RECONFIGURING DOMINATING SETS

UNDER TOKEN SLIDING

Marthe Bonamy, Paul Dorbec, Paul Ouvrard

July 6, 2017

University of Bordeaux

Domination

Definition

A dominating set in a graph G = (V, E) is a subset $D \subseteq V$ such that every vertex not in D is adjacent to at least one member of D.

Rule: each intermediate solution must be a dominating set, we are only allowed to slide a token along an edge!

♠ not always possible!

General definitions

Dominating Set Reconfiguration

Input: a graph *G*, two dominating sets *A* and *B* of *G* **We want**: to transform step-by-step *A* into *B*; each intermediate solution must be a dominating set.

Elementary operations

- o token addition and removal (TAR)
- o token jumping (TJ)
- o token sliding (TS)

Equivalence TAR/TJ

Notations

Let *G* be a graph and *A*,*B* be two dominating sets of size *k* of *G*.

- \bigcirc $A \stackrel{TAR}{\leadsto} B$: we can reconfigure A into B with the TAR model and each solution is of size at most k+1.
- \bigcirc $A \stackrel{TJ}{\leadsto} B$: we can reconfigure A into B with the TJ model.

Equivalence TAR/TJ

Lemma

Let *G* be a graph and *A* and *B* be two dominating sets of *G* of size *k*. We have $A \stackrel{TAR}{\leadsto} B$ iff $A \stackrel{TJ}{\leadsto} B$.

Proof: adapted from ¹ (Theorem 1)

- \bigcirc $TI \Rightarrow TAR$: easy. Replace each move $u \rightsquigarrow v$ by:
 - first add v
 - remove *u*
 - \circ \Rightarrow each solution has size at most k + 1
- We double the length of the sequence

¹M. Kaminski, P. Medvedev, and M. Milanic. Complexity of independent set reconfigurability problems. *Theoretical Computer Science*, 439:9 – 15, 2012.

Equivalence TAR/TJ

- \bigcirc $TAR \Rightarrow TJ$
 - TAR-sequence of length 2n with configurations of size k or k+1
 - \circ Alternation of addition of v followed by a removal of u
 - Replace by $u \stackrel{TJ}{\leadsto} v$
 - \circ ⇒ get a TJ-sequence of length n
 - \circ TAR-sequence of length 2n with configurations of any size
 - There exists a subsequence which consists in the removal of a vertex *u* followed by the addition of a vertex *v*
 - If $u = v \rightarrow$ remove the subsequence
 - o Otherwise, switch the order
 - o (Possibly reiterate the process)

Reduction

Theorem [Haddadan et al.]

Reconfiguring dominating sets under TAR(k + 1) is PSPACE-complete.

The problem is in PSPACE² (Theorem 1).

Lemma

Reconfiguring dominating sets under TS(k) is PSPACE-complete in split graphs.

¹Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. *Theoretical Computer Science* 412, pp. 1054–1065 (2011)

Complexity proof

Proof: reduction from TJ in some graph $G \to TS$ in the corresponding split graph.

Figure: Graph *G* and the corresponding split graph *G'*

Definitions

$$\bigcirc$$
 $G = (V, E)$ with $V = \{v_1, v_2, \dots, v_n\}$

$$\bigcirc G_i = G[\{v_i, v_{i+1}, \cdots, v_n\}]$$

- v maximum neighbor of u:
 - $v \in N[u]$
 - $\circ \ \forall w \in N[u] : N[w] \subseteq N[v]$
 - $\circ \Rightarrow v$ is adjacent to all the vertices at distance \leq 2 from u
- \bigcirc *maximum neighborhood ordering* (mno) : ordering on the vertices such that v_i has a maximum neighbor in G_i

Définitions

A *dually chordal* graph is a graph which has a maximum neighborhood ordering.

Lemma [Dorbec, Kosmrlj, Renault]

Let G be a dually chordal graph. There exists a maximum neighborhood ordering v_1, v_2, \dots, v_n of G such that if the only maximum neighbor of v_i in G_i is itself, then v_i is an isolated vertex in G_i . We call such a mno a *proper mno*.

