Price Of CONNECTIVITY

FOR DOMINATION

Marthe Bonamy, Nicolas Bousquet, Tereza Klimošová, Paul Ouvrard

July 10, 2018
ICGT'18
université ${ }^{\text {® B BORDEAUX }}$

Definitions

Dominating set D

$D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

Definitions

Dominating set D

$D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

$\gamma(G)$: minimum size of a dominating set of G.

Definitions

Connected dominating set D

$D \subseteq V$ is a dominating set such that $G[D]$ is connected.

Definitions

Connected dominating set D

$D \subseteq V$ is a dominating set such that $G[D]$ is connected.

$\gamma_{c}(G)$: minimum size of a connected dominating set of G.

Definitions

Connected dominating set D

$D \subseteq V$ is a dominating set such that $G[D]$ is connected.

$\gamma_{c}(G)$: minimum size of a connected dominating set of G.

Definition and bounds

Some bounds:

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$

Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Definition and bounds

Some bounds:
$\gamma(G) \leq \gamma_{c}(G)$
Price of Connectivity for domination [Cardinal, Levy '08]
Let G be a graph. We define $\operatorname{PoC}(G)$ as $\frac{\gamma_{c}(G)}{\gamma(G)}$.
$\gamma_{c}(G) \leq 3 \gamma(G)-2$

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

$$
\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil
$$

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

Upper bound

- The upper bound is asymptotically tight for paths and cycles.

$$
\gamma_{c}\left(P_{n}\right)=n-2
$$

Definition

PoC-Perfect graph

A graph G is PoC-Perfect if for every induced subgraph H of G, $\gamma_{c}(H)=\gamma(H)$.

Definition

PoC-Perfect graph

A graph G is PoC-Perfect if for every induced subgraph H of G, $\gamma_{c}(H)=\gamma(H)$.

Theorem [Zverovich '03]
For every graph G, G is PoC-Perfect iff G is $\left(P_{5}, C_{5}\right)$-free.

PoC-Near-Perfect graphs (with threshold t)

PoC-Near-Perfect graph

A graph G is PoC-Near-Perfect with threshold t if for every induced subgraph H of $G, \gamma_{c}(H) \leq t \cdot \gamma(H)$.

PoC-Near-Perfect graphs (with threshold t)

PoC-Near-Perfect graph

A graph G is PoC-Near-Perfect with threshold t if for every induced subgraph H of $G, \gamma_{c}(H) \leq t \cdot \gamma(H)$.

Theorem: $t=3 / 2$ [Camby and Schaudt '14]
A graph G is PoC-Near-Perfect with threshold $3 / 2$ iff G is (P_{6}, C_{6})-free.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: $t=2$ [Camby and Schaudt '14]
For every $\left(P_{8}, C_{8}\right)$-free graph $G, \gamma_{c}(G) \leq 2 \gamma(G)$.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: $t=2$ [Camby and Schaudt 14]
For every $\left(P_{8}, C_{8}\right)$-free graph $G, \gamma_{c}(G) \leq 2 \gamma(G)$.

Conjecture: [Camby and Schaudt '14]
For every graph G, G is PoC-Near-Perfect with threshold 2 iff G is (P_{9}, C_{9}, H)-free.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: $t=2$ [Camby and Schaudt 14]
For every $\left(P_{8}, C_{8}\right)$-free graph $G, \gamma_{c}(G) \leq 2 \gamma(G)$.

Conjecture: [Camby and Schaudt '14]
For every graph G, G is PoC-Near-Perfect with threshold 2 iff G is (P_{9}, C_{9}, H)-free.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: $t=2$ [Camby and Schaudt 14]
For every $\left(P_{8}, C_{8}\right)$-free graph $G, \gamma_{c}(G) \leq 2 \gamma(G)$.

Conjecture: [Camby and Schaudt '14]
For every graph G, G is PoC-Near-Perfect with threshold 2 iff G is (P_{9}, C_{9}, H)-free.

Sketch of the proof

Theorem [Bonamy, Bousquet, Klimošová, O. '18]
The conjecture is true.

Sketch of the proof

Theorem [Bonamy, Bousquet, Klimošová, O. '18]

The conjecture is true.
G is $\left(P_{9}, C_{9}, H\right)$-free $\Rightarrow \gamma_{c}(G) \leq 2 \gamma(G)$: by contradiction.

Sketch of the proof

Theorem [Bonamy, Bousquet, Klimošová, O. '18]

The conjecture is true.
G is $\left(P_{9}, C_{9}, H\right)$-free $\Rightarrow \gamma_{c}(G) \leq 2 \gamma(G)$: by contradiction.
O: connected $\left(P_{9}, C_{9}, H\right)$-free graph s.t. $\gamma_{c}(G) \geq 2 \gamma(G)+1$;

Sketch of the proof

Theorem [Bonamy, Bousquet, Klimošová, O. '18]

The conjecture is true.
G is $\left(P_{9}, C_{9}, H\right)$-free $\Rightarrow \gamma_{c}(G) \leq 2 \gamma(G)$: by contradiction.

