PRICE OF CONNECTIVITY

FOR DOMINATION

Marthe Bonamy, Nicolas Bousquet, Tereza Klimošová, <u>Paul Ouvrard</u>

June 23, 2018

Graphs and Matroids Seminar University of Waterloo

Dominating set D

 $D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

Dominating set D

 $D \subseteq V$ such that every vertex not in D has ≥ 1 neighbor in D.

 $\gamma(G)$: minimum size of a dominating set of *G*.

Connected dominating set D

 $D \subseteq V$ is a dominated set such that G[D] is connected.

Connected dominating set D

 $D \subseteq V$ is a dominated set such that G[D] is connected.

 $\gamma_c(G)$: minimum size of a connected dominating set of *G*.

Connected dominating set D

 $D \subseteq V$ is a dominated set such that G[D] is connected.

 $\gamma_c(G)$: minimum size of a connected dominating set of *G*.

Definition and bounds

$\bigcirc \gamma(G) \leq \gamma_c(G)$

$$\bigcirc \gamma(G) \leq \gamma_c(G)$$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

$$\bigcirc \gamma(G) \leq \gamma_c(G)$$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

 $\bigcirc \gamma_c(G) \leq 3\gamma(G) - 2$

$$\bigcirc \gamma(G) \leq \gamma_c(G)$$

Price of Connectivity for domination [Cardinal, Levy '08]

Let *G* be a graph. We define PoC(*G*) as $\frac{\gamma_c(G)}{\gamma(G)}$.

 $\bigcirc \gamma_c(G) \leq 3\gamma(G) - 2$

 \Rightarrow asymptotically sharp for paths and cycles...

PoC-Perfect graph

A graph *G* is **PoC-Perfect** if for every **induced subgraph** *H* of *G*, $\gamma_c(H) = \gamma(H)$.

PoC-Perfect graph

A graph *G* is **PoC-Perfect** if for every **induced subgraph** *H* of *G*, $\gamma_c(H) = \gamma(H)$.

Theorem [Zverovich '03]

For every graph G, G is PoC-Perfect iff G is (P_5 , C_5)-free.

PoC-Near-Perfect graph

A graph *G* is **PoC-Near-Perfect** with threshold *t* if for every **induced subgraph** *H* of *G*, $\gamma_c(H) \le t \cdot \gamma(H)$.

PoC-Near-Perfect graph

A graph *G* is **PoC-Near-Perfect** with threshold *t* if for every **induced subgraph** *H* of *G*, $\gamma_c(H) \leq t \cdot \gamma(H)$.

Theorem: t = 3/2 [Camby and Schaudt '14]

A graph G is PoC-Near-Perfect with threshold 3/2 iff G is (P_6, C_6) -free.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \leq 2\gamma(G)$.

PoC-Near-Perfect graphs (with threshold 2)

Theorem: t = 2 [Camby and Schaudt '14]

For every (P_8, C_8) -free graph $G, \gamma_c(G) \leq 2\gamma(G)$.

Conjecture: [Camby and Schaudt '14]

For every graph *G*, *G* is PoC-Near-Perfect with threshold 2 iff *G* is (P_9, C_9, H) -free.

The conjecture is true.

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

○ *G*: connected (P_9 , C_9 , H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$;

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

○ *G*: connected (P_9, C_9, H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$; ○ D^0 : $|D^0| = \gamma(G)$ and D^0 minimizes the number of cc; $\Rightarrow D_1^0, \dots, D_g^0$ the cc of $G[D^0]$

The conjecture is true.

G is (P_9, C_9, H) -free $\Rightarrow \gamma_c(G) \le 2\gamma(G)$: by contradiction.

- *G*: connected (P_9 , C_9 , H)-free graph s.t. $\gamma_c(G) \ge 2\gamma(G) + 1$;
- D^0 : $|D^0| = \gamma(G)$ and D^0 minimizes the number of cc; ⇒ D_1^0, \dots, D_g^0 the cc of $G[D^0]$
- \bigcirc ℓ the largest integer s.t. there exists a dominating set *D* s.t.

