On inducing degenerate sums through 2-labellings

Julien Bensmail^a, Hervé Hocquard^b, Pierre-Marie Marcille^b

a: I3S/INRIA, Université Côte d'Azur, France b: LaBRI, Université de Bordeaux, France

GT GO, March 3, 2023

Labellings

Definition

A *k*-labelling of a graph G is a function $\ell : E(G) \rightarrow \{1, \dots, k\}$.

Definition

We call *resulting sum* (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We say a labelling ℓ is *distinguishing* if for every two adjacent vertices u and v of G, $\sigma_{\ell}(u) \neq \sigma_{\ell}(v)$.

2 / 22

Bensmail, Hocquard, Marcille

Degenerate sums with 2-labellings

Bensmail, Hocquard, Marcille

Degenerate sums with 2-labellings

Bensmail, Hocquard, Marcille

Bensmail, Hocquard, Marcille

Bensmail, Hocquard, Marcille

Conjectures and knowledge

These are the main conjectures and theorems in the field:

1-2-3 Conjecture (Karoński et al., 2004)

All graphs admit a distinguishing 3-labelling.

Conjectures and knowledge

These are the main conjectures and theorems in the field:

1-2-3 Conjecture (Karoński et al., 2004)

All graphs admit a distinguishing 3-labelling.

1-2-3-4-5 Theorem (Kalkowski et al., 2010)

All graphs admit a distinguishing 5-labelling.

Conjectures and knowledge

These are the main conjectures and theorems in the field:

1-2-3 Conjecture (Karoński et al., 2004)

All graphs admit a distinguishing 3-labelling.

1-2-3-4-5 Theorem (Kalkowski et al., 2010)

All graphs admit a distinguishing 5-labelling.

And some specific cases. For instance, the 1-2-3 Conjecture is known to hold for 3-colorable graphs.

Labellings (again)

Definition

A *k*-labelling of a graph G is a function $\ell : E(G) \rightarrow \{1, \dots, k\}$.

Definition

We can *resulting sum* (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We said a labelling ℓ is *distinguishing* if for every two adjacent vertices u and v of G, $\sigma_{\ell}(u) \neq \sigma_{\ell}(v)$.

Labellings (again)

Definition

A *k*-labelling of a graph G is a function $\ell : E(G) \rightarrow \{1, \dots, k\}$.

Definition

We can *resulting sum* (relative to a labelling ℓ) of a vertex u the sum of labels on edges incident to u. We denote it $\sigma_{\ell}(u)$.

Definition

We said a labelling ℓ is *degenerate* if the resulting sums by ℓ induce forests.

Small examples (again)

Definition

We say a labelling ℓ is *degenerate* if the resulting sums by ℓ induce forests.

Small examples (again)

Definition

We say a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:

Degenerate 1-2-3 Theorem (Gao et al., 2015)

All graphs admit a degenerate 3-labelling.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:

Degenerate 1-2-3 Theorem (Gao et al., 2015)

All graphs admit a degenerate 3-labelling.

In the same paper, the authors conjectuRed the following:

Degenerate 1-2 Conjecture (Gao et al., 2015)

All graphs admit a degenerate 2-labelling.

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:

Degenerate 1-2-3 Theorem (Gao et al., 2015)

All graphs admit a degenerate 3-labelling.

In the same paper, the authors conjectuRed the following:

Degenerate 1-2 Conjecture (Gao et al., 2015)

All graphs admit a degenerate 2-labelling.

They proved the conjecture for:

- Graphs with $mad \leq 3$.
- Series-parallel graphs.
- Complete bipartite graphs.
- Cycles.
- Complete graphs.

Our contribution

From this exploratory work, our contribution consists in multiple things:

- Re-defining the problem in usual terms;
- Link it to several well-known graph notions;
- Improve the result on complete bipartite graphs to all bipartite graphs;
- Improve the results on series-parallel graphs to all 2-degenerate graphs;
- Improve the *mad* bound to $\frac{10}{3}$.

Theorem (Bensmail et al., 2023+)

Let G be a graph. If G is bipartite, 2-degenerate or of $mad < \frac{10}{3}$, then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

Theorem

Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

mad(G) is the maximum density of an induced subgraph of G.

Theorem (Gao et al., 2015)

Let G be a graph of $mad \leq 3$. Then G admits a degenerate 2-labelling.

mad(G) is the maximum density of an induced subgraph of G.

Theorem (Gao et al., 2015)

Let G be a graph of $mad \leq 3$. Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 6. Then G admits a degenerate 2-labelling.

