
Analysis and verification of concurrent programs
under mailbox semantics

Romain Delpy, University of Bordeaux

December 12, 2023

My internship

My internship took place at the Laboratoire Bordelais de Recherche en Informatique (LaBRI),
which is a public IT research laboratory, linked to the Université de Bordeaux.
I worked among the research department of Formal Methods and Models, in the team Models
& Technologies for Verification. The main goal of the team is to ensure the accuracy and
reliability of complex software and systems by using formal methods. It contributes to various
fields like cybersecurity, embedded systems, and artificial intelligence.

I started my internship by reading the article On the completeness of verifying message
passing programs under bounded asynchrony [2]. I used this article to get familiar with the
notions of mailbox semantics, and of k-synchronizability. I also prepared a 40 minutes oral
presentation on the content of this paper for a course.

I then worked on formal definitions for the mailbox semantics. With these new definitions,
we obtained new results on k-synchronizability. I also worked on a comparison of the mailbox
semantics with the peer-to-peer semantics. I also assisted to several seminars within the team.

Research in my area has no direct societal or environmental impact, but I became interested
in this kind of actions in the larger context of LaBRI. In this respect, several actions have been
taken within LaBRI to better understand the environmental challenges and to better address
issues of inclusiveness and equity.

A dedicated committee directed by Marthe Bonamy was created in 2021 to answer some
of these challenges. Since then, the Equity, Diversity and Inclusion Charter has been written
by this comitee. Its goal is to emphasize undesirable situations and behaviors, to help people
spot and avoid them.

This committee also drives an environmental impact analysis of the LaBRI, to emphasize
the elements of a researcher’s daily life that have the biggest impact on the environment. With
different poster campaign, the committee gives hints of how we can reduce our own impact,
for example by preferring train to plane when travelling for a conference.

1

Contents

0.1 Introduction . 3

1 Definitions 5
1.1 Preliminaries . 5
1.2 Partial orders and MSCs . 7

2 On k-synchronizability 11
2.1 Definitions . 11
2.2 Detecting k-synchronizability . 15
2.3 Undecidability of ∗-synchronizability . 21

3 Decidability of ∗-synchronizability for SR-exchanges 24
3.1 Definitions . 24
3.2 Automata constructions . 26
3.3 Results . 32

2

0.1 Introduction
With the last two decades’ progress on new processors, multi-threaded programs are becoming
more widespread. Threads are lightweight processes that interact with each other via shared
memory, synchronization mechanisms (such as locks), or asynchronous message passing. In
asynchronous message passing systems, we have multiple processes running simultaneously
that can send messages to one another, without any guarantee on the time of reception. The
action of sending a message for a process is non-blocking, meaning it does not wait for
the message to be received before continuing its actions. Using multiple threads reduce
the computation time, by parallelizing tasks. However, this principle makes conception and
verification of multithreaded programs a challenge. In the general case, it is undecidable
to check for reachability in asynchronous message passing systems [3]. However, it has
been shown that if we have some restrictions over the system, we can have certain results on
accessibility. For example, it has been shown by Bouajjani et.al. [2] that if the behavior of a
system is composed of bounded interaction phases, then we can check for accessibility.

One particular aspect of the asynchronous message passing systems studied in [2] is that
every process receives its messages in a single FIFO buffer. This so-called mailbox semantics
can be found, for instance, in the concurrent programming languages Erlang and Rust, and
it differs from the usual Peer-to-Peer semantics that can be found in distributed programming
and that has already been studied [5].

During my internship I have read three papers on the subject of these bounded interaction
phases [2, 4, 6], and I have extended the results presented in these papers. The main notion I
worked on is k-synchronizability of a system, and its extensions. But the definition of these
interaction phases in the previous works stipulated that in one phase, all the send actions
are done before all corresponding receiving actions. The first task was to explore the results
presented in these papers without this restriction, and clarify some of the definitions used
in [2, 4, 6] . The second task consisted in making the decidability proof for k-synchronizability
for some k given in [6], more accessible.