- G: connected $\left(P_{9}, C_{9}, H\right)$-free graph s.t. $\gamma_{c}(G) \geq 2 \gamma(G)+1$;
$\bigcirc D^{0}:\left|D^{0}\right|=\gamma(G)$ and D^{0} minimizes the number of cc; $\Rightarrow D_{1}^{0}, \cdots, D_{g}^{0}$ the cc of $G\left[D^{0}\right]$

Sketch of the proof

Theorem [Bonamy, Bousquet, Klimošová, O. '18]

The conjecture is true.
G is $\left(P_{9}, C_{9}, H\right)$-free $\Rightarrow \gamma_{c}(G) \leq 2 \gamma(G)$: by contradiction.

- G: connected $\left(P_{9}, C_{9}, H\right)$-free graph s.t. $\gamma_{c}(G) \geq 2 \gamma(G)+1$;
$\bigcirc D^{0}:\left|D^{0}\right|=\gamma(G)$ and D^{0} minimizes the number of cc; $\Rightarrow D_{1}^{0}, \cdots, D_{g}^{0}$ the cc of $G\left[D^{0}\right]$
$\bigcirc \ell$ the largest integer s.t. there exists a dominating set D s.t.
- $G[D]$ has $g-\ell$ cc;
- $|D| \leq \gamma(G)+\ell$;
- with some notion of heredity.

Sketch of the proof

Sketch of the proof

$D_{1} \cdots D_{g-\ell}$: the cc of $G[D]$.

Sketch of the proof

$D_{1} \cdots D_{g-\ell}$: the cc of $G[D]$.
Observation
For every $i, \operatorname{dist}\left(D_{i}, D \backslash D_{i}\right)=3$.

Sketch of the proof

$D_{1} \cdots D_{g-\ell}$: the cc of $G[D]$.

Observation

For every $i, \operatorname{dist}\left(D_{i}, D \backslash D_{i}\right)=3$.

Definition

Semi-relevant set $S \subseteq V \backslash D$ s.t. $G[D \cup S]$ has $g-\ell-|S|+1$ cc.
\Rightarrow every semi-relevant set is connected.

Sketch of the proof

- $A(S)=\left\{D_{1}, D_{2}, D_{3}\right\} ;$
o there is a bijection between S and $A(S)$;
o for every i, there is $u_{i} \in N\left[D_{i}\right]$ with no neighbor in $S \ldots$
$\Rightarrow \nexists$ semi-relevant set S with $A(S)=\cup_{i} D_{i}$.

Sketch of the proof

- $A(S)=\left\{D_{1}, D_{2}, D_{3}\right\} ;$
o there is a bijection between S and $A(S)$;
- for every i, there is $u_{i} \in N\left[D_{i}\right]$ with no neighbor in $S \ldots$
$\Rightarrow \nexists$ semi-relevant set S with $A(S)=\cup_{i} D_{i}$.
Consider $D \cup S$ which is a connected DS of size:
$|D|+|S|$

Sketch of the proof

- $A(S)=\left\{D_{1}, D_{2}, D_{3}\right\} ;$
o there is a bijection between S and $A(S)$;
- for every i, there is $u_{i} \in N\left[D_{i}\right]$ with no neighbor in $S \ldots$
$\Rightarrow \nexists$ semi-relevant set S with $A(S)=\cup_{i} D_{i}$.
Consider $D \cup S$ which is a connected DS of size:
$|D|+|S|=|D|+\# \mathrm{cc}$ of $G[D]$

Sketch of the proof

- $A(S)=\left\{D_{1}, D_{2}, D_{3}\right\} ;$

O there is a bijection between S and $A(S)$;

- for every i, there is $u_{i} \in N\left[D_{i}\right]$ with no neighbor in $S \ldots$
$\Rightarrow \nexists$ semi-relevant set S with $A(S)=\cup_{i} D_{i}$.
Consider $D \cup S$ which is a connected DS of size:
$|D|+|S|=|D|+\# \mathrm{cc}$ of $G[D] \leq \gamma(G)+\ell+$ \#cc of $G\left[D^{0}\right]-\ell$

Sketch of the proof

- $A(S)=\left\{D_{1}, D_{2}, D_{3}\right\}$;
o there is a bijection between S and $A(S)$;
of for every i, there is $u_{i} \in N\left[D_{i}\right]$ with no neighbor in $S \ldots$
$\Rightarrow \nexists$ semi-relevant set S with $A(S)=\cup_{i} D_{i}$.
Consider $D \cup S$ which is a connected DS of size: $|D|+|S|=|D|+\# c c$ of $G[D] \leq \gamma(G)+\ell+\# c c$ of $G\left[D^{0}\right]-\ell \leq 2 \gamma(G)$.

Sketch of the proof

S is maximal: $\nexists S^{\prime}$ s.t. $\left|S^{\prime}\right| \leq|S|+1$ and $A(S) \mp A\left(S^{\prime}\right)$.

Sketch of the proof

S is maximal: $\nexists S^{\prime}$ s.t. $\left|S^{\prime}\right| \leq|S|+1$ and $A(S) \mp A\left(S^{\prime}\right)$.

