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Injective Coloring

Definition (G. Hahn, J. Kratochvil, J. Siran, D. Sotteau '02)

Le G = (V,E) be a graph,
» A vertex k-colouring is a function
c:V(G) — {0,1,...,k — 1}. We say that a colouring of a
graph is injective if its restriction to the neighbourhood of
any vertex is injective.

» The injective chromatic number x;(G) of a graph G is the
least k such that there is an injective k-colouring.

A(G) < xi(G) < IV(G)|
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Instance: A graph G = (V, E) and a natural number k
Question: Is there an injective k-coloring of G?

The problem ICN is NP-complete




Injective coloring of the hypercube

In the special case of the hypercube, we have :

Theorem (G. Hahn, J. Kratochvil, J. Siran, D. Sotteau '02)

Let Qn be the hypercube of dimension n.
1. xi(Qn) = nifand only if n is a power of 2.
2. xi(Qn) <2n-—2.
3. Xi sz_j) =2"for0<j<3.
4. xi(Q2nt+1) < 2xi(Qny1) -
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A part of these results was proved in 1997 by P. Wan (Near
Optical Conflict-Free Channel Set Assignements for an Optical
Cluster-Based Hypercube Network)




Coloring of the square of a graph

Definition

Let G = (V, E) be a graph, the square of G is G2 = (V,E’) s.t.

xy € E’if and only if x and y are at distance at most 2 in G.

C—— 6——o
X(KZ) =2 Xi(KZ) =1

» If G is connected and not K then x(G) < xi(G).
> X(G) < xi(G) < x(G?)
» xi(P10) =5 and x(P%,) = 10




Let G be a planar graph. Then

X(G?) < {

A(G)+5
13A(G)/2] +1

if4<AG) <7,

if A(G) > 8.
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If G is planar and A(G) = 3 then x(G?) < 7

If G is planar with A > 47, x(G?) < [9A(G)/5] +1

If G is planar, x(G?) < [5A(G)/3] + 78

«0O)>» «F» « > < 3
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The maximum average degree is a well used tool

mad(G) = max{zlE(H)| i

H is a subgraph of G}

The degree of a vertex u will be denoted by deg(u)

If G is a planar graph with girth at least g then
mad(G) < 2+ 545
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Let G be a graph

1. If mad(G) < ¥ then x;(G) < A(G) + 3.

2. Ifmad(G) < 3 then x;(G) < A(G) + 4.
3. If mad(G) < 22 then y;(G) < A(G) + 8.
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mad(G) < & then xi(G) < A(G) + 3

Let H be a minimum counterexample.
1. Both neighbours of a vertex of degree 2 are of degree at
least 3.
2. If uvz is a simple path in G with deg(u) = 2, deg(v) =
then deg(z) > 3.
3. A vertex of degree 4 has at most two neighbours of degree
2.

4. A vertex of degree 4 cannot have two neighbours of
degree 2 and two neighbours of degree 3




color H \ v.

If there is two vertices u and v of degree 2 adjacentin H. We

1. Forb(u)<A-1+1=A
2. Forb(v) <A-141=A



If deg(z) < 3 we color H \ uv.

deg(2) <4
1. Forb(u)<A-1+2=A+1
2. Forb(V) <A—-1+42+1=A+2



H\u

If deg(v) = 4 and v has 3 neighbors of degree 2. We color

1. Forb(v) <A-14+3=A+2
2. Forb(u)<A-143=A+2



A vertex of degree 4 cannot have two neighbours of
degree 2 and two neighbours of degree 3

If deg(v) = 4 and v has 2 neighbors of degree 2 and 2
neigbors of degree 3. We color H \ u
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1. Forb(v) <6< A+3
2. Forb(u) < A-1+4+3=A+2
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Discharging rules

The initial charge is defined by w(u) = deg(u) for each
ueV(H).

1. If uv € E(H) and deg(u) = 2, deg(v) > 3, v gives 2 to u
2. If uv € E(H) and deg(u) = 3, deg(v) > 4, v gives 75 to u.

After the discharging procedure let w*(u) the new charge for
eachu € V(H).

We have 3, oy 4y W(U) = > yey iy W (U).
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» avertex u of degree 2 has w*(u) = 2 + 2% =L
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» a vertex u of degree 3 has at most one neighbour of
degree 2 and sow*(u) >3 -2 + 2.
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The new charges

» Let u be a vertex of degree 4.
If u has two neighbours of degree 2, it has at most one
neighbour of degree 3, and then

* 2 1 _ 31 14
wu)>4-2-£-4=%> %"
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» If u has fewer than two neighbours of degree 2,
wiu)>4-3. 5 2= 14

Y10
Y10
> ~ ’/'_\\
>
5
Y10
» If u is of degree at least k > 5 then L.1

wiu)>k—k-2=k-£>3



Hence w*(u) > & for every u € V(G)

Mad(H) >

2EMH)] _ 2vevdv) _ 2vev W (V)
IV (H)| IV (H)|
A contradiction.