In this report I develop the ideas and progress that I made together with my supervisors. In
Chapter 1, I give definitions for describing our systems that will be used throughout this paper.
Chapter 2 deals with new definitions for the bounded interaction phases (called k-exchanges)
that differ from the ones given in previous work on the subject, and explain how we can decide
if a system is k-synchronizable or not, with a different proof from the previous papers and
with less restriction on the structure of the k-exchanges (they don’t need to have all their send
actions before all their receive actions). We also prove that for a given system, finding a k such
that it is k-synchronizable is undecidable in general. Finally, Chapter 3 presents our results
on k-synchronizability using a definition of a k-exchange close to the one given in [2, 4, 6].
We prove that in this case, finding a k such that a system is SR-k-synchronizable is decidable
in PSPACE, by showing how we can first check if a system is SR-synchronizable (i.e. has all

3

its executions equivalent to sequences of SR-exchanges), and then checking if the size of the
SR-exchanges are bounded. We conclude by giving an overview of all the results on mailbox
semantics we have seen in this paper, and present future works we intend to do on the subject.

4

Chapter 1

Definitions

In this chapter, we will introduce the basic elements that will be used throughout this
manuscript, such as communicating finite state machine and message sequence chart.

1.1 Preliminaries
A communicating finite state machine [3] is a finite set of processes (represented as automata)
that exchange messages. In this paper, we mainly focus on the Mailbox semantics. In this
semantics, each process has a mailbox, which is a FIFO list. Messages are instantaneously
stored in the mailbox when sent. Let P be a set of processes, and M be a set of message
contents. The actions of the processes are either sending or receiving a message. For p, q ∈ P ,
we denote a send from p to q by p!q, and a receive of q by q?_. We then define a local
alphabet for each p ∈ P for those actions, denoted by Σp = { p!q(m) | q ∈ P\{p} , m ∈
M } ∪ { p?_(m) | m ∈ M }. We also call Sp = { p!q(m) | q ∈ P\{p} , m ∈ M }
the set of all send actions on p and Rp = { p?_(m) | m ∈ M } for the receive actions on
p. We will also need to specify actions directed to a certain process, so we define the set
S→p = {q!p(m) | q ∈ P\{p} , m ∈ M }. We then write Σ =

⋃
p∈P Σp. Moreover we

define the two following subsets of Σ : S =
⋃

p∈P Sp and R =
⋃

p∈P Rp.

Definition 1 (Communicating Finite-State Machine)
A communicating finite-state machine (CFM) is a tuple A = (Ap)p∈P , where Ap = (Lp,→p

, ip) is a finite labeled transition system over the alphabet Σp with set of states (locations) Lp

and initial state ip ∈ Lp. States from Lp are also denoted as local states.

An example of a CFM is shown in Figure 1.1, representing a lock of a tank, with two buttons,
one activating the filling sequence, the other the emptying sequence of the tank.

One can then represent the possible configurations of a CFM by a sequential transition
system (possibly infinite) whose states consist of a tuple containing the local state of each
process and the content of each mailbox.

5

idle ask

High Button:hb

hb!t(up)

hb?_(ack)

idle ask

Low Button:lb

lb!t(down)

lb?_(ack)

Tank:t

high

low

fill empty

t!hb(ack)

t!lb(ack)

t?_(down)

t?_(up)

Figure 1.1: An example of a CFM representing a lock of a tank

Definition 2 (Global Transition System)
Let A = (Ap)p∈P be a CFM. The global transition system of A is the tuple TA = (CA,→A)

where:

• CA =
∏

p∈P(Lp × M∗) is the set of configurations of the global transition system,
consisting of a local state and a mailbox for each process.

• →A⊆ CA × Σ× CA is the set of transitions of the global transition system where:

((lp, wp)p∈P)
a(m)−−→ ((l′p, w

′
p)p∈P)

is in →A if

– lp
a(m)−−→p l

′
p and lq = l′q for q ̸= p.

– Send actions: if a = p!q then w′
q = wq ·m and w′

p = wp for p ̸= q.

– Receive actions: if a = p?_ then m · w′
p = wp and w′

q = wq for q ̸= p.

A run of TA is a sequence ρ = c0
a1(m1)−−−−→ c1 . . .

an(mn)−−−−→ cn with ci ∈ CA, and ai ∈ Σ such that
ci−1

ai(mi)−−−→ ci is in →A for every i. It is initial if c0 = ((ip, ε)p∈P). We define L(TA) ⊆ Σ∗

as the set of projections of the initial runs on their actions.

Remark. We will work most of the time with sequences of actions instead of runs, so taking
projections and forgetting the configurations. Moreover, we might have to work on parts of
the actions of a sequence. To make reading easier, we introduce the notation u|E for the
projection of the sequence u over the set E. For example u|S→p is the sequence composed of
the send actions to process p in u.

