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Let G be a directed graph, A be an abelian group.

A-flow
A-flow f of G is a mapping which assigns to each edge e of G an
element of A f(e) such that :

o for every vertex x, Lecpt(x)f(€) = Zece-(x)f(e).
Here E*(x) is the set of edges incident to and oriented away from
x, and E~(x) is the set of edges incident to and oriented towards
X.
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Modular orientation

@ A graphis mod (2p + 1)-orientable (p > 1) if it has an
orienation s.t. the out degree of each vertex is congruent
mod (2p + 1) to the in-degree.

o U(Zapir) = {1 -1}

mod (3)-orientation of K33
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Circular Flow

Let G be a directed graph. For positive integers p > 2q, a
(p, q)-flow f of G is a mapping which assigns to each edge e of D
an integer f(e) such that

o for every vertex x, Lecp+(x)f(€) — Zece-(x)f(e) =0,

o for every edge e, g < |f(e)| < p—q.
Here E*(x) is the set of edges incident to and oriented away from
x, and E~(x) is the set of edges incident to and oriented towards

L]
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JAEGER

Theorem (Jaeger '82)
For any graph G and for any p > 1 the following properties are
equivalent:

Q@ G is (2p + 1)-orientable

Q G has a U(Zop+1)-flow

© G hasa (2p+ 1, p)-flow

Conjecture (The circular flow conjecture, Jaeger '82)

For all p > 1, every 4p-edge connected graph has a
(2p + 1, p)-flow.

LT
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JAEGER

Conjecture (The circular flow conjecture, Jaeger '82)

For all p > 1, every 4p-edge connected graph has a
(2p + 1, p)-flow.

@ p =1 = 3-flow conjecture of Tutte ('54)
@ p =2 = 5-flow conjecture of Tutte ('54)

L]
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Circular coloring

Let G be a graph.
For positive integers p > 2q, a (p, g)-coloring of G is a mapping
f:V(G)— {0,1,--- ,p — 1} such that

o for every edge xy, g < |[f(x) —f(y)|<p—q

Circular chromatic number

Xc(G) = min{g . G has a (p, q)-coloring}

Jeager's conjecture restricted to planar graphs

Every planar graph G of girth at least 4p has circular chromatique

number at most 2 + % —

André Raspaud Homomorphisms of sparse graphs to small graphs




Circular clique

Let Ke be the graph with vertex set {0,...,p— 1} (p > 2q) in

q
which ij is an edge if and only if ¢ < |j — i| < p — q. Such a graph
is called a circular clique.

wlo
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A homomorphism from G to H is a mapping h: V(G) — V(H)
such that if xy € E(G) then h(x)h(y) € E(H).

Circular coloring-Homomorpism

G has a (p, g)-coloring <= it exist a homomorphism from G to
K

Qs

Denoted by

G — Kp
q
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Homomorphism

Let g(G) be the girth of G

Conjecture (Jaeger)

Let G be a planar graph:

g(G)>4p = G — Ko

P

Remark: K11 = Copta
P
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4p is best possible.

p=2

DeVos, Pirnazar and Ullman
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Let G be a planar graph.
We denote by odg(G) the odd girth of a graph G

Theorem

Xe(G) <2+ 3 if:
o g(G) > 10p — 4: Nesettil and Zhu ('96), Gallucio, Goddyn,
Hell ('01)
@ odg(G) > 10p — 3: Klostermeyer and Zhang ('00)
@ 0dg(G) > 8p—3: Zhu ('01)
° g(G) > %: Borodin, Kim, Kostochka, West ('04)
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Let G be a planar graph, if odg(G) > 13 (p = 2), by the two last
results we have:

0

hom 4 A 1
G —_— M
3 2
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Conjecture (Jaeger '82)
Let G be a planar graph, if g(G) > 4p then x(G) <2+

T =

Conjecture (Klostermeyer and Zhang ('00))

Let G be a planar graph, if odg(G) > 4p + 1 then x(G) <2+ %

13
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Maximum average degree

Definition-Maximum average degree

Mad(G) = max{%,Hg G}.

if G is a planar graph with girth g, then Mad(G) < %.

