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Circuit, Cycle

» A circuit is a connected 2-regular subgraph and a cycle is a
union of edge-disjoint circuits. A cycle cover of a graph G
is a family of cycles of G such that each edge of G is
contained in at least one cycle of the family.

» The length of a cycle cover C, denoted by I(C), is the sum
of the lengths (number of edges) of all the cycles in C.
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» Given a graph G and an integer k, does G have a cycle
cover of total length at most k?
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» Given a graph G and an integer k, does G have a cycle
cover of total length at most k?

» Thomassen ('92) proved that the SCCP is a NP-complete
problem




Every bridgeless graph G = (V, E) has a cycle cover C such that:
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Cycle Double Cover

A cycle double cover CDC of a graph G = (V, E) is a family of

cycles of G such that every edge appears in exactly two cycles
of this family.

The following double cover conjecture was proposed by several
authors.

Conjecture (Szekeres '73, Seymour '79)

Every bridgeless graph has a cycle double cover.




Cycle Double Cover

Jamshi and Tarsi proved (92):

Theorem

If the Conjecture concerning the existence of a cycle cover C of
length at most Z|E | is true then the Cycle double cover
conjecture is true.

First bound : Itai, Rodeh '78:

Theorem

Every bridgeless graph G = (V, E) has a cycle cover C such
that:

[(C) < |[E|+2|V]log|V|.




Let M be an abelian group, G be an oriented graph,
¢ : E(G) — M is a flow or an M-flow if :

Yecatv) P(€) = > eca—(v) ¢(e) for every vertex v € V(G).
(v) (v)




» The support o(¢) of a flow ¢ in a digraph G = (V,E) is the
set of arcs e such that ¢(e) #0 .
» If o(¢) = E, ¢ is a M-nowhere zero flow (M-NZF).
» A Z-flow is a k-flow if ¢(E) C [-(k — 1),0[U]0,k — 1]
»BCM,-B=B
¢ is a B-flow,
if¢:E —Misaflows.t ¢(E) CB
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» The support o(¢) of a flow ¢ in a digraph G = (V,E) is the
set of arcs e such that ¢(e) #0 .
» If o(¢) = E, ¢ is a M-nowhere zero flow (M-NZF).
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Flows

Definition

» The support o(¢) of a flow ¢ in a digraph G = (V,E) is the
set of arcs e such that ¢(e) #0 .

» If o(¢) = E, ¢ is a M-nowhere zero flow (M-NZF).
» A Z-flow is a k-flow if ¢(E) C [-(k — 1),0[U]0,k — 1]
»BCM,—-B=B

¢ is a B-flow,

if¢g:E—Misaflows.t ¢(E)CB




Flows

Definition

» The support o(¢) of a flow ¢ in a digraph G = (V,E) is the
set of arcs e such that ¢(e) #0 .

» If o(¢) = E, ¢ is a M-nowhere zero flow (M-NZF).
» A Z-flow is a k-flow if ¢(E) C [-(k — 1),0[U]0,k — 1]
»BCM,—-B=B

¢ is a B-flow,

if¢g:E—Misaflows.t ¢(E)CB

If M = Z5, o(¢) is a cycle.




Tutte’s Theorem

Theorem (Tutte '50)
Let G be a digraph. For every k > 2, the following conditions
are equivalent:

1. There exists a Z,-NZF in G.

2. For any Abelian group M of order k, there exits a M-NZF in
G.

3. There exists a k-NZF in G.




Every bridgeless graph without 3-cuts has a 3-NZF.

Every bridgeless graph without 3-cuts has a 4-NZF.
Every bridgeless graph has a 5-NZF.

2. a 6-NZF (Seymour '81)




Every bridgeless graph without 3-cuts has a 3-NZF.

Every bridgeless graph without 3-cuts has a 4-NZF.

Every bridgeless graph has a 5-NZF.

Every bridgeless graph has:
1. a 8-NZF (Jaeger '79)
2. a 6-NZF (Seymour '81)




Tutte’s Conjectures

Conjecture (Tutte '54)
Every bridgeless graph without 3-cuts has a 3-NZF.

Theorem (Jaeger'79)
Every bridgeless graph without 3-cuts has a 4-NZF.

Conjecture (Tutte '54)
Every bridgeless graph has a 5-NZF.

Theorem

Every bridgeless graph has:
1. a 8-NZF (Jaeger '79)
2. a 6-NZF (Seymour '81)
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The five cycle double cover conjecture

Conjecture (Peissmann '81, Celmins '84 )

» For every graph with no cut-edge, there is a list of five
cycles so that every edge is contained in exactly two.

