Monitoring edge-geodetic sets on oriented graphs

Tapas Das³, Florent Foucaud¹, Clara Marcille², Pavan PD³, Sagnik Sen³

LIMOS, Université Clermont Auvergne

LaBRI, Université de Bordeaux

Indian Institute of Technology Dharwad, India

Journées Graphes et Algorithmes 2023

A D N A B N A B

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

2/10

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

(日) (同) (日) (日)

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

< ロ > < 同 > < 回 > < 回 >

Definition

A monitoring edge-geodetic set, or MEG-set, of a graph G is a vertex subset $M \subseteq V(G)$ such that given any edge e of G, e lies on every shortest u-v path of G, for some $u, v \in M$. For a graph G, we denote meg(G) the size of a smallest MEG-set of G.

Link with networks

This object simulates probes monitoring a network: if the value of the ping between two probes increases, then one can know where the failure happened.

(日) (同) (日) (日)

Theorem [Foucaud et al., 2023]

• For all $n \ge 2$, $meg(P_n) = 2$;

• • • • • • • • • • • •

Theorem [Foucaud et al., 2023]

- For all $n \ge 2$, $meg(P_n) = 2$;
- for all $n \neq 4$, $meg(C_n) = 3$, and $meg(C_4) = 4$;

Theorem [Foucaud et al., 2023]

- For all $n \ge 2$, $meg(P_n) = 2$;
- for all $n \neq 4$, $meg(C_n) = 3$, and $meg(C_4) = 4$;
- for all $n \in \mathbb{N}^*$, $meg(K_n) = n$;

Theorem [Foucaud et al., 2023]

- For all $n \ge 2$, $meg(P_n) = 2$;
- for all $n \neq 4$, $meg(C_n) = 3$, and $meg(C_4) = 4$;
- for all $n \in \mathbb{N}^*$, $meg(K_n) = n$;
- if G is a tree, then $meg(G) = |\{u \in V(G), d(u) = 1\}|$.

Theorem [Foucaud et al., 2023]

- For all $n \ge 2$, $meg(P_n) = 2$;
- for all $n \neq 4$, $meg(C_n) = 3$, and $meg(C_4) = 4$;
- for all $n \in \mathbb{N}^*$, $meg(K_n) = n$;
- if G is a tree, then $meg(G) = |\{u \in V(G), d(u) = 1\}|$.

Theorem [Haslegrave, 2023]

The decision problem of determining for a graph G and a natural number k whether $meg(G) \le k$ is NP-complete.

(日) (同) (日) (日)

Oriented version

We consider orientations of simple graphs, without digones.

Definition

In an oriented graph \vec{G} , two vertices x and y are said to monitor an arc \vec{a} if \vec{a} belongs to all oriented shortest paths from x to y or from y to x.

Definition

A monitoring arc-geodetic set, or MAG-set, of an oriented graph \vec{G} is a vertex subset $M \subseteq V(\vec{G})$ such that given any arc \vec{a} of $A(\vec{G})$, \vec{a} is monitored by x, y, for some $x, y \in M$. For an oriented graph \vec{G} , we denote $mag(\vec{G})$ the size of a smallest MAG-set of \vec{G} .

4/10

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

Image: A math a math

First note that for an oriented graph \vec{G} , the relation between $mag(\vec{G})$ and meg(G) is not clear:

Remark [Das et al., 2023+]

Let \vec{G} be an oriented graph, and $x \in V(\vec{G})$. If x is either a source or a sink, then x is in all MAG-set of \vec{G} .

Theorem [Das et al., 2023+]

Let \vec{G} be an oriented tree. There is a unique minimal MAG-set to \vec{G} , and it is exactly the set of sources and sinks of \vec{G} .

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Tournaments

Theorem [Das et al., 2023+]

Let \vec{G} be an orientation of K_n for some $n \in \mathbb{N}^*$. Then $mag(\vec{G}) \in \{n-1, n\}$.

Since one can check in polynomial type if a set of vertices of \vec{G} is an MAG-set, we can now easily characterize all tournaments for this parameter.

Complexity of computing the MAG-set size

We consider the following decision problem:

MAG-SET problem **Instance:** An oriented graph \vec{G} , an integer k. **Question:** Does there exist an MAG-set of \vec{G} of size k?

Complexity of computing the MAG-set size

We consider the following decision problem:

MAG-SET problem **Instance:** An oriented graph \vec{G} , an integer k. **Question:** Does there exist an MAG-set of \vec{G} of size k?

Theorem [Das et al., 2023+]

The MAG-SET problem is NP-complete.

The SETCOVER problem

We proceed with a reduction from the SETCOVER problem.

SETCOVER Problem: **Instance**: A set $\{X_0, X_2, \dots, X_n\}$, sets $\{S_0, S_1, \dots, S_m\}$ such that $\cup_{i=0}^m S_i = \{X_0, X_2, \dots, X_n\}$ and an integer k. **Question**: Does there exist a subcollection of at most k sets S_i 's such that their union is $\{X_0, X_2, \dots, X_n\}$.

From any instance of SETCOVER *I*, we can compute $\overrightarrow{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overrightarrow{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overrightarrow{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overrightarrow{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overline{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overline{G(I)}$.

We now need to study the properties of any MAG-set of G(I).

From any instance of SETCOVER *I*, we can compute $\overrightarrow{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overrightarrow{G(I)}$.

For every X_i , either x_i or some s_j with $X_i \in S_j$ is in M.

From any instance of SETCOVER *I*, we can compute $\overrightarrow{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overrightarrow{G(I)}$.

If $s_i \in M$ then we are done !

9/10

< 17 ×

From any instance of SETCOVER *I*, we can compute $\overrightarrow{G(I)}$ an instance of MAG-SET. Assume we have *M* an MAG-set of $\overrightarrow{G(I)}$.

If some $x_i \in M$, then we remove it and add an arbitrary s_j to M, with $X_i \in S_j$.

Conclusion

We have proven the following results on oriented graphs:

	non-oriented	oriented
Trees	leaves	sources and sinks
Cycles	3(4 for <i>C</i> ₄)	$2 \le mag \le n$
K _n	n	either <i>n</i> – 1 or <i>n</i>
Decision problem	NP-hard	NP-hard

э

Conclusion

We have proven the following results on oriented graphs:

	non-oriented	oriented
Trees	leaves	sources and sinks
Cycles	3(4 for C ₄)	$2 \le mag \le n$
K _n	n	either <i>n</i> – 1 or <i>n</i>
Decision problem	NP-hard	NP-hard

A few perspectives:

- To follow up on the idea of networks, we can study the interaction of monitoring with local constraints on all subgraphs.
- Some other results have been proven for the non-oriented case and the bounds are not known in the oriented case.
- We proved that MAGSET is hard on DAG. One can also wonder if the MAGSET problem is still hard for simpler graph structures, like planar graphs.

< ロ > < 同 > < 回 > < 回 >

Conclusion

We have proven the following results on oriented graphs:

	non-oriented	oriented
Trees	leaves	sources and sinks
Cycles	3(4 for C ₄)	$2 \le mag \le n$
K _n	n	either <i>n</i> – 1 or <i>n</i>
Decision problem	NP-hard	NP-hard

A few perspectives:

- To follow up on the idea of networks, we can study the interaction of monitoring with local constraints on all subgraphs.
- Some other results have been proven for the non-oriented case and the bounds are not known in the oriented case.
- We proved that MAGSET is hard on DAG. One can also wonder if the MAGSET problem is still hard for simpler graph structures, like planar graphs.

Thank you for your attention!

(日) (同) (日) (日)