The maximum average degree of a graph can be computed in
polynomial time by using the matroid partitoning algorithm
EDMONDS '65.

g
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Theorem ( Borodin, Kim, Kostochka, West ('04))

If g(G) > 6p — 2 and Mad(G) < % then xc(G) <2+ %

Theorem ( Borodin, Hartke, Ivanova, Kostochka, West ('04))

Let G be a triangle-free graph. If Mad(G) < 2 then xc(G) < 3

g
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Corollary

Let G be planar graph. If g(G) > 12 then x(G) < g

0

G hom 4%{‘ 1
3 2

André Raspaud Homomorphisms of sparse graphs to small graphs

L]




Theorem (R., Roussel ('05))

Let G be a triangle free graph:
o if Mad(G) < 22 then x(G)
o if Mad(G) < 3 then Xc(G)

11
Sy

14
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Corollary

Let G be a triangle free planar graph:
o ifg(G) > 11 then x(G) < &

o if g(G) > 10 then x(G) < ¥

Conjecture (R., Roussel ('09))

Let G be with g(G) > 4p and Mad(G) < 2 + 2,%1 then
XC(G) <2+ %

L]
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if Mad(G) < 22 then G —

André Raspaud Homomorphisms of sparse graphs to small graphs




if Mad(G) < 3 then G —
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Fractional coloring

Let a > b be two integers. We denote by Pp[a] the b-elements
subsets of a the set {1,---,a}. Let G be a graph and c:

V(G) — Ppla] such that for two adjacent vertices v and v of G
¢(u) and c(v) are disjoint. c is then an (a, b)-coloring.

Fractional chromatic number

xf(G) = min{z . G has a (a, b)-coloring}

Xf(G) < XC(G)
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Kneser graphs

Kneser graph

The Kneser graph, denoted by K., is defined to be the graph in
which vertices represent subsets of cardinality k taken from
{1,2,---,n} and two vertices are adjacent if and only if the
corresponding subsets are disjoint.

t

K5:2
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Homomorphism

Fractional coloring-Homorphism

G has a (a, b)-coloring <= it exists a homomorphism from G to
Kab -

Denoted by

G — Ka:b

1
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Homomorphism

Let g(G) be the girth of G

Conjecture

Let G be a planar graph:
g(G) >4p — G — K2p+1:p

Jaeger conjecture = the above conjecture.
Remark: Kzp41 = 02541 the Odd graph.
P
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Klostermeyer and Zhang ('00)

Theorem (Klostermeyer and Zhang ('00))

Let G be a planar graph.

(1) If the odd-girth of G is at least 10p — 7 with p > 2, then
Xf(G) <2+ %

(2) Ifg(G)>10p —9 with p > 2 and A(G) < 3, then

Xf(G) <2+ %

(3) There exists a planar graph H with odd-girth at least 2p + 1
such that xf(G) > 2+ %.
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Theorem (Pirnazar and Ullman ('02))

Let G be a planar graph. If g(G) > 8p —4 (p > 1) then
xr(G) <2+ %-

Theorem (Dvotak, Skrekovski and Valla ('08))

Let G be a planar graph. If odg(G) > 9 then xf(G) < 3.

Conjecture (Naserasr ('09))

Let G be a planar graph. If odg(G) > 2p+3 (p > 1) then
xf(G) <2+ %-

|

o)
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Maximum average degree

Theorem (Chen, R. ('08))

Let G is a triangle-free graph.
o If Mad(G) < 3, then xf(G) <
o If Mad(G) < 2, then x¢(G) <
o If Mad(G) < 23, then x¢(G) <

[VIEN N \ST[E,]

9
4
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Maximum average degree

Corollary

Let G is a planar graph.
o If g(G) > 10, then x¢(G) <
o If g(G) > 18, then x¢(G) <
o If g(G) > 24, then x¢(G) <

Ao wWIN Do

The Theorem of Dvotsk, Skrekovski and Valla gives a better result
than the first item of Corollary. They proved that if odg(G) > 9
then x¢(G) < 3.
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Maximum average degree

o If Mad(G) < S, then x¢(G) < 3

It is best possible.
Let Gy be the following graph:

Mad(Gy) — g

Gy does not have a (5, 2)- coloring.
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If Mad(G) < 3, then x¢(G) < 3

We want to prove that: If G is triangle-free and Mad(G) < % then

hom
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sketch of the proof

sketch

We take a minimum counterexample. We prove that this minimum
counterexample cannot contain some configurations. If a graph
does not contain these configurations then Mad(G) > g a
contradiction.
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Observations

For x € V(Ks.2), we define Lj(x) = {y| there is a walk of length i
in Ks.2 joining x and y} and Fi(x) = V(Ks.2)\Li(x).

