

For every vertex, we can compute the resulting sum as the sum of the labels of its incident edges. A k-labelling is distinguishing if the resulting sums form a proper colouring.
For a graph G, we denote by $\chi_{\Sigma}(G)$ the smallest k such that G admits a distinguishing k-labelling.

1-2-3 Conjecture [Karónski, Luszak, Thomason, 2004]

If G is a graph with no isolated K_{2}, then $\chi_{\Sigma}(G) \leq 3$.

Oriented colourings and χ_{0}

For an oriented graph \vec{G}, a k-colouring is oriented if it forms an homomorphism from G to an oriented graph of order k.

We denote by $\chi_{o}(\vec{G})$ the smallest k such that \vec{G} admits an oriented k-colouring.

Oriented chromatic number and $\chi_{\vec{\Sigma}}$

We denote by $\chi_{\vec{\Sigma}}(\vec{G})$ the smallest k such that there exists a k-labelling inducing an oriented colouring of \vec{G}.
Theorem: If G is a graph, then there exists an orientation \vec{G} of G such that $\chi_{\Sigma}(G)=\chi_{\vec{\Sigma}}(\vec{G})$.

Connection with underlying graph

Theorem: There exist oriented graphs \vec{G} with $\chi_{\Sigma}(G)=1$ and $\chi_{\vec{\Sigma}}(\vec{G})$ arbitrarily large.

Global bound on $\chi_{\vec{\Sigma}}$
Theorem: There is no $k \geq 1$ such that $\chi_{\vec{\Sigma}}(\vec{G}) \leq k$ for every \vec{G}.

Complexity result

Theorem: Deciding if $\chi_{\vec{\Sigma}}(\vec{G}) \leq 2$ for a given \vec{G} is NP-hard.
Gadgets

Lemma: The labels on the gadgets must be as shown.

Cubic Monotone 1-in-3 SAT
We consider a formula F instance of Cubic Monotone 1-in-3 SAT.

- To every clause, we attach eleven copies of $\overrightarrow{N_{4}}$, one copy of $\overrightarrow{N_{20}}$, one copy of $\overrightarrow{N_{22}}$, and one copy of $\overrightarrow{N_{23}}$.
- To every variable, we attach three copies of $\overrightarrow{N_{4}}$, one copy of $\overrightarrow{N_{11}}$, and one copy of $\overrightarrow{N_{12}}$.
This implies:
- The sum of the clause vertices must be 21 ; thus, two incident arcs receive label 1 and one receives label 2.
- The sum of the variable vertices must be 10 or 13 ; thus, either all incident arcs receive label 1 , or they all receive label 2.

Consequences

- The instance resulting from for the reduction is bipartite.
- Cubic Monotone 1-in-3 SAT is still NP-hard for planar formulae. Hence, the problem is still NP-hard when restricted to planar bipartite oriented graphs.

Conclusion and questions

- The value $\chi_{\vec{\Sigma}}$ can be arbitrarily large.
- Question: How to express $\chi_{\vec{\Sigma}}$ in general?
- We proved that deciding $\chi_{\vec{\Sigma}} \leq 2$ is NP-hard.
- Question: What is the complexity of deciding $\chi_{\vec{\Sigma}} \leq k$ for $k \geq 3$?

