mad ≤ 3.
- Series-parallel graphs.
- Complete bipartite graphs.
- Cycles.
- Complete graphs.

Our contribution

From this exploratory work, our contribution consists in multiple things:

- Re-defining the problem in usual terms;
- Link it to several well-known graph notions;
- Improve the result on complete bipartite graphs to all bipartite graphs;
- Improve the results on series-parallel graphs to all 2-degenerate graphs;
- Improve the mad bound to $\frac{10}{3}$.

Theorem (Bensmail et al., 2023+)
Let G be a graph. If G is bipartite, 2-degenerate or of $\operatorname{mad}<\frac{10}{3}$, then G admits a degenerate 2-labelling.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem
Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem
Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

Bipartite graphs

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.
We use a classical technique of path swapping from the field.

2-degenerate graphs

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

2-degenerate graphs

Theorem
Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

2-degenerate graphs

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

2-degenerate graphs

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

2-degenerate graphs

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

2-degenerate graphs

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.
We swap paths according to a degenerate 2-coloring layout.

Main result

$\operatorname{mad}(G)$ is the maximum density of an induced subgraph of G.
Theorem (Gao et al., 2015)
Let G be a graph of $m a d \leq 3$. Then G admits a degenerate 2-labelling.

Main result

$\operatorname{mad}(G)$ is the maximum density of an induced subgraph of G.
Theorem (Gao et al., 2015)
Let G be a graph of mad ≤ 3. Then G admits a degenerate 2-labelling.

Corollary
Let G be a planar graph of girth 6 . Then G admits a degenerate 2-labelling.

Main result

$\operatorname{mad}(G)$ is the maximum density of an induced subgraph of G.
Theorem (Gao et al., 2015)
Let G be a graph of mad ≤ 3. Then G admits a degenerate 2-labelling.

Corollary
Let G be a planar graph of girth 6 . Then G admits a degenerate 2-labelling.

Theorem (Bensmail et al., 2023+)
Let G be a graph of mad $<\frac{10}{3}$. Then G admits a degenerate 2-labelling.

Main result

$\operatorname{mad}(G)$ is the maximum density of an induced subgraph of G.
Theorem (Gao et al., 2015)
Let G be a graph of mad ≤ 3. Then G admits a degenerate 2-labelling.

Corollary
Let G be a planar graph of girth 6 . Then G admits a degenerate 2-labelling.

Theorem (Bensmail et al., 2023+)
Let G be a graph of $\operatorname{mad}<\frac{10}{3}$. Then G admits a degenerate 2 -labelling.

Corollary
Let G be a planar graph of girth 5 . Then G admits a degenerate 2-labelling.

Main ideas

Definition

We say a graph G with $\operatorname{mad}(G)<\frac{10}{3}$ is a minimal counter example (relative to a theorem) if there is no H with $\operatorname{mad}(H)<\frac{10}{3}$ such that $|E(H)|+|V(H)|<|E(G)|+|V(G)|$.

- Suppose we have a minimal counterexample (minimal CE) to the theorem;
- Prove that it cannot contain some sparse structures;
- Put charge $d(v)-\frac{10}{3}$ on every vertex v;
- Move charges between vertices;
- Prove that the mad is too big.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

By minimality of G, we can compute ℓ^{\prime} a degenerate 2-labelling of $G-\{u v\}$.

u

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=4$.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=4$.
Then $\sigma_{\ell}(v)>\sigma_{\ell}(u)$.

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=4$.
Then $\sigma_{\ell}(v)>\sigma_{\ell}(u)$.
We can pick a fitting label!

$$
\sigma_{\ell}(v)+1
$$

$$
\sigma_{\ell}(v)+1
$$

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=4$.
Then $\sigma_{\ell}(v)>\sigma_{\ell}(u)$.
We can pick a fitting label!

$$
\sigma_{\ell}(v)+1
$$

$$
\sigma_{\ell}(v)+1
$$

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(u)=1$.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(u)=1$.
By arguments very similar.

$$
\begin{array}{lcc}
\sigma_{\ell}(v)+1 & \ddots & \\
& \ddots & (3-1-(1) \\
\sigma_{\ell}(v)+1 & \ddots & v
\end{array} \quad u
$$

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(u)=1$.
By arguments very similar.

$$
\begin{array}{lcc}
\sigma_{\ell}(v)+1 & \ddots & \\
& \ddots & \\
& \ddots & (3)-2-(1) \\
\sigma_{\ell}(v)+1 & \ddots & v
\end{array} \quad u
$$

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=2$.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

Suppose $d(v)=2$.
We can choose a label such that $\sigma_{\ell}(v)+\ell^{\prime}(u v)$ is not equal to the

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

We can now assume $d(v)=3$.

