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Abstract

A point-based 3D surface modelling technique combined with a
new point rendering technique is presented. Surfaces are modelled
by specifying a set of unorganized points on the surface. An im-
plicit representation of the surface through these points minimizing
the bending energy is then calculated using radial basis functions
while guaranteeing a specifiable continuity. The surface is directly
rendered view-dependently in an output-sensitive multiresolution
manner without the creation of a polygonal mesh representation.
This is done by the local generation of 3D surface points for the
rendering adapted to the output device. A new texturing technique
using the material properties of the points is presented.

CR Categories: G.1.2 [Approximation]: Approximation of sur-
faces and contours—Spline and piecewise polynomial approxi-
mation 1.3.3 [Picture/Image Generation]: Display algorithms—
[I.3.5]: Computational Geometry and Object Modeling—Curve,
surface, solid, and object representations

Keywords: point-based rendering, point-based modelling, radial
basis functions

1 Introduction

Modelling and rendering techniques implemented in almost every
3D graphics hardware are currently based on techniques developed
as far back as the middle of the 1970’s: surfaces are approximated
by meshes of polygons and rendered using a depth buffer. Until re-
cently, implementing such mesh-based modelling and mesh-based
rendering techniques was obviously the optimal choice on a qual-
ity versus cost criterion according to existing computer resources.
But the huge memory increase of modern graphics hardware has
made it possible to treat scenes with dramatically more polygons,
and during the rendering of such complex scenes many projected
polygons are mapped to less than one screen pixel. So the main
advantage of scan-line rendering, i.e. the incremental calculation
of a polygon’s inner points, has mostly vanished for current scenes
of high complexity. Furthermore, representing surfaces by sets of
planar polygons remains only an approximation and implicitly con-
tains and therefore requires information about connectivity.
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In the rendering field, a recent trend called point-based render-
ing has emerged for about four years now. In the modelling field,
a similar trend, that could be called point-based modelling, can be
detected in a couple of recent papers. The main idea that links all
these papers is to use discrete surface points without explicit con-
nectivity instead of using usual meshes. As the connectivity has
not to be managed, some common operations (e.g. level-of-details,
geometrical deformation, topology modifications) are much easier
to implement with point-based models compared to mesh-based
models. On the other hand, expensive hole-filling algorithms are
required during the rendering of point-based models, in order to
obtain a visually continuous surface rather than a cloud of discon-
nected points.

In this paper, we present a meshless graphics environment using
points as modelling and rendering primitives. Surfaces are mod-
elled by specifying a set of unorganized seed points on the sur-
face. A continuous implicit representation of the surface through
these points minimizing the bending energy is then calculated us-
ing radial basis functions. A desired continuity of the surface to be
modelled can be specified. The surface can either be globally re-
constructed by using thin-plate radial basis functions or be locally
reconstructed by using compactly supported radial basis functions.
The latter technique becomes necessary when the number of mod-
elling points is high. Besides the specification of discrete surface
points, the modelling of surfaces can also be influenced by spec-
ifying the normals of the surface points as well as their material
properties using a new texturing technique.

Rendering the resulting reconstructed surface is also done in a
meshless manner. In a first step, for every specified surface point,
a sphere is associated so that the associated spheres of all surface
points are overlapping. Then, the projection of the spheres on the
screen are calculated, and for all inner pixels of the resulting discs
the 3D surface points are identified by interpolating the implicit
surface representation. These points are finally used for rendering.
Multiresolution rendering is achieved by splatting 3D surface points
over more than one pixel. Hence, the surface is rendered view-
dependently in an output-sensitive manner without reconstructing a
mesh representation.

The remainder of this paper is organized as follows: in the fol-
lowing section, we discuss previous work on point-based mod-
elling, point-based rendering, and surface reconstruction. In sec-
tion 3, we show how radial basis functions can be used to create an
implicit representation of a surface starting from discrete surface
points and normals. In section 4, we show how the surface can be
rendered without creating a mesh representation. The basic oper-
ations of our point-based modelling environment are presented in
section 5. Finally, section 6 presents experimental results, and in
section 7 we conclude and propose some directions to future work.

2 Previous Work

2.1 Overview

There are basically three main problems to solve when trying to im-
plement a complete point-based graphics environment. First, how
to generate a continuous surface from an unorganized point set?