12/22

mad(G) is the maximum density of an induced subgraph of G.

Theorem (Gao et al., 2015)

Let G be a graph of $mad \leq 3$. Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 6. Then G admits a degenerate 2-labelling.

Theorem (Bensmail et al., 2023+)

Let G be a graph of $mad < \frac{10}{3}$. Then G admits a degenerate 2-labelling.

mad(G) is the maximum density of an induced subgraph of G.

Theorem (Gao et al., 2015)

Let G be a graph of $mad \leq 3$. Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 6. Then G admits a degenerate 2-labelling.

Theorem (Bensmail et al., 2023+)

Let G be a graph of $mad < \frac{10}{3}$. Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 5. Then G admits a degenerate 2-labelling.

Reduction

Main ideas

Definition

We say a graph G with $mad(G) < \frac{10}{3}$ is a minimal counter example (relative to a theorem) if there is no H with $mad(H) < \frac{10}{3}$ such that |E(H)| + |V(H)| < |E(G)| + |V(G)|.

- Suppose we have a minimal counterexample (minimal CE) to the theorem;
- Prove that it cannot contain some sparse structures;
- Put charge $d(v) \frac{10}{2}$ on every vertex v;
- Move charges between vertices;
- Prove that the *mad* is too big.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

By minimality of G, we can compute ℓ' a degenerate 2-labelling of $G - \{uv\}$.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 4.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 4. Then $\sigma_{\ell}(v) > \sigma_{\ell}(u)$.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 4. Then $\sigma_{\ell}(v) > \sigma_{\ell}(u)$. We can pick a fitting label!

14/22

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 4. Then $\sigma_{\ell}(v) > \sigma_{\ell}(u)$. We can pick a fitting label!

14/22

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(u) = 1.

Theorem

Let G be a minimal CE. Then G does not contain a 4⁻-vertex adjacent to a 2^{-} -vertex.

Suppose d(u) = 1. By arguments very similar.

Theorem

Let G be a minimal CE. Then G does not contain a 4⁻-vertex adjacent to a 2^{-} -vertex.

Suppose d(u) = 1. By arguments very similar.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 2.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

Suppose d(v) = 2. We can choose a label such that $\sigma_{\ell}(v) + \ell'(uv)$ is not equal to the resulting sum of the only neighbour of v other than u.

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

We can now assume d(v) = 3.

14/22

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

We can now assume d(v) = 3. We just pick a label by ℓ' for uv such that $\sigma_{\ell}(v) + \ell'(uv) \neq \sigma_{\ell}(w)$.

14/22

Theorem

Let G be a minimal CE. Then G does not contain a 4^- -vertex adjacent to a 2^- -vertex.

We can now assume d(v) = 3. We generalize the idea in a lemma.

Reducible configurations

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

We need to consider possible inner edges, and complete a labelling of $G - \{u\}$ and without the inner edges.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 4.$

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 4$. Then *G* is a wheel of order 5.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 3.$

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 3$. We ensure a large sum for u.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 3$. We ensure a large sum for u. We pick remaining labels according to the resulting sums of n'_2 and n'_3 .

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. There are two subcases.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Assume inner edges are incident to a common vertex.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Assume inner edges are incident to a common vertex. We have no control over the label of un_2 .
Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume

 $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2.$ Assume inner edges are incident to a common vertex. We can still ensure that the resulting sum of *u* is large.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Assume inner edges are incident to a common vertex. We can still ensure that the resulting sum of u is large. We conclude with Lemma.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Now assume this configuration.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Now assume this configuration. The resulting sum of u is large.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 2$. Now assume this configuration. The resulting sum of u is large. We pick labels for n_1n_2 and n_0n_3 to differentiate them from their neighbours.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 1$. If we have the choice for at least one of un_2 or un_3 , we can ensure a large resulting sum for u, and pick a label for n_0n_1 like in last case.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 1.$ Otherwise, we pick fitting labels for un_2 , un_3 , and we can make the resulting sum of one of n_0 or n_1 strictly bigger than the other.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four 3-vertices.

Assume $|E(G[\{n_0, n_1, n_2, n_3\}])| = 0.$ We have a lemma.

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

We consider a labelling of $G - \{uv_1, \ldots, uv_{d_1}, uw_1, \ldots, uw_{d_2}\}$ and we extend it.

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

We consider a labelling of $G - \{uv_1, \ldots, uv_{d_1}, uw_1, \ldots, uw_{d_2}\}$ and we extend it. $G[\{w_1, \ldots, w_{d_2}\}]$ has maximum degree 2. Its connected component are either cycles, paths or isolated vertices.

