PRICE OF CONNECTIVITY

FOR DOMINATION

Marthe Bonamy, Nicolas Bousquet, Tereza Klimošová, Paul Ouvrard

July 10, 2018

ICGT'18

Dominating set D

 $D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

Dominating set D

 $D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

 $\gamma(G)$: minimum size of a dominating set of *G*.

Connected dominating set D

 $D \subseteq V$ is a dominating set such that G[D] is connected.

Connected dominating set D

 $D \subseteq V$ is a dominating set such that G[D] is connected.

 $\gamma_c(G)$: minimum size of a connected dominating set of *G*.

Connected dominating set D

 $D \subseteq V$ is a dominating set such that G[D] is connected.

 $\gamma_c(G)$: minimum size of a connected dominating set of *G*.

Some bounds:

Some bounds:

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

Some bounds:

 $\bigcirc \ \gamma(G) \leq \gamma_c(G)$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

$$\gamma_c(P_n)=n-2$$

PoC-Perfect graph

A graph *G* is **PoC-Perfect** if for every **induced subgraph** *H* of *G*, $\gamma_c(H) = \gamma(H)$.

PoC-Perfect graph

A graph *G* is **PoC-Perfect** if for every **induced subgraph** *H* of *G*, $\gamma_c(H) = \gamma(H)$.

Theorem [Zverovich '03]

For every graph *G*, *G* is PoC-Perfect iff *G* is (P_5, C_5) -free.

PoC-Near-Perfect graph

A graph *G* is **PoC-Near-Perfect** with threshold *t* if for every **induced subgraph** *H* of *G*, $\gamma_c(H) \le t \cdot \gamma(H)$.

PoC-Near-Perfect graph

A graph *G* is **PoC-Near-Perfect** with threshold *t* if for every **induced subgraph** *H* of *G*, $\gamma_c(H) \leq t \cdot \gamma(H)$.

Theorem: t = 3/2 [Camby and Schaudt '14]

A graph G is PoC-Near-Perfect with threshold 3/2 iff G is (P_6, C_6) -free.

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \le 2\gamma(G)$.

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \leq 2\gamma(G)$.

Conjecture: [Camby and Schaudt '14]

For every graph *G*, *G* is PoC-Near-Perfect with threshold 2 iff *G* is (P_9, C_9, H) -free.

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \leq 2\gamma(G)$.

Conjecture: [Camby and Schaudt '14]

For every graph *G*, *G* is PoC-Near-Perfect with threshold 2 iff *G* is (P_9, C_9, H) -free.

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \leq 2\gamma(G)$.

Conjecture: [Camby and Schaudt '14]

For every graph *G*, *G* is PoC-Near-Perfect with threshold 2 iff *G* is (P_9, C_9, H) -free.

The conjecture is true.

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

○ *G*: connected (P_9 , C_9 , H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$;

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

○ *G*: connected (P_9 , C_9 , H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$; ○ D^0 : $|D^0| = \gamma(G)$ and D^0 minimizes the number of cc; $\Rightarrow D_1^0, \dots, D_g^0$ the cc of $G[D^0]$

Theorem [Bonamy, Bousquet, Klimošová, O. '18]

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

- *G*: connected (P_9 , C_9 , H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$;
- D^0 : $|D^0| = \gamma(G)$ and D^0 minimizes the number of cc; ⇒ D_1^0, \dots, D_g^0 the cc of $G[D^0]$
- \bigcirc ℓ the largest integer s.t. there exists a dominating set *D* s.t.

- $|D| \leq \gamma(G) + \ell;$
- with some notion of heredity.

$D_1 \cdots D_{g-\ell}$: the cc of G[D].

 $D_1 \cdots D_{g-\ell}$: the cc of G[D].

Observation

For every *i*, dist $(D_i, D \setminus D_i) = 3$.

 $D_1 \cdots D_{g-\ell}$: the cc of G[D].

Observation

For every *i*, dist $(D_i, D \setminus D_i) = 3$.

Definition

Semi-relevant set $S \subseteq V \setminus D$ s.t. $G[D \cup S]$ has $g - \ell - |S| + 1$ cc.

 \Rightarrow every semi-relevant set is connected.

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every *i*, there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ \nexists semi-relevant set *S* with *A*(*S*) = $\bigcup_i D_i$.