Second, how to efficiently render such a surface? Third, how to
easily edit such a surface to get free-form modelling? Fortunately,
many existing work can be used to solve, at least partly, these prob-
lems. This section presents some of this work.

2.2 Point-based Surface Reconstruction

Surface reconstruction from unorganized point sets is a major topic
of computational geometry that has generated dozens of articles
during the last decades. An exhaustive survey of the different solu-
tions proposed in the literature is clearly out of the scope of this pa-
per. The reader may refer to some classical monographes on com-
putational geometry [de Berg et al. 1997; O’Rourke 1998]. Surface
reconstruction techniques can be divided into two major categories:
the reconstruction is done by employing either a parametric or an
implicit surface.

We first recall recent work about parametric surface reconstruc-
tion. Hoppe et al. [1992] propose a piecewise surface estimation
that uses a least square method to compute the local tangent plane
at every seed point. The surface is then defined as the zero-set of the
distance function to the nearest point’s tangent plane. Amenta et al.
[2001] presented a technique in which a median axis transforma-
tion is done on the unorganized point set using a Voronoi diagram.
Levin [1999] proposed to approximate surfaces by defining a local
reference domain for every input point approximating the tangent
planes. The reference domains are used to compute a local poly-
nomial approximation of the surface using a projection procedure
based on his Moving Least Squares method [Levin 1998]. The re-
sulting surface is C* continuous.

Concerning implicit surface reconstruction techniques,
Savchenko et al.  [1995] introduced a technique where the
reconstructed surface is defined as a zero-set of a global implicit
function. The process can be considered as an energy minimization
technique, in which an initial solution, called carrier solution, is
combined with a spline volume defined by Green’s functions. The
resulting surface is C I continuous. Later, Turk and O’Brien [1998;
2002] proposed a similar idea but using thin-plate radial basis
functions instead of Green’s functions. This offers a C* continuity
for the resulting surface. Both techniques are limited to a few
thousands of seed points. Carr et al. [2001] presented another
reconstruction technique based on radial basis functions using a
fast evaluation technique developed by Beatson et al. [1992; 1997].

Besides all these global reconstruction techniques for implicit
surfaces, Morse et al. [2001] proposed to locally reconstruct an im-
plicit surface by using the compactly supported radial basis func-
tions defined by Wendland [1995]. This local method allows the
treatment of a much higher number of input points.

2.3 Point-based Rendering

The first use of points as rendering primitive for solid objects can
be attributed to Levoy and Whitted [1985]. Szeliski and Tonnesen
[1992] adapted particle systems to surface models by introducing
the concept of oriented particles. But it is only recently, that point
rendering has grown interest in the computer graphics community.
Using discrete points as rendering primitives can result into holes
in the output image, especially for close-up views. There are two
major approaches to address this so-called hole-filling problem.

In the first approach, holes are filled in image space. This was
initially done by Grossman and Dally [1998] who proposed a push-
pull algorithm that is unfortunately prone to blocky artifacts. Pfister
et al. [2000] built on this work and added texture filtering and shad-
ing features. The texture filtering technique was further improved
by Zwicker et al. [2001] based on a novel screen space formulation
of an elliptical weighted average (EWA) filter, and moreover, an ob-
ject space formulation of the EWA filter was derived enabling the
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use of modern graphics hardware to accelerate the rendering [Ren
et al. 2002].

In the second approach, holes are filled in object space.
Rusinkiewicz and Levoy [2000] presented the QSplat algorithm that
generates a hierarchy of bounding spheres starting from the vertices
of a polygonal mesh. The hierarchy traversal is adjusted in order to
guarantee a given frame rate and each sphere is rendered as a cir-
cular splat resulting in blobby artifacts. Alexa et al. [2001] used
Levin’s surface interpolation method [Levin 1999] discussed above
to resample point sets in object space in a preprocess for rendering
at a given resolution. Kalaiah and Varshney [2001] capture the local
differential geometry at each point sample and render the entire sur-
face hardware-accelerated as a collection of local neighborhoods.

Besides these pure point-based rendering techniques, various ap-
proaches have been proposed recently combining point-based and
polygon-based rendering in one framework using some hybrid hier-
archy [Chen and Nguyen 2001; Cohen et al. 2001; Dey and Hudson
2002].