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

We consider a labelling of $G - \{uv_1, \ldots, uv_{d_1}, uw_1, \ldots, uw_{d_2}\}$ and we extend it. $G[\{w_1, \ldots, w_{d_2}\}]$ has maximum degree 2. Its connected component are either cycles, paths or isolated vertices. For each component with edges, we pick one arbitrary w_i and assign label 1 to every other uw_j of the component.

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

We consider a labelling of $G - \{uv_1, \ldots, uv_{d_1}, uw_1, \ldots, uw_{d_2}\}$ and we extend it. We assign a fitting label to every remaining uw_i .

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

We consider a labelling of $G - \{uv_1, \ldots, uv_{d_1}, uw_1, \ldots, uw_{d_2}\}$ and we extend it. There can be no cycle with one of the w_i . We only need to be sure that u does not have the same resulting sum as two of its neighbours.

17 / 22

Another Reduction

Configuration 8

Let G be a minimal CE, d_1 , d_2 two integers such that $3d_1 + d_2 + 1 \ge 6$. Then G does not contain a $(3d_1 + d_2 + 1)^-$ -vertex adjacent to d_2 3-vertices and d_1 2⁻-vertices.

Our discharging process

Degree	1	2	3	4	5	6
Initial charge	$\frac{-7}{3}$	$\frac{-4}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	$\frac{5}{3}$	$\frac{9}{3}$
Final charge	$\frac{-4}{3}$	$\frac{2}{3}$	0	0	0	0

Weak 3-vertices

A weak 3-vertex is a 3-vertex adjacent to exactly one 4^+ -vertex, and it is a 4-vertex.

- (R1) Every 5⁺-vertex sends 1 to each of its 2^- -neighbours.
- (R2) Every 5⁺-vertex sends $\frac{1}{3}$ to each of its 3-neighbours.
- (R3) Every 4-vertex sends $\frac{1}{3}$ to each of its weak 3-neighbours.
- (R4) Every 4-vertex sends $\frac{1}{6}$ to each of its non-weak 3-neighbours.

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Rule R3

Every 4-vertex sends $\frac{1}{3}$ to each of its weak 3-neighbours.

We prove the same result for every possible degree.

19/22

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Rule R2

Every 5⁺-vertex sends $\frac{1}{3}$ to each of its 3-neighbours.

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Consider for instance v a 3-vertex. Note that $\omega(v) = -\frac{1}{3}$, and that we need $\omega^*(v) \ge 0$:

- If v is weak, then v has only one 4⁺-neighbour, being a 4-vertex, which sent $\frac{1}{3}$ to v by Rule R3.
- If v is not weak, then either v neighbours at least one 5⁺-vertex, or v neighbours at least two 4-vertices. In the former case, at least one 5⁺-neighbour of v sent ¹/₃ to v by Rule R2, while, in the latter case, at least two 4-neighbours of v both sent ¹/₆ to v by Rule 4.

Rule R4

Every 4-vertex sends $\frac{1}{6}$ to each of its non-weak 3-neighbours.

Results

In this presentation, we proved the degenerate 1-2 Conjecture:

- for 2-degenerate graphs;
- for bipartite graphs;
- for graphs of $mad < \frac{10}{3}$.

In fact, it also holds for graph of edge weight 7. We also have a corollary to the mad result:

Corollary

If G is a planar graph with $g(G) \ge 5$, then it admits a degenerate 2-labelling.

Perspectives

- Other classes of graph with vertex arboricity at most 2:
 - Graphs of maximum degree 4;
 - Graphs of degeneracy 3.
- Denser graphs (with bigger mad).

Perspectives

- Other classes of graph with vertex arboricity at most 2:
 - Graphs of maximum degree 4;
 - Graphs of degeneracy 3.
- Denser graphs (with bigger mad).

Thank you for your attention !

21/22

Discharging

We will apply the following result to our minimal CE.

Theorem (Bonamy et al., 2013)

Let G be a graph, m a value and (V_1, V_2) a partition of V(G). Let ω be the charge function where $\omega(v) = d(v) - m$ for every $v \in V(G)$. If there is a discharging process resulting in a charge function ω^* such that:

•
$$\omega^*(v) \ge 0$$
 for every $v \in V_1$, and

•
$$\omega^*(V) \ge \omega(v) + d_{V_1}(v)$$
 for every $v \in V_2$,

Then $mad(G) \ge m$.

We consider V_2 the set of all the 2⁻-vertices of *G*. Note that by Configuration 1, $d_{V_1}(v) = d(v)$ for every $v \in V_2$.