RECONFIGURING DOMINATING SETS

UNDER TOKEN SLIDING

Marthe Bonamy, Paul Dorsec, Paul OUuvRARD

July 6, 2017

University of Bordeaux

universite
“BORDEAUX

Domination

Definition

A dominating set in a graph G = (V, E) is a subset D C V such
that every vertex not in D is adjacent to at least one member of
D.

Graph reconfiguration

Rule : each intermediate solution must be a dominating set,
we are only allowed to slide a token along an edge !

TS?

Graph reconfiguration

Graph reconfiguration

Graph reconfiguration

e LI

Graph reconfiguration

/\ not always possible !

. /QAQ\. rs: | /OAO\O
S ox N,

_/O

General definitions

Dominating Set Reconfiguration

Input : a graph G, two dominating sets A and B of G
We want : to transform step-by-step A into B; each intermedi-
ate solution must be a dominating set.

Elementary operations

O token addition and removal (TAR)

O token jumping (T7)
O token sliding (TS)

Equivalence TAR/T]

Let G be a graph and A,B be two dominating sets of size k of
G.

TAR
O A ~» B: we can reconfigure A into B with the TAR model
and each solution is of size at most k + 1.

T
O A ML B : we can reconfigure A into B with the T] model.

Equivalence TAR/T]

Lemma

Let G be a graph and A and B be two dominating sets of G of
size k. We have A o B iff A ~ B.

Proof : adapted from ! (Theorem 1)

O T] = TAR : easy. Replace each move u ~» v by :

o firstadd v
o remove U
o = each solution has size at most k + 1

O We double the length of the sequence

M. Kaminski, P. Medvedev, and M. Milanic. Complexity of independent
set reconfigurability problems. Theoretical Computer Science, 439 :9 — 15, 2012.

Equivalence TAR/T]

O TAR = TJ

o TAR-sequence of length 21 with configurations of size k or
k+1

o Alternation of addition of v followed by a removal of u

T
o Replace by u ML v
o = get a TJ-sequence of length n

o TAR-sequence of length 21 with configurations of any size
o There exists a subsequence which consists in the removal of
a vertex u followed by the addition of a vertex v
o If u = v — remove the subsequence
o Otherwise, switch the order
o (Possibly reiterate the process)

Theorem [Haddadan et al]

Reconfiguring dominating sets under TAR(k + 1) is PSPACE-
complete.

The problem is in PSPACE? (Theorem 1).

Lemma

Reconfiguring dominating sets under TS(k) is PSPACE-complete
in split graphs.

Tto, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M.,
Uehara, R., Uno, Y.: On the complexity of reconfiguration problems.
Theoretical Computer Science 412, pp. 10541065 (2011)

Complexity proof

Proof : reduction from TJ in some graph G — TS in the
corresponding split graph.

U1
U1 w1

v
U2 P% w2
o % w3
v
o4 i N

(@G (b) G’

Figure: Graph G and the corresponding split graph G’

O G=(V,E)ywithV ={vy,v0,--- ,0,}

O Gl = G[{vi/ Z7l‘+1/ Tty vl’l}]

O v maximum neighbor of u :
SRS N[u]
o Yw € N[u] : N[w] € N|[v]
o = v is adjacent to all the vertices at distance < 2 from u

O maximum neighborhood ordering (mno) : ordering on the
vertices such that v; has a maximum neighbor in G;

Définitions

A dually chordal graph is a graph which has a maximum
neighborhood ordering.

Lemma [Dorbec, Kosmrlj, Renault]

Let G be a dually chordal graph. There exists a maximum
neighborhood ordering v1, v, - - - , v, of G such that if the only
maximum neighbor of v; in G; is itself, then v; is an isolated
vertex in G;. We call such a mno a proper mno.

Example of dually chordal graph

Minimum dominating sets reconfiguration

Let A and B be two minimum dominating sets of a dually
chordal graph G. We want to reconfigure A into B.

Proof (sketch) :

O We distinguish a minimum dominating set
— canonical dominating set denoted C

O We show that both A and B reconfigure into C

O Reversible operation = one can reconfigure A into B

Algorithm to compute the canonical dominating set

Input: a dually chordal graph G, a proper mno
Output: a canonical dominating set of G

1. Label all vertices with BouNnDED
2. For i from 1 to y(G)
o If v; is BoUNDED

o Mark vertex v;

o Label mn(v;) with REQUIRED

o For each vertex v € N(mn(v;)) which is not
RequireD, label it FrRee

= The vertices labeled REQUIRED form a dominating set.

Reconfiguration algorithm

O Let C={c1,c2,-+,cy(c)} be the canonical dominating set

O Letmy,my,---,m,) be the marked vertices (by the
previous algorithm)

O Let D be the minimum dominating set that we want
reconfigure into C

O Le x; be a vertex in N[m;] N D

Proof (sketch) :
Oi=1:
Yw € N|[m1], N[w] C N|ec1]
In particular : N[x1] € N[ec1]
= (D \ {x1}) U {c1} is a dominating set of G
(x1,c1) € E(G)

[¢]

(¢]

[e]

[e]

Reconfiguration algorithm

Oi=i+1
O Suppose it is true at rank 7 i.e.
(D\{x1, -, xi})U{c1, -, ci} is a dominating set of G
O We denote v; = m;;1 and vg = xj41
O We distinguish two cases :
° Uk 20j:
o all the vertices before v j (in the mno) are already dominated
o Nj[xi41] € Njleiy]
o = (D\{xy, -+, xi,xi4.1}) U{c1, -+, ci,ciyr}isalsoa
dominating set of G
o = (xj41,¢i+1) € E(G)

Reconfiguration algorithm

Oi=i+1

° Uk <Uj:

o

[}

v ¢ {c1,c0,-++,ci} (because v; is labeled BounDED)
all the vertices before v; (still in the mno) are already
dominated

If (vg, ci+1) € E(G) : nothing to do

Otherwise, the situation is the following :

mn(vg)

Uk Uj Cit1

We can slide vy to ¢;;1 in two steps (via mn(vk)).

Conclusion

O Problem PSPACE-complete in some graph classes...
o Split graphs
o Planar graphs
o Bounded treewidth graphs

O ... but polynomial in other ones

o Interval graphs (for any k > y(G))
o Dually chordal (for k = y(G))
o Cographs

O Find a class for which computing a minimum dominating
set is hard but for which reconfiguration can be done in
polynomial time.

Conclusion

O Problem PSPACE-complete in some graph classes...
o Split graphs
o Planar graphs
o Bounded treewidth graphs

O ... but polynomial in other ones

o Interval graphs (for any k > y(G))
o Dually chordal (for k = y(G))
o Cographs

O Find a class for which computing a minimum dominating
set is hard but for which reconfiguration can be done in
polynomial time.

Thank you for your attention!

TAR(k) = TAR(k +1)