2.4 Point-based Surface Modelling

Point-based modelling, i.e. using a set of unorganized points as ge-
ometrical primitives for interactive modelling, is much less com-
mon than point-based rendering in computer graphics. To our
knowledge, the only published work that can be included in this
field was presented by Turk and O’Brien [1998; 2002], in which
a thin-plate radial basis reconstruction has been combined with
the particle sampling technique developed by Witkin and Heckbert
[1994] for interactive visualization. But particles provide only a
coarse information about the shape of the surface. To get a pre-
cise rendering Turk and O’Brien proposed to convert the implicit
surface into a polygonal mesh, using a marching cubes algorithm
[Lorensen and Cline 1987], for instance, or to generate a direct ren-
dering of the surface by ray-tracing; both techniques are too slow
to provide interactive framerates after surface changes. Turk and
O’Brien also describe some basic low-level operations as moving
a point, adding a point, or changing a normal, they can be used to
get free-form modelling. As we will see in section 5, some high-
level operators can be easily added in the editing tools library of a
point-based modelling system which offers a powerful environment
when being combined with the adaptive point-rendering technique
described in section 4.

Recently, Pointshop 3D was presented by Zwicker et al. [2002],
a system for interactive shape and appearance editing of 3D point-
sampled geometry. It was initially designed as a generalization of
2D photo editing using 2D image pixels to 3D photography us-
ing discrete 3D surface elements. Pointshop is not considered as
a point-based modelling system as changes of the surface geometry
are limited to normal displacements and to moderate changes of the
surface structure.

3 Radial Basis Functions

About 20 years ago, in an extensive survey, Franke [1982] identi-
fied radial basis functions as one of the most accurate and stable
methods to solve the scattered data interpolation problem, but it is
only very recently that radial basis functions have received an in-
terest from the computer graphics community [Turk and O’Brien
1999; Carr et al. 2001; Morse et al. 2001]. In order to obtain an
implicit surface representation using radial basis functions, a func-
tion f satisfying the equation

flx)=h,=0, i=1,..,n (D

for all n seed points x; has to be found. The common convention
about implicit functions f is, that the surface is represented by the



zero-set f(x) = 0 and has positive values inside and negative values
outside the surface, see [Bloomenthal 1997]. In order to obey to the
common convention of implicit surfaces, at least one constraint for
an off-surface point has to be added, say
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for m off-surface points being inside (h; > 0) or outside (k; < 0)
the surface.

For the reconstruction of the surface, a suitable radial basis func-
tion ¢ : [0,00) — R has to be fixed, and with k = n+ m the interpo-
lation function has the following form

f(xnﬂ-) :hnﬂ, j=1,...m

-

f() w;¢(x—x;) + P(x), ©)

i=1

where P(x) is a polynomial of first degree accounting for the
linear and constant portions of f. Based on the equations (1), (2),
and (3), the following linear system is built up in order to determine
the weights w; of the radial basis functions at the given seed points:
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Here, ¢,; = ¢(|[x; —x;||) where [|.| denotes the Euclidean dis-

tance. It can be seen, that the linear system is symmetric, and it
can be made positive definite with the appropriate radial basis func-
tion. Duchon [1977] identified the following thin-plate radial basis
function for three dimensions resulting in a C* surface:

9(x) = [l ©)

The linear system (4) can either be indirectly solved by a conju-
gate gradient method, or directly solved by an LU or single value
decomposition. In practical, the number of constraints k is limited
to a few thousands as the linear system is almost completely filled
and the determination of the solution costs O(k®). However, Beat-
son et al. [Beatson and Newsam 1992; Beatson and Light 1997;
Carr et al. 2001] describe a fast evaluation technique reducing the
cost from O(k3) to O(k?) and hence enabling the use of a higher
number of seed points.

Another way to allow a higher number of seed points is the use
of compactly supported radial basis functions, i. e. ¢(x) =0 for
|lx|| > r, r being the support radius. Besides the functions of Wu
[1995], Wendland [1995] constructed a new class of polynomial
compactly supported radial basis functions of minimal degree for a
given smoothness. Some of these functions are presented in Table 1.

(1—- HXH)} Cg
(I*HXH)g(‘HIXIItI) ¢
(1= [lx]1):3 (35]lx[|* + 18]1x|| +3) c
(1= [+ D% B2[jx[* +25[Jx]* + 8]lx[ +1) | C€°

Table 1: Wendland’s compactly supported radial basis functions for
a given smoothness.