•
$$G[D]$$
 has $g - \ell$ cc;

- $|D| \leq \gamma(G) + \ell;$
- with some notion of heredity.

 $D_1 \cdots D_{g-\ell}$: the cc of G[D].

Observation

For every *i*, dist $(D_i, D \setminus D_i) = 3$.

Definition

Semi-relevant set $S \subseteq V \setminus D$ s.t. $G[D \cup S]$ has $g - \ell - |S| + 1$ cc.

 \Rightarrow every semi-relevant set is connected.

- $\bigcirc A(S) = \{D_1, D_2, D_3\};$
- \bigcirc v_i^S : the vertex of *S* adjacent to someone in D_i ;
- \bigcirc there is a bijection between *S* and *A*(*S*);
- for every v_i^S , there is $u_i \in N[D_i]$ with no neighbor in *S*...

⇒ \nexists semi-relevant set *S* with *A*(*S*) = $\bigcup_i D_i$ (consider *D* ∪ *S*).

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

- \bigcirc *S*': semi-relevant set of maximal size built greedily...
- \bigcirc *D*₁: the cc that belongs to *A*(*S*) and *A*(*S'*).

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

- *S*': semi-relevant set of maximal size built greedily...
- \bigcirc *D*₁: the cc that belongs to *A*(*S*) and *A*(*S'*).
- $\bigcirc v_1^S v_1^{S'}$ is an edge (otherwise P_9 ©).

Lemma

For every **maximal semi-relevant set** *S*, there is a semi-relevant set *S* ' such that $A(S) \cup A(S') = \cup_i D_i$ and $|A(S) \cap A(S')| = 1$

- *S*': semi-relevant set of maximal size built greedily...
- \bigcirc *D*₁: the cc that belongs to *A*(*S*) and *A*(*S'*).
- $\bigcirc v_1^S v_1^{S'}$ is an edge (otherwise $P_9 \odot$).
- \bigcirc D_r : a cc. with no neighbor in $S \cup S'$.
- dist(D_p , D_r) = 3 for some $D_p \in A(S) \cup A(S')$.

$$\gamma_c(G) = 2\gamma(G) + 1 \text{ (consider } D \cup S \cup S'); \circ |D| = \gamma(G) + \ell; \circ |D_i^0| = 1 \text{ for every } 1 \le i \le \gamma(G);$$

$$\begin{array}{l} \bigcirc \ \gamma_c(G) = 2\gamma(G) + 1 \ (\text{consider } D \cup S \cup S'); \\ \circ \ |D| = \gamma(G) + \ell; \\ \circ \ |D_i^0| = 1 \ \text{for every} \ 1 \le i \le \gamma(G); \end{array}$$

Lemma

 $|D_1| = 1.$

 $\Rightarrow v_1^{S'}$ and v_1^S have the same neighbor w_1 in D_1 .

$$\begin{array}{l} \bigcirc \ \gamma_c(G) = 2\gamma(G) + 1 \ (\text{consider } D \cup S \cup S'); \\ \circ \ |D| = \gamma(G) + \ell; \\ \circ \ |D_i^0| = 1 \ \text{for every} \ 1 \le i \le \gamma(G); \end{array}$$

Lemma

 $|D_1| = 1.$

 $\Rightarrow v_1^{S'}$ and v_1^S have the same neighbor w_1 in D_1 .

○ If $D' = (D \setminus \{w_1\}) \cup S \cup S'$ is a connected dominating set: $|D'| = 2\gamma(G)$ ☺

○ If not, w_1 has a private neighbor in $D' \Rightarrow H$ or $P_9 ©$

Thank you for your attention!

п	4	5	6	7	8	9	10	11	12	13	14	15
$\gamma(P_n)$	2	2	2	3	3	3	4	4	4	5	5	5
$\gamma_c(P_n)$	2	3	4	5	6	7	8	9	10	11	12	13
PoC	1	$\frac{3}{2}$	2	< 2	2	$\frac{7}{3}$	2	$<\frac{7}{3}$	2.5	2.2	2.4	2.6