» Every graph with no cut-edge has a B-flow for the set
B C Zg consisting of those vectors with exactly two 1's.




The orientable five cycle double cover conjecture

Conjecture (Jaeger '88)

» For every oriented graph with no cut-edge, there is a list of
five 2-flows ¢1, ¢, . .. , s With 322_; ¢ = 0 such that every
edge is in the support of exactly two of these flows.

» Every graph with no cut-edge has a B-flow for the set
B C 7° consisting of those vectors with exactly three 0’s,
one 1, and one —1.




Fulkerson’s conjecture

Conjecture (Fulkerson,’71)

» For every cubic graph with no cut-edge, there is a list of 6
perfect matchings so that every edge is contained in
exactly two.

» Every graph with no cut-edge has a B-flow for the set
B C Z$ consisting of those vectors with exactly four 1's.

Conjecture (Berge, 79)

The edges of any cubic graph with no cut-edge can be covered
by 5 perfect matchings.




Petersen flow
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If G = (V, E) has a 4-NZF then it has a cycle cover C such that:

4
I©) < SEl

Proof: 4-NZF<— Z, x Z,-NZF.

b, ¢1, ¢p S.t. D(e) = (p1(e), p2(e)), ¢i is a Z,-flow,
E =0(¢1) Ua(h2).

C, = O’(G‘)l), C, = O’(G‘)z), C3=C,AC)

«4O0r < Fr «=r «=)»



If G = (V, E) has a 4-NZF then it has a cycle cover C such that:

4
I©) < SEl

Proof: 4-NZF<— Z, x Z,-NZF.

b, 1, P S.t. P(e) = (P1(e), d2(€)), ¢ is a Z,-flow,
E =0(¢1) Ua(h).

Cl o ()’((_)1), Cz o ()’((_)2), C3 - Cl A C2

«4O0r < Fr «=r «=)»



If G = (V, E) has a 4-NZF then it has a cycle cover C such that:

4
10) < SIE]

Proof: 4-NZF<— Z, x Z,-NZF.

b, o1, P2 S.t. P(e) = (p1(e), P2(e)), ¢ is a Z,-flow,
E =0(¢1) Ua(dz).

Cl o ()'((,)1), C2 o ()'((,)2), Cg o C1 JAN Cz




If G = (V, E) has a 4-NZF then it has a cycle cover C such that:
4
I < =|E
(© <3|

Proof: 4-NZF<— Z, x Z,-NZF.
D, ¢1, P2 s.t. O(e) = (¢1(e), p2(e)), ¢ is a Z,-flow,

E =o0(¢1) Uo(2)
C1 = O'((,)l), C2 = ()'((,)2), Cg = C1 A Cz




4-NZF and Cycle cover

Theorem (Bermond, Jackson, Jaeger)
If G = (V, E) has a 4-NZF then it has a cycle cover C such that:

) < 2[E|

Proof: 4-NZF<—= Z, x Z,-NZF.
b, o1, P2 S.t. P(e) = (p1(e), P2(e)), ¢ is a Z,-flow,

E = o(¢1) Ua(s2).
C1=0(¢1), C2 =0(¢2), C3=C1 AC;
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|C1| +|C2| + |C3| = 2|E]|
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IC1| + |Ca| + |C3| = 2|E]|
Jk €{1,2,3} s.t. |C«| > 3[E]|
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Rl o| k|0
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Ca| +|C2| + |C3| = 2|E]|
Jk €{1,2,3} s.t. |C«| > 3[E]|
{Ci,Cj} (i #]) is a cycle cover




|C1| +[C2| + [C3| = 2|E|
{Ci,Cj} (i #]) is a cycle cover
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2
I(C) <2|E| — §|E’




Rk o0
Rl o| k|0
o|r|rH

Ca| +|C2| + |C3| = 2|E]|
Jk €{1,2,3} s.t. |C«| > 3[E]|
{Ci,Cj} (i #]) is a cycle cover

LetC = {C;,Cj},i #] #k:

2
I(€) < 2E| - 5IE

4
I€) < SIE|




Results

c(G) the size od a smallest cycle cover of a bridgeless graph G.

Authors

Results

Itai, Rodeh ('78)

c(G) < [EI + 2V ]log V.

Bermond, Jackson, Jaeger ('83)

c(G) < 2E|.

Alon, Tarsi ('85) c(G) < §|E\.
Jamshy, R. , Tarsi If G has a 5-NZF
(87) c3(G) < 8IE|.

Jackson ("90)

If G is 2k-edge-connected
(k > 2), then ¢(G) < 3+2

E|.