YV (H)| _ 14
V(H)
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L(p, q)-coloring

Definition
Let p,q be two nonnegative integers. An L(p, q)-coloring of a
graph G is a function ¢ : V(G) — {0,1,...,k} for some
positive integer k such that:

1. |o(x) — ¢(y)| > p if x and y are adjacent

2. |op(x) — ¢(y)| > qif x and y are at distance 2

A(G; p,q) is the smallest k such that G has an L(p, q)-coloring
with max{¢(v) : v e V(G)} =k

=



1. M(G;1,1) = x(G?) -1

2. XM(G;0,1) = xi(G) — 1if G is triangle free.

1

0 0

A(T;0,1) =0 xi(T)=3



Applications

W.Wang and K. Lih proved
Theorem (W.Wang, K.Lih '03)

Let G be a planar graph and p and g two positive integers.
1. Ifg(G) > 7 then A(G;p,q) < (29 —1)A(G) +4p +4q — 4
2. Ifg(G) > 6 then A\(G;p,q) < (29 — 1)A(G) +6p + 129 — 9
3. Ifg(G) > 5then \(G; p,q) < (29 —1)A(G) +6p +24q — 15

Corollary (W. Wang, K. Lih '03)

Let G be a planar graph
1. If g(G) > 7 then x(G?) < A(G) +5
2. 1f g(G) > 6 then x(G?) < A(G) + 10
3. If g(G) > 5 then x(G?) < A(G) + 16

This gives upperbounds for x;(G)



If G is a planar graph with girth at least g then
mad(G) < 2 + ;%

Let G be a planar graph

1. Ifg(G) > 7 then xi(G) < A(G) + 3
2. If g(G) > 6 then xi(G) < A(G) + 4
3. If g(G) > 5then xi(G) < A(G) + 8

«0O)>» «F» « > < 3
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Let G be a planar graph

1. If g(G) > 19 then y;(G) = A(G), A > 4
2. Ifg(G) > 10 then xi(G) < A(G) +1, A > 4
3. If g(G) > 5 then x;(G) < A(G) + 4, A > 139




K4-minor free Graphs

G is a minor of H if G can be obtained from H be a series of
vertex deletions, edge deletions and/or edge contractions
(replacing two adjacent vertices u,v by a vertex that is adjacent
to all neighbours of u or v).

A graph G is K4-minor-free if K4 isn’t a minor of G.

Equivalent classes: partial 2-tree, series-parallel
Subclasses: 2-tree, outerplanar




Let G be a K4-minor free graph. Then

A(G)+3 if2<A(G)<3
X(G%) < { 13A(G)/2) +1 i AG) > 4.

Let G be a K4-minor free graph. Then x;(G) < (%A(G)].

«0O)>» «F» « > < 3
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Figure: Gy
k 2-paths between u and v
k 2-paths between v and w
k 2-paths between w and u

«0»
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Tight Result

Gk is a K4-minor free graph with A(Gyx) = 2k.

Xi(Gak) < [3A(Gx)] = 3k.

Any two vertices of degree 2 are at distance 2 in Gy, and there
are exactly 3k such vertices in Gyk. Thus x;(Gzk) > 3k

Xi(Gak) = [3A(G2)] = 3k. ta



Planar subcubic graphs

Theorem (M. Montassier, A. R.’05)

Let G be a planar subcubic graph:
1. if girth(G) > 14 then x(G?) <5
2. if girth(G) > 10 then x(G?) < 6
3. if girth(G) > 8 then x(G?) < 7

It was also proved independently by Z. Dvofak, R.Skrekovski
and M. Tancer '05.




Lemma (G. Hahn et al. '02)

Let G be a graph of maximum degree A. Then
xi(G) < A? — A+ 1.

Theorem (G. Hahn et al. '02)

Let G be a connected graph of maximum degree A > 3. Then
xi(G) = A2 — A + 1if and only if there exists a projective plane
P of order A — 1 and G is isomorphic to |(P).




subcubic graphs

Proposition

Let G be a graph of maximum degree A < 3. Then x;(G) < 7;
and x;(G) = 7 if and only if G is isomorphic to the Heawood
graph. In particular, when |G| # 14 or G is not bipartite, it holds
that x;(G) < 6.




Let G be a planar graph with maximum degree A(G). Then
xi(G) < [3A(G)].
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