Adding direction constraints to the 1-2-3 Conjecture

Pierre-Marie Marcille - Julien Bensmail, Hervé Hocquard CombAlgo - Univ. Bordeaux, LaBRI, France

k-labellings, resulting sums and χ_{Σ}

A *k*-labelling of a graph *G* is a function $\ell : E(G) \rightarrow \{1, \ldots, k\}$.

Global bound on $\chi_{\vec{\Sigma}}$

Theorem: There is no $k \ge 1$ such that $\chi_{\vec{\Sigma}}(\vec{G}) \le k$ for every \vec{G} .

Complexity result

Theorem: Deciding if $\chi_{\vec{\Sigma}}(\vec{G}) \leq 2$ for a given \vec{G} is NP-hard.

Gadgets

For every vertex, we can compute the resulting sum as the sum of the labels of its incident edges. A *k*-labelling is distinguishing if the resulting sums form a proper colouring. For a graph *G*, we denote by $\chi_{\Sigma}(G)$ the smallest *k* such that *G* admits a distinguishing *k*-labelling.

1-2-3 Conjecture [Karónski, Luszak, Thomason, 2004]

If G is a graph with no isolated K_2 , then $\chi_{\Sigma}(G) \leq 3$.

Oriented colourings and χ_{o}

For an oriented graph \vec{G} , a *k*-colouring is oriented if it forms an homomorphism from \vec{G} to an oriented graph of order *k*.

Lemma: The labels on the gadgets must be as shown.

Cubic Monotone 1-in-3 SAT

We consider a formula *F* instance of Cubic Monotone 1-in-3 SAT.

We denote by $\chi_0(\vec{G})$ the smallest k such that \vec{G} admits an oriented k-colouring.

Oriented chromatic number and $\chi_{\vec{s}}$

We denote by $\chi_{\vec{\Sigma}}(\vec{G})$ the smallest *k* such that there exists a *k*-labelling inducing an oriented colouring of \vec{G} . **Theorem**: If *G* is a graph, then there exists an orientation \vec{G} of *G* such that $\chi_{\Sigma}(G) = \chi_{\vec{\Sigma}}(\vec{G})$.

Connection with underlying graph

Theorem: There exist oriented graphs \vec{G} with $\chi_{\Sigma}(G) = 1$ and $\chi_{\vec{\Sigma}}(\vec{G})$ arbitrarily large.

- To every clause, we attach eleven copies of $\overrightarrow{N_4}$, one copy of $\overrightarrow{N_{20}}$, one copy of $\overrightarrow{N_{22}}$, and one copy of $\overrightarrow{N_{23}}$.
- To every variable, we attach three copies of $\overrightarrow{N_4}$, one copy of $\overrightarrow{N_{11}}$, and one copy of $\overrightarrow{N_{12}}$.

This implies:

- The sum of the clause vertices must be 21; thus, two incident arcs receive label 1 and one receives label 2.
- The sum of the variable vertices must be 10 or 13; thus, either all incident arcs receive label 1, or they all receive label 2.

Consequences

- ► The instance resulting from for the reduction is bipartite.
- Cubic Monotone 1-in-3 SAT is still NP-hard for planar formulae. Hence, the problem is still NP-hard when restricted to planar

bipartite oriented graphs.

Conclusion and questions

- The value $\chi_{\vec{s}}$ can be arbitrarily large.
- **Question**: How to express $\chi_{\vec{s}}$ in general?
- ▶ We proved that deciding $\chi_{\vec{s}} \leq 2$ is NP-hard.
- **Question**: What is the complexity of deciding $\chi_{\vec{s}} \leq k$ for $k \geq 3$?

