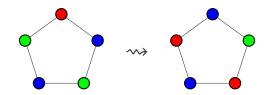
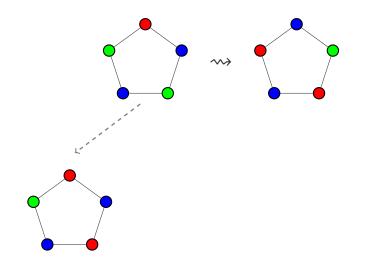
DISTRIBUTED RECOLORING

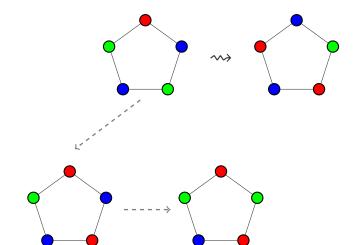
Marthe Bonamy, <u>Paul Ouvrard</u>, Mikaël Rabie, Jukka Suomela, Jara Uitto

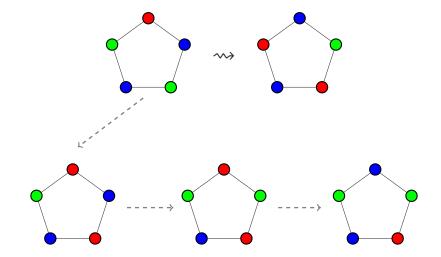
March 28, 2018

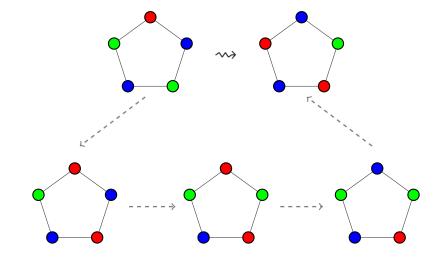
ANR DESCARTES meeting

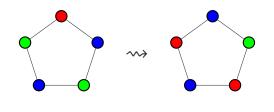






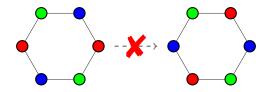




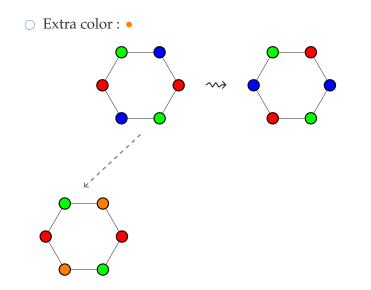


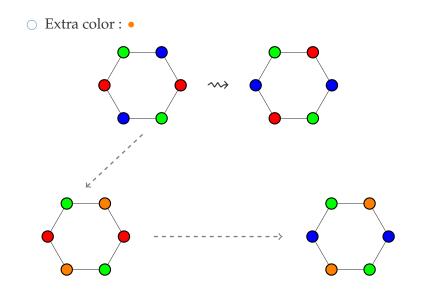
- We use the LOCAL model;
 - works in synchronous rounds;
 - each node knows only itself;
 - at each round, a node can:
 - send (and receive) a message (unlimited size) to its neighbors;
 - do some local computation.
- at each step, we can recolor a stable set, not only one vertex;

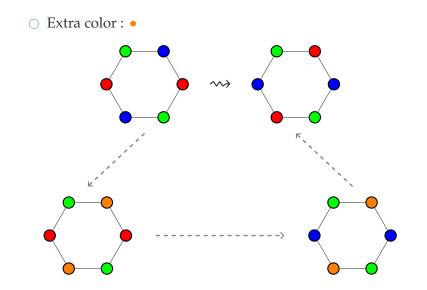
Recoloring is not always possible:



 \bigcirc \Rightarrow we allow extra colors.







• Extra color : •

 \checkmark

Notation

For a vertex u, we denote by $c_i(u)$ the color of u at step i.

Distributed recoloring

Input : a graph G = (V, E), two *k*-colorings α and β of *G*, *c* extra colors.

Output : for each node $u \in V$ a *recoloring schedule*: $\langle c_0(u) = \alpha(u), c_1(u), \cdots, c_i(u), \cdots, c_{\ell(u)-1}(u), c_{\ell(u)}(u) = \beta(u) \rangle$.

Length of the solution (schedule)

 $L = \max_{v \in V} \ell(v)$

Goal

Minimize *L* and the number of rounds.

Input : a tree *T*, α and β two 3-colorings of *T*. **We want** : to recolor *T* from α to β without extra color.

Theorem [Bonamy, O., Rabie, Suomela, Uitto '18]

For every tree *T* with radius at most *p* and for any two 3-colorings α , β of *T*, we can compute in O(p) rounds how to 3-recolor *T* from α to β with a schedule of length O(p).

Key idea

- \bigcirc Recolor *α* and *β* into a given 2-coloring *c*' of *T*;
- since each recoloring is reversible, we can recolor *α* into *β* as follows: $α \rightsquigarrow c' \rightsquigarrow β$.

How can we recolor a 3-coloring into c'?

- Root *T* on a node *r* at distance $\leq p$ of any node of *T*;
- \bigcirc in $O(\log p)$ rounds, *r* knows the full tree;
- \bigcirc *r* computes a schedule of length O(p) and sends it to every node.