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every *i*, there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ \nexists semi-relevant set *S* with $A(S) = \bigcup_i D_i$. Consider $D \cup S$ which is a connected DS of size: |D| + |S|

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every *i*, there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ \nexists semi-relevant set *S* with $A(S) = \bigcup_i D_i$. Consider $D \cup S$ which is a connected DS of size: |D|+|S| = |D|+#cc of G[D]

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every *i*, there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ \nexists semi-relevant set *S* with $A(S) = \bigcup_i D_i$. Consider $D \cup S$ which is a connected DS of size: $|D| + |S| = |D| + \#cc \text{ of } G[D] \le \gamma(G) + \ell + \#cc \text{ of } G[D^0] - \ell$

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every *i*, there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ ‡ semi-relevant set *S* with $A(S) = \bigcup_i D_i$. Consider $D \cup S$ which is a connected DS of size: $|D| + |S| = |D| + \#cc \text{ of } G[D] \le \gamma(G) + \ell + \#cc \text{ of } G[D^0] - \ell \le 2\gamma(G).$

S is **maximal**: $\not\equiv S'$ s.t. $|S'| \le |S| + 1$ and $A(S) \subsetneq A(S')$.

S is **maximal**: $\not \equiv S'$ s.t. $|S'| \le |S| + 1$ and $A(S) \subseteq A(S')$.

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

S is **maximal**: $\nexists S'$ s.t. $|S'| \le |S| + 1$ and $A(S) \subsetneq A(S')$.

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

- *S*′: semi-relevant set of maximal size built greedily...
- \bigcirc *D*₁: the cc that belongs to *A*(*S*) and *A*(*S'*);

S is **maximal**: $\nexists S'$ s.t. $|S'| \le |S| + 1$ and $A(S) \subsetneq A(S')$.

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

- *S*′: semi-relevant set of maximal size built greedily...
- \bigcirc *D*₁: the cc that belongs to *A*(*S*) and *A*(*S'*);
- \bigcirc D_t : a cc. with no neighbor in $S \cup S'$;
- dist(D_p , D_t) = 3 for some $D_p \in A(S) \cup A(S')$;

 $D' = D \cup S \cup S'$ is a connected dominating set of size:

$$\begin{aligned} |D'| &= |D| + |S| + |S'| \\ &= |D| + |A(S)| + |A(S')| \\ &= |D| + |A(S) + A(S')| + 1 \\ &= |D| + g - \ell + 1 \\ &\le \gamma + \ell + g - \ell + 1 \end{aligned}$$

 $D' = D \cup S \cup S'$ is a connected dominating set of size:

$$|D'| = |D| + |S| + |S'|$$

= |D| + |A(S)| + |A(S')|
= |D| + |A(S) + A(S')| + 1
= |D| + g - \ell + 1
 $\leq \gamma + \ell + g - \ell + 1$

 \Rightarrow $|D| = \gamma + \ell$ and $|D_i^0| = 1$ for every $1 \le i \le \gamma(G)$.

 $D' = D \cup S \cup S'$ is a connected dominating set of size:

$$|D'| = |D| + |S| + |S'|$$

= |D| + |A(S)| + |A(S')|
= |D| + |A(S) + A(S')| + 1
= |D| + g - \ell + 1
 $\leq \gamma + \ell + g - \ell + 1$

$$\Rightarrow |D| = \gamma + \ell \text{ and } |D_i^0| = 1 \text{ for every } 1 \le i \le \gamma(G).$$

$$\Rightarrow \gamma_c(G) = 2\gamma(G) + 1.$$

Lemma

 $D_1 = \{w_1\}$ and thus $|D_1| = 1$.

Lemma

 $D_1 = \{w_1\}$ and thus $|D_1| = 1$.

- If $D^* = D' \setminus \{w_1\}$ is a connected dominating set: $|D^*| = 2\gamma(G) \odot$
- If not, w_1 has a private neighbor in $D^* \Rightarrow G$ contains a forbidden induced subgraph ③.

Thank you for your attention!

п	4	5	6	7	8	9	10	11	12	13	14	15
$\gamma(P_n)$	2	2	2	3	3	3	4	4	4	5	5	5
$\gamma_c(P_n)$	2	3	4	5	6	7	8	9	10	11	12	13
PoC	1	$\frac{3}{2}$	2	< 2	2	$\frac{7}{3}$	2	$<\frac{7}{3}$	2.5	2.2	2.4	2.6