6

1.2 Partial orders and MSCs
We will now introduce an extension of the partial order over send/receive events as presented
in [2]. First we have a natural total order over send/receives of a CFM:
Definition 3 (Trace)
A trace of a CFM A is a sequence u ∈ Σ∗ such that there exists an initial run ρ over TA with
its projection over its actions equal to u. The set of all traces of A is denoted Tr(A).

As we will have to deal with parts of traces, we also need the following definition:

Definition 4 (Viable sequence, unmatched sends)
A sequence of actions v ∈ Σ∗ is called viable if for every process p ∈ P:

• for every prefix u of v the number of receives on p in u is less or equal the number of
sends to p in u: |u|Rp| ≤ |u|S→p|.

• for every k, if the k-th receive on p is labeled by p?_(m) then the k-th send to p is
labeled by q!p(m) for some q.

If w = uav is a viable sequence, a ∈ S→p and |w|Rp | ≤ |u|S→p| then we refer to event a
as unmatched send (i.e. the send is not associated with a receive action). It is said matched
otherwise.

Remark. Clearly, every trace is a viable sequence.

Now, and in order to talk easily about equivalent sequences, we first adapt the notion of
partial order diagrams called message sequence charts that are used in P2P communication
(see e.g. [5]) to the mailbox semantics. We define a message sequence chart (MSC) as a
Σ-labeled poset (E,≤, λ). The partial order ≤ is generated by three relations: the total order
over events belonging to the same process, the message relation, and a causal relation related
to the mailbox semantics. It is convenient to use below the function P : E → P associating
each event with the process on which it occurs (i.e., P (e) = p if ℓ(e) ∈ Σp).

Definition 5 (Message Sequence Chart)
A message sequence chart (MSC) is a Σ-labeled partially ordered set M = (E,≤, λ) of
events with ≤ = (≤P ∪msg∪≤mb)

∗, where ≤P ,msg,≤mb are the least relations satisfying
the following conditions:

1. For every p ∈ P , the set {e | P (e) = p} of events on process p is totally ordered by
≤P .

2. (e, f) ∈ msg implies λ(e) = p!q(m), λ(f) = q?_(m) for some p, q ∈ P , p ̸= q,
and m ∈ M ; moreover, the partial function msg : λ−1(S) → λ−1(R) is one-to-one,
i.e. every event labeled by a receive action is paired with one and only one send action.

7

3. e≤mb f implies λ(e) = p!q(m), λ(f) = p′!q(m′) for some p, p′, q ∈ P , m,m′ ∈ M

and e is matched.

4. For every q ∈ P , the set{e | λ(e) = p!q(m) for some p ∈ P ,m ∈ M and e is matched}
of matched sends to process q is totally ordered by ≤mb. Moreover, if e, e′ are such
that λ(e) = p!q(m), λ(e′) = p′!q(m′) for some p, p′, q ∈ P , m,m′ ∈ M , and
(e, f) ∈ msg, (e′, f ′) ∈ msg, then e≤mb e

′ if and only if f ≤P f ′.

5. If e, e′ are such that λ(e) = p!q(m), λ(e′) = p′!q(m′), e is matched and e′ is unmatched,
then e≤mb e

′.

Remark. Compared to the usual definition of MSC in P2P semantics [5] we added the relation
≤mb, which expresses the causal order between sends to the same process induced by the
mailbox semantics. The relation ≤mb captures precisely the causal delivery condition used
in [2, 4]. {added} Note also that condition 4 together with the partial order implies that
messages between any pair of processes are received in the same order as they were sent
(FIFO property).

If u = a0 . . . an is a viable sequence of actions, then we can associate an MSC with u by
letting MSC(u) = (E,≤, λ) with E = {e0, . . . , en}, λ(ei) = ai, and ≤P ,msg,≤mb defined
as expected:

• If P (ei) = P (ej) then ei ≤P ej iff i ≤ j.

• For the msg relation, we count the number of sends to a process and the number of
receives on this process, and we pair a send to a receive if the number of previous sends
corresponds to the number of previous receives: if λ(ei) = p!q(m), λ(ej) = q?_(m)

and

|{ek | λ(ek) = p′!q(∗), k < i, p′ ∈ P}| = |{eℓ | λ(eℓ) = q?_(∗), ℓ < j}|

then (ei, ej) ∈ msg.

• For the relation ≤mb let k be the number of receives on process p in u. If ei is among
the first k sends to p, then ei ≤mb ej for every i < j such that ej is a send to p, too.

We define MSC(A) = {MSC(u) | u is trace of A}. A linearization of an MSC (E,≤, ℓ) is
a linear extension of ≤. An example of a sequence of actions and its corresponding MSC is
given in Figure 1.2.