X

For x € V(Ks.2), we have that |Fi(x)| =7, |F2(x)| =3,

|F3(x)| =1, and |F4+(x)| = 0. L!
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Forbidden configurations
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Forbidden configurations

X X

Z

Fig.2: vis a (2,0,1)-vertex.

Fig.3: A (1",1%,1")-vertex v.

André Raspaud

Fig4: A (2,2,0")-vertex v.
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Forbidden configurations

Fig.6: A united thread structure B, (k;.---.k,,) B, withaknotv = (k.- k;,)-
X W Yy VWi Vi Wiy
- o)

9, o b 4

Fig.7: P,(2,0,1)B'.
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Forbidden configurations

X u vV ww X w
ll lz l l l l

Fig.8: P,(2,0,1)R(1,0,2)P,. Fig.9: P,(2,0,1)R(1,0,2)P,.
X y z. w v Yy ozoowoow, W
12 imqi
56 op t P q
Fig.10: B,(2,0,)R(1,1*, L) R(1,0,2)P, Fig.11: B,(2,0,) (L 1", L, P (1,0,2)P,

X X Xio1 X 4 N Vi M y
Pi j%
p q

Fig.12: B,(2,0,) P/ (L1, 1,)) B’ (1,0,2) P,
XI% y y
w t t

(1) 3)

Fig.13: Reducible united thread-cycle structures in Claim 16.
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Master-Slave

Definition (Borodin, Hartke, lvanova, Kostochka, West ('08))

A compensatory path for a (2,0, 1)-vertex v is chosen as any
shortest path F formed by concatenating threads in the
following way. First, F starts along the unique 1-thread at v.
Then F traversed some number of 1-threads by (1,0, 1)-vertices.
Let v* be the first vertex reached which is not a (1,0, 1)-vertex.
Moreover, we say that v* is a slave of v and v is a master of v*.
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Observation

Lemma

Suppose v is a (2,0,1)-vertex. Let v* be the slave of v. Then the
following hold:

(1) v* is neither a 2-vertex nor a (1,0, 1)-vertex;

(2) If d(v*) =3 then v* is a (1,0, 0)-vertex.

uuiI:ﬁbmA uli’l
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Discharging rules

Initial charge w(v) = d(v) at each vertex v.

=

(R1) Each 2-vertex in a 2-thread gets a charge equal to 5 from its
3*-vertex neighbor.

(R2) Each 2-vertex in a 1-thread gets a charge equal to
each of its neighbor.

(R3) Each (2,0, 1)-vertex gets a charge equal to % from its slave.

from

Bl

w™* to denote the charge at each vertex v after we apply the
discharging rules. Note that the discharging rules do not change
the sum of the charges. To complete the proof, we show that
w*(v) > 3 forall v € V(G).

L]
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Discharging rules

This leads to a contradiction.

Contradiction

5« Zuev@ (M) _ Tievg@lv) _ 2E(G)) 5
5 < =SB = = — = Tv(ey S Mad(G) < 3.

1
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Conclusion

Conjecture

Let G be a graph with g(G) >2p + 1.
If Mad(G) < 2+ 5, then x¢(G) <2+ +

If this conjecture is true, then it is best possible.

Let be G, the complete graph K, with vertex set {t, u,v,w}. We
replace the edge uv by a path of length 2p — 1 and the edge tw by
a path of length 2p — 1.

L]

André Raspaud Homomorphisms of sparse graphs to small graphs




Conclusion

Klostermeyer and Zhang ('00)

The graph G, cannot be (2p + 1, p)-colored.
0dg(Gp) =2p+ 1 and Mad(Gp) =2+ %.

A

: I
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