Results

\ Authors Results

R. (91) If G has a 4-NZF
G # K4, then
C2(G) < |E|+ |V|-3.

Fan, R. ('92) If Fulkerson conjecture is true
c3(G) < ZE|.

R. ('92) If Petersen conjecture is true
C4(G) < %|E|

Fan ('93) If 3-flow conjecture of Tutte is true
C3(G) < %|E|

Fan ('98) c(G) < |E|+ V| -1

Shu, Zhang ('04) | G with odd edge-connectivity r > 3
C3(G) < #|E|




Let G = (V,E) be a directed graph. p > 2q integers. A flow
f:E—{—-(p—1),....,p—1}isa(p,q)-flow if for every edge
ecEq<lf(e)<p-a.

A (k,1)-flow is a k-NZF




If G = (V,E) has a (p,q)-flow then it has a cycle cover C with

2(p—q)
1(C) < — 5 E|

2 3 4 5 6
S = <- o )]
VT\_/
4 2p=9 5 <29
KR 2p-q) 8 3
P 5




If G = (V,E) has a (p,q)-flow then it has a cycle cover C with

2(p—q)
1(C) < — 5 E|

2 3 4 5 6
S = <- o )]
VT\_/
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Let G = (V,E) be agraph. p > 2q integers. G = (V,E) is
(p,q)-colorable if there exists a mapping
f:V—{0,...,p—1} s.t. for every edge xy € E (Vince '88):

p<I[f(x)-f(y)I<p—q




Circular coloring
Let G = (V,E) be a graph. p > 2q integers. G = (V,E) is
(p, q)-colorable if there exists a mapping
f:V—{0,...,p— 1} s.t. for every edge xy € E (Vince '88):

p<I[f(x)—f(y)I<p-—q

xc(G) = inf{g . thereisa(p,q) -coloring of G}

4 A 1

3 2

(5, 2)-coloring of Cs




K% be the graph with vertex set {0,...,p — 1} (p > 2q) in which
jjisanedgeifandonlyifg <|[j—i|<p-—q.

0

Circular clique Ks
3




Bicircular flow

» ACDCC = {Cy,...,Cp_1} is said to be (p, q)-colorable if
the intersection graph G¢ is (p, q)-colorable.

» V(Ge) ={0,...,p—1}andij € E(C)iff C; N C; # 0.
» Dpq is the subset of Z) consisting of elements

(2o, - -.,Zp—1) with exactly two elements z;,z; equal to one
and all the other equalto O, withp < |j —i|<p—q.
Proposition

G has a Dp ¢-flow iff G has a (p, q)-colorable CDC




If G has a Dp g-flow then it has a cycle cover C with

2(p—q)
1(C) < S E|




Proof

» G has a Dy g-flow <= G¢ the intersection graph of the
corresponding CDC is a sub-graph of Kp
q

> eid-:{eeE :eeCiﬂCj}.

> e c e <= eisof typeij

» there is a bijection between the e; j's and the edges of Kp
q

0




Proof (8, 3)-flow

» Co12 = {C3,C4,Cs,Cg,C7} is a cycle cover of the graph
» The edges of types g;j i € {0,1,2}, ] € {3,4,5,6,7} are
covered once by this cycle cover Cgj,.

» The edges of the remaining types ez 7,63 6,64 7 are covered
twice.




Proof (8, 3)-flow

v

1(Co12) = |[E| + |e3 7| + ez 6| + |47
[(Co12) = |[E| + |Ro| (Ro the edges of the remaining types)
Kp is vertex transitive. Cg;5 is denoted by Cy.

q

v

v

v

Ci,i €{0,...7} are 8 cycle covers (p)
1(Gi) = [E[ + IR

v




Proof (8, 3)-flow

» Each R; contains 3 types of edges (w)

> 361(C) = 8[E| + g IRl

> 35 1G) = PE[+ X6 IR

» each edges of types belonging to the reamining edges are
counted twice (p — 2q times)

> >261(G) = 8IE| + 2[E|

> S5711(G) = PE|+ (p — 20)E|

0




» Thereisi €{0,...,7} (i € {0,...,p — 1}) such that

5
I€) < SIE|
>

N _ 2(p—q)
1(G) < —p E|




If a planar graph G has a (p, q)-flow then it has a cycle cover C
with

2 _
I(€) < 2P =g
p
P
q 2 3 4 5 6
g - ° )
m ’ 5 29
ER 2p-q) 8 3
P 5




If G has a (2k + 1, k)-flow then it has a Doy 1 i-flow

If G has a (2k + 1,k)-flow then it has a cycle cover C with

2k +2
1(C) < E
(C)—2k+1| |
2
a2 3 4 5 6
8 66— & v\ )
VY“J
4 . 2p9
3 p