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

We can now assume $d(v)=3$.
We just pick a label by ℓ^{\prime} for $u v$ such that $\sigma_{\ell}(v)+\ell^{\prime}(u v) \neq \sigma_{\ell}(w)$.

An example of a reducible configuration

Theorem
Let G be a minimal CE. Then G does not contain a 4^{-}-vertex adjacent to a 2^{-}-vertex.

We can now assume $d(v)=3$.
We generalize the idea in a lemma.

Reducible configurations

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

We need to consider possible inner edges, and complete a labelling of $G-\{u\}$ and without the inner edges.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

$$
\text { Assume }\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=4 \text {. }
$$

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=4$. Then G is a wheel of order 5 .

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3 -vertices.

$$
\text { Assume }\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=3 \text {. }
$$

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=3$.
We ensure a large sum for u.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=3$. We ensure a large sum for u. We pick remaining labels according to the resulting sums of n_{2}^{\prime} and n_{3}^{\prime}.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. There are two subcases.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3-vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Assume inner edges are incident to a common vertex.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Assume inner edges are incident to a common vertex. We have no control over the label of $u n_{2}$.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume
$\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Assume inner edges are incident to a common vertex. We can still ensure that the resulting sum of u is large.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Assume inner edges are incident to a common vertex. We can still ensure that the resulting sum of u is large. We conclude with Lemma.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Now assume this configuration.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Now assume this configuration. The resulting sum of u is large.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

Assume $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=2$. Now assume this configuration. The resulting sum of u is large. We pick labels for $n_{1} n_{2}$ and $n_{0} n_{3}$ to differentiate them from their neighbours.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

$$
\begin{gathered}
\text { Assume } \\
\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=1 .
\end{gathered}
$$

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3-vertices.

Assume
$\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=1$. If we have the choice for at least one of $u n_{2}$ or $u n_{3}$, we can ensure a large resulting sum for u, and pick a label for $n_{0} n_{1}$ like in last case.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3-vertices.

Assume
$\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=1$.
Otherwise, we pick fitting labels for $u n_{2}$, $u n_{3}$, and we can make the resulting sum of one of n_{0} or n_{1} strictly bigger than the other.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

> Assume
> $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=0$.

Some more Reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4 -vertex adjacent to four 3 -vertices.

> Assume
> $\left|E\left(G\left[\left\{n_{0}, n_{1}, n_{2}, n_{3}\right\}\right]\right)\right|=0 . \quad$ We have a lemma.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

We consider a labelling of $G-\left\{u v_{1}, \ldots, u v_{d_{1}}, u w_{1}, \ldots, u w_{d_{2}}\right\}$ and we extend it.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

We consider a labelling of $G-\left\{u v_{1}, \ldots, u v_{d_{1}}, u w_{1}, \ldots, u w_{d_{2}}\right\}$ and we extend it. $\quad G\left[\left\{w_{1}, \ldots, w_{d_{2}}\right\}\right]$ has maximum degree 2. Its connected component are either cycles, paths or isolated vertices.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

We consider a labelling of $G-\left\{u v_{1}, \ldots, u v_{d_{1}}, u w_{1}, \ldots, u w_{d_{2}}\right\}$ and we extend it. We assign a fitting label to every remaining $u w_{i}$.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

We consider a labelling of $G-\left\{u v_{1}, \ldots, u v_{d_{1}}, u w_{1}, \ldots, u w_{d_{2}}\right\}$ and we extend it. There can be no cycle with one of the w_{i}. We only need to be sure that u does not have the same resulting sum as two of its neighbours.

