Algorithmes et structures de données : TD 1 Corrigé

Affectations - Algorithmes - Types

Exercice 1.1 Cocher ce qui est une affectation :

```
x Compteur := 3+2;
x Nom := "Patrick";
o i < 10;
o 20 := score;
x highscore := score;
x score := score + 10;
o a + 3 := c;
o a + b := c;</pre>
```

Exercice 1.2 Considérer l'algorithme suivant :

```
var a : integer;
var b : integer;
var temp : integer;
a := 8;
b := 3;
temp := a;
a := b;
b := temp;
writeln(a);
writeln(b);
```

		a	b	$_{\mathrm{temp}}$
		8		
1.	Faites tourner cet algorithme à l'aide d'un tableau :		3	8
		3		
			8	

2. Qu'est-ce qui est affiché à l'écran? (Rappel : writeln affiche une ligne à l'écran.)

```
3
8
```

Exercice 1.3 Boucles

1. Ecrivez un algorithme qui calcule la somme suivante et l'affiche à l'écran:

$$\sum_{i=10}^{30} i$$

```
somme := 0;
i := 10;
tant que i<=30
    somme := somme + i;
    i := i + 1;
fin tant que
WriteLn('la somme est', somme);</pre>
```

	somme	i
Faites tourner votre algorithme dans un tableau.	0	
		10
	10	
		11
	21	
		12
	 420	
		31

3. Ecrire une fonction qui prend comme paramètre n est qui renvoie le résultat :

$$\sum_{i=1}^{n} i$$

```
function sigme(n : integer) : integer;
début
  somme := 0;
  i := 1;
  tant que i<=30
    somme := somme + i;
    i := i + 1;
  fin tant que
  result := somme;
fin</pre>
```

Exercice 1.4 Vous disposez de la fonction suivante :

```
function estNombrePremier(n : integer) : boolean;
```

Cette fonction renvoie TRUE (VRAI) si n est un nombre premier, et FALSE (FAUX) sinon. Ecrivez un algorithme qui compte le montant de nombres premiers compris entre 1 et 20 et qui se sert de cette fonction estNombrePremier. Faites tourner votre algorithme dans un tableaux.

```
var i, montant : integer;
var premier : boolean;
begin
  montant := 0;
```

```
for i := 1 to 20 do
begin
    premier := estNombrePremier(i);
    if (premier = TRUE) then
    begin
        montant := montant + 1;
    end;
end;
write('Il y a ');
write(montant);
writeln(' nombre premiers entre 1 et 20.');
end.
```

i	premier	montant
1		0
1	FALSE	
2	TRUE	
	TRUE	1
3	TRUE	
	INUE	2
4	FALSE	
5	FALSE	
	TRUE	3
6		5
7	FALSE	
•	TRUE	
8		4
	FALSE	
9	FALSE	
10		
11	FALSE	
	TRUE	_
12		5
10	FALSE	
13	TRUE	
1.4		6
14	FALSE	
15	FALSE	
16		
17	FALSE	
11	TRUE	
18		7
	FALSE	
19	TRUE	
	11001	8
20	FALSE	
	I	I

Exercice 1.5 Combien de bits sont dans un octet ? Combien de valeurs différentes peut-on coder avec un octet ?

Il y a 8 bits dans un octet, donc on peut encoder 256 valeurs différentes. Notez : Octet signé de -128 à 127 et octet non-signé de 0 à 255.

Exercice 1.6 Exprimez le chiffre 133 dans le système binaire.

$$133 = 1 + 4 + 128 = 1 * 2^0 + 1 * 2^2 + 1 * 2^7$$
, alors en binaire 10000101

Exercice 1.7 Quelle valeur porte le chiffre binaire non-signé 11010110 dans le système décimal?

11010110 en décimale : $0*2^0+1*2^1+1*2^2+0*2^3+1*2^4+0*2^5+1*2^6+1*2^7=133$