Two sequences u, v ∈ Σ∗ are equivalent if MSC(u) = MSC(v), and we write u ≡ v in
this case.

The interest of our new definition of MSC is the following lemma:

8

p0!p1(m0) p1!p2(m1) p2?_(m1) p2!p1(m2) p1?_(m0)

p0 p1 p2
m1

m0

m2

The dashed arrow represents the mailbox order between the two sends of m0 and
m2. An unmatched send action is marked by a special arrowhead, as for m2.

Figure 1.2: A sequence and its MSC

Lemma 1. Every linearization of an MSC is a viable sequence.

Proof. To prove the lemma we work by induction on the size of the MSC (i.e., the size of E).
The minimal MSC is N = (∅, ∅, ∅). The only linearization of N is the empty word ε and

we are done.
Let N be an MSC. Then let z = e1e2 . . . en be a linearization of N . We construct a

smaller one by removing en. We have that en is either an unmatched send or a receive. We
define N ′ as the MSC where we remove en (it is also an MSC as en is maximal in N). Since
N ′ is strictly smaller than N and z′ = e1e2 . . . en−1 is a linearization of N ′, z′ it is a viable
sequence.

We then know that all prefixes v of z up to z′ respect the first rule of a viable sequence:

|v|Rp | ≤ |v|S→p| for all p ∈ P .

Moreover, since N is an MSC, we know that each event labeled with a receive action on p is
paired with an unique event labeled with a send action to p, so:

|z|Rp | ≤ |z|S→p | for all p ∈ P .

We now need to check the second property of a viable sequence. We will differentiate two
cases:

• en = p!q(m): We know that en is an unmatched send, as it is last in z. We also know
that the property holds in z′, and en is added after all the other send actions to q. So the
pairing of the receives on q is the same in z. The property holds in z.

9

• en = p?_(m): As z is a linearization of N , there exists a send action s paired to en
by msg. Moreover, the number of send actions to p before s is equal to the number of
receive actions on p before en in N . If we remove en in z, s becomes the first unmatched
send to p.We know that the property holds in z′, so there are k receives actions on p

in z′ that are well matched to the k first send actions to p, for a given k. In z, we then
know that s is the k + 1-th send action to p and en is the k + 1-th receive action on p.
The property holds.

10

Chapter 2

On k-synchronizability

In this chapter, we define a restriction over the structure of the executions of a system, called
k-synchronizability, and show how to decide the reachability problem under this restriction.

2.1 Definitions
In this section we introduce k-synchronizable sequences of actions and give a graphical
characterization.

To do so, we first define how to concatenate two viable sequences. We fix in this part a
CFM A over an alphabet Σ.

Definition 6 (Concatenation of sequences)
Let u and v be two viable sequences. The concatenation of u, v, written as u ∗ v, is defined
if for every process p ∈ P , if p is the destination of an unmatched send in u, then there is no
receive on p in v.

Remark. Note that the operator ∗ is not associative, because of the unmatched sends. So the
parentheses in u = ((u0 ∗ u1) ∗ u2) ∗ . . . un will be implicit in the following.

Moreover, note that if u0∗ . . . ui∗ . . . uj ∗uj+1 . . . un is defined then u0∗ . . . ui∗uj+1 . . . un

is also defined, for every i < j.

With this operator, one can divide a viable sequence into smaller sequences. A u be a viable
sequence. It is called divisible if there exist non-empty viable sequences v, w such that
u ≡ v ∗ w, otherwise it is called indivisible.

Remark. Note that we use the equivalence between the sequences and not the equality. This
connects our operator to the notion of concatenation for MSCs.

For the rest of this section, we fix k ∈ N+ as a positive integer.

11

p q

Figure 2.1: An MSC of an indivisible
sequence with an unbounded number
of sends.

p0!p2 , p0!p1 , p1?_ , p2!p1 , p2?_

p0 p1 p2

Figure 2.2: An MSC of an indivisible sequence
due to mailbox order.

Definition 7 (k-exchange)
A k-exchange is a viable sequence of actions that contains at most k sends.

Remark. As every receive in a viable sequence is matched, any k-exchange has size at most
2k.

As explained afterwards, our goal is to have a bound on the size of k-exchanges. Note that
we cannot count just the receives, as we could have an unlimited number of unmatched sends
in such a k-exchange, as shown by Figure 2.1.