The support radius of these function is normalized to 1 but can
L=

easily be scaled to a support radius r by taking ¢ (+5" ). The support
radius should be chosen with care: when the radius is too small, the
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local neighborhood of a seed point will not be captured correctly,
whereas a radius that is too large will decrease the efficiency of the
process. Note also that there has to be at least one off-surface point
within the support radius of a seed point. According to Turk et al.
[1998] and Morse et al. [2001], we suggest to create an off-surface
point using the normals of the seed points.

By using compactly supported radial basis functions, the linear
system at equation (4) becomes a sparse linear system as ¢ (||x; —
x;]l) = 0 for all (x;,x;) having a greater distance than the support
radius. Sparse linear systems can be efficiently stored and solved
either directly or iteratively.

A 450 point model (Figure 4(a)) of the traditional Stanford bunny
is used throughout this paper as a test model instead of the orig-
inal 35,947 point model in oder to show that only few points are
required to obtain good reconstruction results. The surface was re-
constructed within a few seconds using Wendland’s compactly sup-
ported radial basis functions for ol (Figure 4(b)), c? (Figure 4(c)),
and C* continuity (Figure 4(d)). See section 6 for timing details.
It can be seen that there is nearly no noticeable difference between
the reconstruction of C2 and C* smooth surfaces.

4 Point-based Surface Rendering

After the reconstruction of the implicit surface representation de-
fined by the function f in equation (3), the surface can be rendered
as explained in this section. Instead of traditionally rendering the
implicit surfaces using a marching cubes algorithm [Lorensen and
Cline 1987], a new meshless rendering algorithm is presented ren-
dering the implicit surface view-dependently in an output-sensitive
multiresolution manner.

First, inspired by the QSplat point rendering algorithm
[Rusinkiewicz and Levoy 2000], for every specified surface point,
spheres are centered around each surface point; the different radii
are chosen so that the spheres at all seed points are just overlapping.
This is done in order to guarantee, that the resulting discs from the
projection of the spheres form a closed region, as can be seen in
Figure 1.

Figure 1: The projection of the four seed points forms a closed
region.

Whereas the QSplat algorithm renders the surface only approx-
imately by splatting the points making exclusive use of graphics
hardware, our new algorithm renders the surface exactly by iden-
tifying additional 3D surface points in the local neighborhood of
the seed points using a software implementation and by rendering
all 3D surface points using graphics hardware. As a consequence,
our point-based objects can be easily mixed with other geomet-
rical primitives (polygons, splines) within the hardware rendering
pipeline.

Consider the projection of the sphere to the output image in Fig-
ure 2. All inner pixels p; of the disc are identified. The plane
Tmea” (resp. T/97) is the nearest (resp. farthest) tangent plane of
the sphere with respect to the viewpoint. For each pixel p; the ray

from the viewpoint to D; intersects the planes 7"¢“" (resp. Tfar ) in
the points g;““" (resp. qlf ary,



Surface
f=0

View-point

Figure 2: The projection of a sphere to the screen in 2D.

Then, the values of the implicit function f representing the sur-
face in ¢}““" and q{ 4" are calculated. By supposing that the sphere
is sufficiently small so that there is at most one intersection with the
surface between ¢7““" and qlf 4 we only have to consider the two

following cases:

o If the values of the implicit function f(g“") and f (qlf ar) are

of different sign (see g{**" and q{“’ in Figure 2), we calcu-
late the surface intersection points s; by interpolating between
q7°“" and q-lf @ using the regula falsi algorithm. Experiences
have shown, that two iterations of the algorithm are enough
to get a correct approximation. The resulting surface intersec-
tion point s; will be projected to the pixel p; and its normal
can be analytically calculated using the gradient of the im-
plicit function f,

af

d
f(s)’ 72

a
= f(s)vgiy

=5 6

V(s) ()|

o If f(g7°"") and f(q{"" ) are of the same sign (see ¢5°“" and

qg‘” in Figure 2), we consider that the ray is not intersecting
the surface.

In this manner, all pixels p; of the projected spheres are consid-
ered, and the additional surface points for rendering are generated
view-dependently in an output sensitive manner. The additional
surface points can even be generated in parallel as the spheres can
be considered independently from each other.

Note the conceptual difference of the point-based rendering tech-
nique described here to standard acceleration techniques for ray
casting: we apply forward warping in regions where the seed points
are sufficiently dense and do not create holes in the output image.
In the other regions, no ray needs to be cast in order to identify the
sphere which is associated to the corresponding seed point as this
is a prerequisite.