Another Reduction

Configuration 8

Let G be a minimal CE, d_{1}, d_{2} two integers such that $3 d_{1}+d_{2}+1 \geq 6$. Then G does not contain a $\left(3 d_{1}+d_{2}+1\right)^{-}$-vertex adjacent to $d_{2} 3$-vertices and d_{1} 2^{-}-vertices.

We consider a labelling of
$G-\left\{u v_{1}, \ldots, u v_{d_{1}}, u w_{1}, \ldots, u w_{d_{2}}\right\}$ and we extend it.
We have a Lemma.

Our discharging process

Degree	1	2	3	4	5	6
Initial charge	$\frac{-7}{3}$	$\frac{-4}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	$\frac{5}{3}$	$\frac{9}{3}$
Final charge	$\frac{-4}{3}$	$\frac{2}{3}$	0	0	0	0

Weak 3-vertices

A weak 3 -vertex is a 3 -vertex adjacent to exactly one 4^{+}-vertex, and it is a 4 -vertex.

(R1) Every 5^{+}-vertex sends 1 to each of its 2^{-}-neighbours.
(R2) Every 5^{+}-vertex sends $\frac{1}{3}$ to each of its 3 -neighbours.
(R3) Every 4-vertex sends $\frac{1}{3}$ to each of its weak 3 -neighbours.
(R4) Every 4 -vertex sends $\frac{1}{6}$ to each of its non-weak 3-neighbours.

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .

Rule R3

Every 4-vertex sends $\frac{1}{3}$ to each of its weak 3 -neighbours.
We prove the same result for every possible degree.

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .
We prove the same result for every possible degree.

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .

Rule R2

Every 5^{+}-vertex sends $\frac{1}{3}$ to each of its 3 -neighbours.
We prove the same result for every possible degree.

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .
We prove the same result for every possible degree.

The final weights

Consider for instance v a 3 -vertex. Note that $\omega(v)=-\frac{1}{3}$, and that we need $\omega^{*}(v) \geq 0$:

- If v is weak, then v has only one 4^{+}-neighbour, being a 4 -vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5^{+}-vertex, or v neighbours at least two 4 -vertices. In the former case, at least one 5^{+}-neighbour of v sent $\frac{1}{3}$ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent $\frac{1}{6}$ to v by Rule 4 .

Rule R4

Every 4-vertex sends $\frac{1}{6}$ to each of its non-weak 3-neighbours.
We prove the same result for every possible degree.

Results

In this presentation, we proved the degenerate 1-2 Conjecture:

- for 2-degenerate graphs;
- for bipartite graphs;
- for graphs of mad $<\frac{10}{3}$.

In fact, it also holds for graph of edge weight 7 . We also have a corollary to the mad result:

Corollary
If G is a planar graph with $g(G) \geq 5$, then it admits a degenerate 2-labelling.

Perspectives

- Other classes of graph with vertex arboricity at most 2 :
- Graphs of maximum degree 4;
- Graphs of degeneracy 3.
- Denser graphs (with bigger mad).

Perspectives

- Other classes of graph with vertex arboricity at most 2 :
- Graphs of maximum degree 4;
- Graphs of degeneracy 3.
- Denser graphs (with bigger mad).

Thank you for your attention!

Discharging

We will apply the following result to our minimal CE.
Theorem (Bonamy et al., 2013)
Let G be a graph, m a value and $\left(V_{1}, V_{2}\right)$ a partition of $V(G)$. Let ω be the charge function where $\omega(v)=d(v)-m$ for every $v \in V(G)$. If there is a discharging process resulting in a charge function ω^{*} such that:

- $\omega^{*}(v) \geq 0$ for every $v \in V_{1}$, and
- $\omega^{*}(V) \geq \omega(v)+d_{V_{1}}(v)$ for every $v \in V_{2}$,

Then $\operatorname{mad}(G) \geq m$.
We consider V_{2} the set of all the 2^{-}-vertices of G. Note that by Configuration 1, $d_{V_{1}}(v)=d(v)$ for every $v \in V_{2}$.