Lemma

For every maximal semi-relevant set S, there is a semi-relevant set S^{\prime} such that $A(S) \cup A\left(S^{\prime}\right)=\cup_{i} D_{i}$ and $\left|A(S) \cap A\left(S^{\prime}\right)\right|=1$

Sketch of the proof

S is maximal: $\nexists S^{\prime}$ s.t. $\left|S^{\prime}\right| \leq|S|+1$ and $A(S) \mp A\left(S^{\prime}\right)$.

Lemma

For every maximal semi-relevant set S, there is a semi-relevant set S^{\prime} such that $A(S) \cup A\left(S^{\prime}\right)=\cup_{i} D_{i}$ and $\left|A(S) \cap A\left(S^{\prime}\right)\right|=1$
S^{\prime} : semi-relevant set of maximal size built greedily...
D_{1} : the cc that belongs to $A(S)$ and $A\left(S^{\prime}\right)$;

Sketch of the proof

S is maximal: $\nexists S^{\prime}$ s.t. $\left|S^{\prime}\right| \leq|S|+1$ and $A(S) \mp A\left(S^{\prime}\right)$.

Lemma

For every maximal semi-relevant set S, there is a semi-relevant set S^{\prime} such that $A(S) \cup A\left(S^{\prime}\right)=\cup_{i} D_{i}$ and $\left|A(S) \cap A\left(S^{\prime}\right)\right|=1$

S S^{\prime} : semi-relevant set of maximal size built greedily...
D_{1} : the cc that belongs to $A(S)$ and $A\left(S^{\prime}\right)$;
D_{t} : a cc. with no neighbor in $S \cup S^{\prime}$;
$\bigcirc \operatorname{dist}\left(D_{p}, D_{t}\right)=3$ for some $D_{p} \in A(S) \cup A\left(S^{\prime}\right)$;

Sketch of the proof

$D^{\prime}=D \cup S \cup S^{\prime}$ is a connected dominating set of size:

$$
\begin{aligned}
\left|D^{\prime}\right| & =|D|+|S|+\left|S^{\prime}\right| \\
& =|D|+|A(S)|+\left|A\left(S^{\prime}\right)\right| \\
& =|D|+\left|A(S)+A\left(S^{\prime}\right)\right|+1 \\
& =|D|+g-\ell+1 \\
& \leq \gamma+\ell+g-\ell+1
\end{aligned}
$$

Sketch of the proof

$D^{\prime}=D \cup S \cup S^{\prime}$ is a connected dominating set of size:

$$
\begin{aligned}
\left|D^{\prime}\right| & =|D|+|S|+\left|S^{\prime}\right| \\
& =|D|+|A(S)|+\left|A\left(S^{\prime}\right)\right| \\
& =|D|+\left|A(S)+A\left(S^{\prime}\right)\right|+1 \\
& =|D|+g-\ell+1 \\
& \leq \gamma+\ell+g-\ell+1
\end{aligned}
$$

$\Rightarrow|D|=\gamma+\ell$ and $\left|D_{i}^{0}\right|=1$ for every $1 \leq i \leq \gamma(G)$.

Sketch of the proof

$D^{\prime}=D \cup S \cup S^{\prime}$ is a connected dominating set of size:

$$
\begin{aligned}
\left|D^{\prime}\right| & =|D|+|S|+\left|S^{\prime}\right| \\
& =|D|+|A(S)|+\left|A\left(S^{\prime}\right)\right| \\
& =|D|+\left|A(S)+A\left(S^{\prime}\right)\right|+1 \\
& =|D|+g-\ell+1 \\
& \leq \gamma+\ell+g-\ell+1
\end{aligned}
$$

$\Rightarrow|D|=\gamma+\ell$ and $\left|D_{i}^{0}\right|=1$ for every $1 \leq i \leq \gamma(G)$.
$\Rightarrow \gamma_{c}(G)=2 \gamma(G)+1$.

Sketch of the proof

Lemma
$D_{1}=\left\{w_{1}\right\}$ and thus $\left|D_{1}\right|=1$.

Sketch of the proof

Lemma
$D_{1}=\left\{w_{1}\right\}$ and thus $\left|D_{1}\right|=1$.

O If $D^{*}=D^{\prime} \backslash\left\{w_{1}\right\}$ is a connected dominating set: $\left|D^{*}\right|=2 \gamma(G) \oplus$

- If not, w_{1} has a private neighbor in $D^{*} \Rightarrow G$ contains a forbidden induced subgraph \odot.

Thank you for your attention!

Some extra...

n	4	5	6	7	8	9	10	11	12	13	14	15
$\gamma\left(P_{n}\right)$	2	2	2	3	3	3	4	4	4	5	5	5
$\gamma_{c}\left(P_{n}\right)$	2	3	4	5	6	7	8	9	10	11	12	13
PoC	1	$\frac{3}{2}$	2	<2	2	$\frac{7}{3}$	2	$<\frac{7}{3}$	2.5	2.2	2.4	2.6