In order to associate textures to the reconstructed implicit sur-
face, the interactive texture placement method by Pedersen [1995]
could be easily adapted, or 3D solid textures could be used [Peachey
1985; Perlin 1985]. As our graphics environment uses points as
modelling and rendering primitive, we present an alternative tech-
nique using the material properties of the seed points for texturing
in the following. This technique does not require a surface parame-
terization.

To calculate the material properties for the additional surface
points during rendering, we use an object space formulation of a
spherical gaussian filter. This was motivated from a similar idea
of a texture space formulation of the elliptical weighted average
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(EWA) filter introduced by Greene [1986] and a screen space for-
mulation of the EWA filter by Zwicker et al. [2001]. The material
property my,,, of an additional surface point s, is calculated by
weighting the material properties m; of the n seed points x; with re-
spect to the euclidean distance to the additional surface point as can
be seen in equation (7). The euclidean distance is an approxima-
tion for the geodesic distance and is chosen for efficiency reasons.
However, satisfactory results are obtained as we consider a small
spacing between the seed points, the chord will approximate the
geodesic appropriately.

¥ e el /R

@)

Mpew = 3
Z?:l e_HSnew_x;H /R,z

The parameter R; controls the influence region of a seed point’s
material property. This parameter can be adjusted according to local
surface properties, anyway, we found satisfactory results using the
same value for all R;. For efficiently calculating (7), the values of
the exponential function are precomputed and stored in a lookup
table.

Multiresolution rendering is achieved by splatting additional
generated 3D surface points over more than one pixel. Hence, for
a splat covering n pixels, the number of additional surface points to
calculate is reduced to a factor of % resulting in a significant ren-
dering speed-up.

Visual results of our new point-based rendering algorithm lead-
ing to high-quality shading effects and perfect silhouettes can be
seen in a close-up view of our 450 point model of the Stanford
bunny in Figure 4(e).

5 Surface Modelling

5.1 Overview

In this section, the wide variety of modelling possibilities of our
algorithm are outlined and illustrated on the modelling of a simple
sphere. Some of these modelling possibilities were already dis-
cussed by Turk and O’Brien [1998; 2002], but using our new point-
based rendering algorithm the entire surface can be interactively
modelled.

In our implementation, we always use the Wendland’s radial ba-
sis function (Table 1) generating a C2 continuous surface as we
consider that it provides the best quality/speed trade-off. One off-
surface point is created per seed point using the normal vector. Fig-
ure 3(a) presents a sphere reconstructed from a set of 42 seed points
and 42 off-surface points defined by the corresponding normal vec-
tors.
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Figure 3: Modelling on a sphere. (a) Starting points, (b) moving
a point, (c) adding a point, (d) changing a normal, (e)-(f) changing
point materials.

5.2 Low-level Operators

There are basically four low-level operators that can be used to edit
the shape of the surface, and one for editing the material.

Changing point positions: The position of a modelling point can
be changed by simply moving it to its new position (Figure
3(b)). Changing the position of a point only affects one line
and one column of the linear system (4), so the new surface
(Figure 3(b)) can be recalculated in a very efficient manner
using the previous solution of the linear system. This can
be done either with a direct incremental solver such as the
Sherman-Morrison technique [Press et al. 1992] or with an it-
erative solver like the conjugate gradient method that uses the
previous solution as a starting point. Note that to avoid holes
in the rendering of the new surface the radius of the corre-
sponding bounding sphere has to be changed accordingly.

115

Changing point normals: The normal of any seed point can be
changed as well, see Figure 3(c) for an example. This also
changes only one line and one column of the linear system
(4), and the new solution of the linear system is calculated
efficiently as shown above.

Adding new points: New seed points can be added anywhere on
the surface. The addition of new seed points on the surface
adds two lines and two columns to the linear system, but the
weights w; of the precedent solution remain unchanged be-
cause the implicit function value of the surface was already 0
before the insertion of this new point. The position or normal
of the new point can then be changed as shown above. The in-
sertion and displacement of a new seed point and the resulting
new surface can be seen in Figure 3(d).

Removing points: Seed points can also be removed, and the linear
system can be recalculated efficiently similar to adding points.