Example of dually chordal graph

Minimum dominating sets reconfiguration

Let *A* and *B* be two *minimum* dominating sets of a dually chordal graph *G*. We want to reconfigure *A* into *B*.

Proof (sketch):

- We distinguish a minimum dominating set
 → canonical dominating set denoted C
- We show that both *A* and *B* reconfigure into *C*
- \bigcirc Reversible operation \Rightarrow one can reconfigure *A* into *B*

Algorithm to compute the canonical dominating set

Input: a dually chordal graph *G*, a proper mno **Output:** a canonical dominating set of *G*

- 1. Label all vertices with Bounded
- **2**. For *i* from 1 to $\gamma(G)$
 - If v_i is Bounded
 - Mark vertex v_i
 - Label $mn(v_i)$ with Required
 - For each vertex $v \in N(mn(v_i))$ which is **not** Required, label it Free
- \Rightarrow The vertices labeled Required form a dominating set.

Reconfiguration algorithm

- Let $C = \{c_1, c_2, \dots, c_{\gamma(G)}\}$ be the canonical dominating set
- Let $m_1, m_2, \dots, m_{\gamma(G)}$ be the marked vertices (by the previous algorithm)
- Let *D* be the minimum dominating set that we want reconfigure into *C*
- Le x_i be a vertex in $N[m_i] \cap D$

Proof (sketch):

- \bigcirc i = 1:
 - $\circ \ \forall w \in N[m_1], \ N[w] \subseteq N[c_1]$
 - In particular : $N[x_1] \subseteq N[c_1]$
 - \circ ⇒ $(D \setminus \{x_1\}) \cup \{c_1\}$ is a dominating set of G
 - \circ (x_1 , c_1) ∈ E(G)

Reconfiguration algorithm

- $0 i \Rightarrow i+1$
- O Suppose it is true at rank i i.e.

$$(D \setminus \{x_1, \dots, x_i\}) \cup \{c_1, \dots, c_i\}$$
 is a dominating set of G

- O We denote $v_j = m_{i+1}$ and $v_k = x_{i+1}$
- We distinguish two cases :
 - $v_k \geq v_i$:
 - \circ all the vertices before v_j (in the \emph{mno}) are already dominated
 - $\circ \ N_j[x_{i+1}] \subseteq N_j[c_{i+1}]$
 - \Rightarrow $(D \setminus \{x_1, \dots, x_i, x_{i+1}\}) \cup \{c_1, \dots, c_i, c_{i+1}\}$ is also a dominating set of G
 - $\circ \ \Rightarrow (x_{i+1},c_{i+1}) \in E(G)$

Reconfiguration algorithm

- $0 i \Rightarrow i+1$
 - \circ $v_k < v_j$:
 - ∘ $v_k \notin \{c_1, c_2, \dots, c_i\}$ (because v_i is labeled Bounded)
 - \circ all the vertices before v_j (still in the \emph{mno}) are already dominated
 - ∘ If $(v_k, c_{i+1}) \in E(G)$: nothing to do
 - o Otherwise, the situation is the following:

• We can slide v_k to c_{i+1} in two steps (via mn(vk)).

Conclusion

- O Problem PSPACE-complete in some graph classes...
 - Split graphs
 - Planar graphs
 - Bounded treewidth graphs
- ... but polynomial in other ones
 - Interval graphs (for any $k \ge \gamma(G)$)
 - Dually chordal (for $k = \gamma(G)$)
 - Cographs
- Find a class for which computing a minimum dominating set is hard but for which reconfiguration can be done in polynomial time.

Conclusion

- O Problem PSPACE-complete in some graph classes...
 - Split graphs
 - Planar graphs
 - Bounded treewidth graphs
- ... but polynomial in other ones
 - Interval graphs (for any $k \ge \gamma(G)$)
 - Dually chordal (for $k = \gamma(G)$)
 - Cographs
- Find a class for which computing a minimum dominating set is hard but for which reconfiguration can be done in polynomial time.

Thank you for your attention!

$TAR(k) \implies TAR(k+1)$