Existence of a schedule of length *O*(*p*)

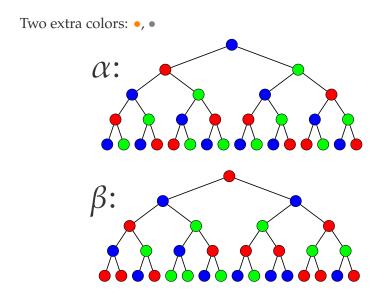
Identification operation

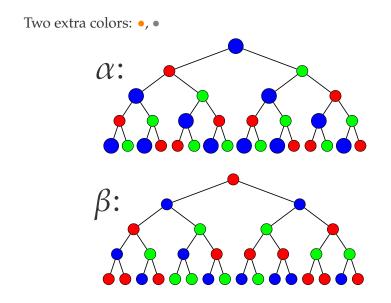
If *u* is a leaf and *v* its grandparent, we recolor *u* with c(v) and pretend that *u* and *v* are a single node i.e. we remove *u* and reflect any recoloring of *v* to *u* (possible since they are not adjacent).

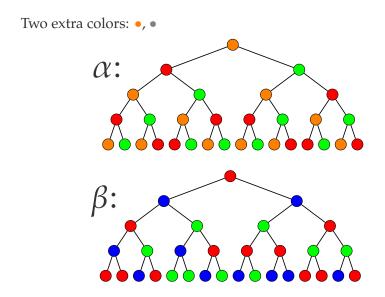
At each step:

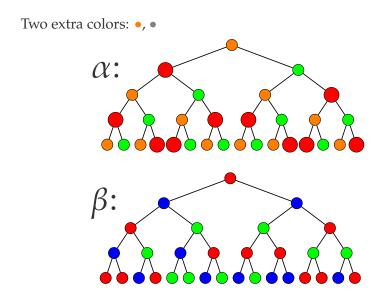
- \bigcirc *A*: set of leaves with a grandparent;
- for every leaf $u \in A$, identify u with its grandparent.

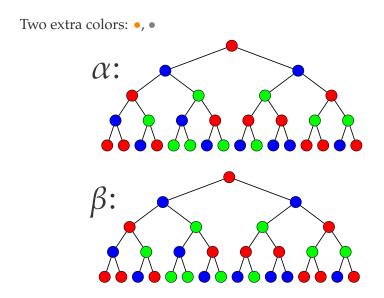
- At the end of this process, *T* consists only of the root *r* and its children;
- select (arbitrarily) a children and identify the others with it:
- \bigcirc *T* is only an edge *e* : if necessary, recolor *e* into *c'* (possible since we have 3 colors and only two vertices).











Recap

We have seen:

- \bigcirc 3+0: in O(n) rounds and schedule O(n);
- 3+2 : no communication needed and constant schedule;
- \bigcirc ... but what about 3+1 extra color ?

Recap

We have seen:

- \bigcirc 3+0: in O(n) rounds and schedule O(n);
- 3+2 : no communication needed and constant schedule;
- \bigcirc ... but what about 3+1 extra color ?

Theorem [Bonamy, O., Rabie, Suomela, Uitto]

For any $k \in \mathbb{N}$, for every tree *T* on *n* nodes, for any two *k*-colorings α , β of *T*, we can compute in $O(\log n)$ rounds how to recolor *T* from α to β with 1 extra color and a schedule of length O(1).

Key lemma:

Tree decomposition

There is an $O(\log n)$ -round algorithm that finds an MIS in a tree, such that every component induced by non-MIS nodes is of size one or two.

light *h*-labeling

Assign to each node a label between 1 and *h* such that for any $1 \le i \le h$ we have:

- Any node labeled *i* has at most two neighbors with label $\geq i$, at most one of which with label $\geq i + 1$.
- No two adjacent nodes labeled *i* both have a neighbor with label $\ge i + 1$.

Tree decomposition

Light $(2 \log n)$ -labeling for trees

There is an $O(\log n)$ -round algorithm that finds a light $(2 \log n)$ -labeling of a tree.

Proof (sketch):

- Adaptation of the *rake and compress* method by Reif and Miller;
- at step *i*, remove all nodes of degree 1 and all nodes of degree 2 that belong to a chain of at least three nodes of degree 2 and assign them label *i*.
- at every step, we remove at least a sixth of the nodes;
- \bigcirc the algorithm ends after $2 \log n$ steps.

Computing the MIS

- Compute a 3-coloring of *T* (can be done in *O*(log *n*) rounds);
- \bigcirc compute a light $O(\log n)$ labeling;
- \bigcirc Let $S = \emptyset$
- consider labels decreasingly:
 - if a node *u* labeled *i* has a neighbor of label $\ge i + 1$ not in *S*, add *u* to *S*;
 - complete *S* with the 3-coloring.
- \bigcirc by construction, *S* is a MIS.

Computing the MIS

All the nodes of a connected component of $T \setminus S$ have the same label (due to the first operation).

What about the size of these connected components ?

- *C*: connected component of size \geq 3;
- \bigcirc *uvw*: a path in *C*
- $\bigcirc \Rightarrow u, v \text{ and } w \text{ are labeled } i$
- \bigcirc *u* has no other neighbor of label $\ge i$
- $\bigcirc \Rightarrow$ contradiction.

- Compute the MIS *S*;
- \bigcirc recolor *S* with the extra color;
- remove *S* and recolor each connected component from α to β (without the extra color);
- \bigcirc recolor each node in *S* to its final color.

For trees:

- \bigcirc 3+0: O(n) rounds, schedule O(n);
- \bigcirc 3+1: $O(\log n)$ rounds, schedule O(1);
- \bigcirc 3+2 no communication, schedule O(1).

Some results for:

- subcubic graphs;
- toroidal grids;
- list coloring (on trees and subcubic graphs);

For trees:

- \bigcirc 3+o: O(n) rounds, schedule O(n);
- \bigcirc 3+1: $O(\log n)$ rounds, schedule O(1);
- \bigcirc 3+2 no communication, schedule O(1).

Some results for:

- subcubic graphs;
- toroidal grids;
- list coloring (on trees and subcubic graphs);

Thank you!