Changing point materials: Finally, the material of a point can be
changed. FEither the material of a seed point is changed, or
a new point with material properties is added on the surface.
As the surface remains unchanged, the linear system does not
have to be recalculated. A change of two point materials to
a yellow colour using two different parameters for R can be
seen in Figures 3(e) and 3(f).

5.3 High-level Operators

Besides the low-level operators described above that act on one sin-
gle constraint, one can imagine more complex high-level operators
that act simultaneously on a large number of constraints. During
the last decades, several dozens of geometric modelling techniques
that can be identified as space deformation techniques have been
proposed. Their common principle is to define geometric deforma-
tion as a general transformation from R? to R3. Among these tech-
niques, one can cite for instance the warping operator by Barr, the
free-form deformation operator by Sederberg and Parry, and others,
see [Bechmann 1994] for a survey.

As our point-based primitives are totally defined by a set of 3D
points, all these techniques can be easily included in our graphics
environment. For instance, Figure 4(f) presents our test model on
which a classical squeezing operator has been applied.

In our current implementation, all the editing operators are acting
on the seed points, which gives a process similar to the edition of a
spline surface by using control points. A valuable extension that we
are currently investigating is to allow direct edition of the surface
by adapting some techniques originally developed to provide direct
manipulation of spline surfaces [Bartels and Beatty 1989; Welch
and Witkin 1992; Gleicher 1994].

6 Results

All the timings presented in this section were measured on a Pen-
tium IV at 1.7 GHz with 512 MB of memory, no code optimization
effort has been done.

The main computational effort of the initial surface reconstruc-
tion using our example of Wendland’s C% compactly supported ra-
dial basis functions is spent on the solution of the linear system
(equation 4). We used an iterative solver [Dongarra et al. 1996]
for the timings shown in table 6 as the use of direct solvers limits
the number of seed points and is not adapted to solve sparse linear
systems. For compactly supported radial basis functions, the pa-
rameter / indicates the average number of seed points to be taken
into consideration per point, a lower / resulting in a sparser linear
system and faster processing times.



1 reconstruction || rendering

Model (points) (sec.) (sec.)
~ 36 1.8 2.1
~ 69 44 4.2
Bumny 450 1 11 6.8 6.9
~ 11 0.7 3.1
~31 10.5 6.6

Dragon2832 1 _ 65 20.6 13.0

Table 2: Timings in sec. for reconstruction and rendering of one
frame using one processor.

Table 6 also shows the timings for rendering the surface by a
single processor into a 256 x 256 window. As mentioned above, the
rendering part can be perfectly distributed on multiple processors,
and thanks to the scalability of the algorithm, we expect a linear
speed-up of rendering times using up to a few dozens of processors.

Figure 5 illustrates several steps of the modelling process using
low-level and high-level operators.

7 Conclusion and Future Work

In this paper we described a complete meshless graphics environ-
ment using sets of unorganized points as modelling and rendering
primitives. The strengths of this environment are

e the ability to generate global or local reconstruction of sur-
faces with specifiable continuity,

e the point-based rendering technique that provides view-
dependent multiresolution and high-quality display of smooth
surfaces in an output sensitive manner,

e the point-based texturing technique not requiring a surface pa-
rameterization,

e interactive point-based modelling of smooth surfaces that of-
fers both low-level and high-level editing operators, and

o the merging of all these techniques into one point-based,
meshless graphics environment.

Describing surfaces by the use of radial basis functions is very
lightweight in terms of memory consumption as only the set of
seed points together with the radial basis function and the calcu-
lated weights suffice to represent the surface. This is very interest-
ing for geometry compression as well as bandwith-limited network
applications.

Using radial basis functions in order to reconstruct implicit sur-
faces inherently assumes that the surface is everywhere locally sym-
metric, making it impossible to preserve sharp features along edges
and corner points. One elegant solution to remove this limitation
may be to use anisotropic basis functions [Dinh et al. 2001].

Finally, as the bottleneck of the rendering time is the evaluation
of the radial basis functions, we are currently working on a fast
evaluation method for radial basis functions based on a polynomial
approximation.
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Figure 4: Rendering of the bunny. (a) A set of 450 seed points, (b) €9 surface, (c) C? surface, (d) C* surface, (e) close-up view of a c?
surface, (f) the surface squeezed in the x-axis.
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Figure 5: Modelling example. (a) Base surface reconstructed from 224 points, (b)-(c) changing point positions, (d) adding 9 new points, (e)
application of a twist operator, (f) changing 9 point material properties.
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