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Distributed recoloring

# We use the LOCAL model;
◦ works in synchronous rounds;
◦ each node knows only itself;
◦ at each round, a node can:

◦ send (and receive) a message (unlimited size) to its
neighbors;

◦ do some local computation.

# at each step, we can recolor a stable set, not only one vertex;
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Distributed recoloring

# Recoloring is not always possible:

8

# ⇒we allow extra colors.
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Distributed recoloring with extra colors

# Extra color : •
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Problem definition

Notation
For a vertex u, we denote by ci(u) the color of u at step i.

Distributed recoloring

Input : a graph G � (V, E), two k-colorings α and β of G, c
extra colors.
Output : for each node u ∈ V a recoloring schedule:
〈c0(u) � α(u), c1(u), · · · , ci(u), · · · , c`(u)−1(u), c`(u)(u) � β(u)〉.

Length of the solution (schedule)
L � maxv∈V `(v)

Goal
Minimize L and the number of rounds.
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Recoloring trees without extra color

Input : a tree T, α and β two 3-colorings of T.
We want : to recolor T from α to β without extra color.

Theorem [Bonamy, O., Rabie, Suomela, Uitto ’18]

For every tree T with radius at most p and for any two 3-
colorings α, β of T, we can compute in O(p) rounds how to
3-recolor T from α to β with a schedule of length O(p).
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Recoloring trees without extra color

Key idea

# Recolor α and β into a given 2-coloring c′ of T;
# since each recoloring is reversible, we can recolor α into β

as follows: α c′ β.

How can we recolor a 3-coloring into c′ ?

# Root T on a node r at distance ≤ p of any node of T;
# in O(log p) rounds, r knows the full tree;
# r computes a schedule of length O(p) and sends it to every

node.
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Recoloring trees without extra color

Existence of a schedule of length O(p)

Identification operation

If u is a leaf and v its grandparent, we recolor u with c(v)
and pretend that u and v are a single node i.e. we remove u
and reflect any recoloring of v to u (possible since they are not
adjacent).

At each step:

# A: set of leaves with a grandparent;
# for every leaf u ∈ A, identify u with its grandparent.
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Recoloring trees without extra color

# At the end of this process, T consists only of the root r and
its children;

# select (arbitrarily) a children and identify the others with it:
# T is only an edge e : if necessary, recolor e into c′ (possible

since we have 3 colors and only two vertices).
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Recoloring trees with 2 extra colors

Two extra colors: •, •

α:

β:
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Recoloring trees with one extra color

Recap
We have seen:

# 3+0: in O(n) rounds and schedule O(n);
# 3+2 : no communication needed and constant schedule;
# ... but what about 3+1 extra color ?

Theorem [Bonamy, O., Rabie, Suomela, Uitto]

For any k ∈ N, for every tree T on n nodes, for any two k-
colorings α, β of T, we can compute in O(log n) rounds how
to recolor T from α to β with 1 extra color and a schedule of
length O(1).
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Recoloring trees with 1 extra color

Key lemma:

Tree decomposition

There is an O(log n)-round algorithm that finds an MIS in a
tree, such that every component induced by non-MIS nodes is
of size one or two.
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Recoloring trees with 1 extra color

light h-labeling

Assign to each node a label between 1 and h such that for any
1 ≤ i ≤ h we have:

# Any node labeled i has at most two neighbors with label
≥ i, at most one of which with label ≥ i + 1.

# No two adjacent nodes labeled i both have a neighbor with
label ≥ i + 1.
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Tree decomposition

Light (2 log n)-labeling for trees

There is anO(log n)-roundalgorithmthatfindsa light (2 log n)-
labeling of a tree.

Proof (sketch):

# Adaptation of the rake and compress method by Reif and
Miller;

# at step i, remove all nodes of degree 1 and all nodes of
degree 2 that belong to a chain of at least three nodes of
degree 2 and assign them label i.

# at every step, we remove at least a sixth of the nodes;
# the algorithm ends after 2 log n steps.
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Tree decomposition

Computing the MIS

# Compute a 3-coloring of T (can be done in O(log n)
rounds);

# compute a light O(log n) labeling;
# Let S � ∅
# consider labels decreasingly:

◦ if a node u labeled i has a neighbor of label ≥ i + 1 not in S,
add u to S;
◦ complete S with the 3-coloring.

# by construction, S is a MIS.
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Tree decomposition

Computing the MIS
All the nodes of a connected component of T \ S have the same
label (due to the first operation).

What about the size of these connected components ?

# C: connected component of size ≥ 3;
# uvw: a path in C

# ⇒ u , v and w are labeled i

# u has no other neighbor of label ≥ i

# ⇒ contradiction.
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Recoloring algorithm

# Compute the MIS S;
# recolor S with the extra color;
# remove S and recolor each connected component from α to
β (without the extra color);

# recolor each node in S to its final color.
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Conclusion

For trees:

# 3+0: O(n) rounds, schedule O(n);
# 3+1: O(log n) rounds, schedule O(1);
# 3+2 no communication, schedule O(1).

Some results for:

# subcubic graphs;
# toroidal grids;
# list coloring (on trees and subcubic graphs);

Thank you!
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