Definition 8 (k-synchronizability)
Let u be a viable sequence of actions. It is called k-synchronous if there exist u0, u1 . . . , un

such that u = u0 ∗ u1 ∗ . . . un, and every ui is a k-exchange.
A viable sequence is k-synchronizable if it is equivalent to some k-synchronous sequence.
A CFM A is k-synchronizable if every trace from Tr(A) is k-synchronizable.

In order to decide if a CFM is k-synchronous, one can remark that some sequences of
actions are indivisible, such as:

p!q , q!p , q?_ , p?_

By identifying such indivisible subsequences and counting the number of sends one can
tell if a system is k-synchronous or not.

12

s0 r0 s1

r2 s2

s3

r1
r4 s4

p0 p1 p2 p3
s0 r0 r2

s2

s1r1

s3

s4 r4

Figure 2.3: An MSC and its corresponding interlocking graph

Remark. The notion of indivisible sequences was already introduced in [6], where they are
called prime. However, this notion goes back to MSCs with P2P semantics, where such MSCs
are called atomic [7].

It is also worth noting that our additional order ≤mb makes some non-prime sequences
in [4] indivisible in our sense. An example of such a sequence is given in the right part of
Figure 2.2. In [4], the sequence

p2!p1 , p0!p2 , p2?_ , p0!p1 , p1?_

which is a linearization of the MSC in the right part of Figure 2.2 without the dashed arrow,
is 1-synchronous. However the above sequence cannot be written as u1 ∗ · · · ∗ un, where ui

are non-empty 1-exchanges, and there is no linearization of the MSC with the dashed arrow
that is 1-synchronous. Our Lemma 1 says exactly which are the linearizations that should be
considered for k-synchronizability.

To identify indivisible sequences we make use of the following graph associated with a
viable sequence:

Definition 9 (Interlocking Graph)
Let u be a viable sequence, and M = MSC(u). The interlocking graph of u is the directed
graph G(u) = (V,E) where V is the set of all events of M , and the edges are defined by
(e, e′) ∈ E if e <P e′ or e≤mb e

′ or {(e, e′), (e′, e)} ∩msg ̸= ∅.

We give an example of an interlocking graph in Figure 2.3 One can show that indivisible
sequences correspond to strongly connected components of the interlocking graph.

13

Lemma 2. Let u be a viable sequence, and G(u) its interlocking graph. The sequence u is
k-synchronizable if and only if each strongly connected component of G(u) has at most k
sends. Moreover, if C1, . . . , Cn are the SCC of G(u) given in some topological sorting and ui

is a linearization of Ci, for every i, then u ≡ u1 ∗ · · · ∗ un and each ui is indivisible.

Proof. We will show this lemma by double implication. Let u be a viable sequence, M =

(Eu,≤, λ) its MSC, and G(u) its interlocking graph.
For the right-to-left direction we assume that every strongly connected component ofG(u)

has at most k send actions. We will show that we can reconstruct a viable sequence from
G(u) that is k-synchronous and equivalent to u, hence showing that u is k-synchronizable.
First we show that the restriction M|C of M to any SCC C of G(u) is an MSC. Let C be a
SCC of G(u). By definition of G(u), we have that for any (e, f) ∈ msg(M), e is in C if and
only if f is in C. Since <P and ≤mb are inherited from u, this shows that M|C is an MSC.

By Lemma 1 every linearization of M|C is a viable sequence of actions, with at most k
send actions, so it is a k-exchange. Now that we can linearize every SCC of G(u), we want
to organize them in a sequence. For this we chose some topological order C1, . . . , Cn of the
SCC of G(u). Let u′ = u′

1 . . . u
′
n, with each u′

i being a linearization of the MSC M|Ci
. We

need to show that, for every i, we can apply the operator ∗ between the sequence composed
of the concatenation of the k-exchanges from u′

1 to u′
i−1 with u′

i. Let us suppose the property
true for i. We denote by u′

0→i the concatenation of the k-exchanges from u′
1 to u′

i. We know
that u′

0→i and u′
i+1 are two viable sequences. The other property needed to concatenate the

two sequences is if p is destination of an unmatched send in u′
0→i, then there is no receive

action on p in u′
i+1.

Let us suppose this property is false. Then there exists a j ≤ i such that there is an
unmatched send to p in u′

j , and we will call this unmatched send ej . There is also a receive
action on p in u′

i+1. As u′
i+1 is a viable sequence, this receive action is paired to a send action.

We will call this send action ei+1. As ej is unmatched and ei+1 is matched, and they both have
p as destination, we have that ei+1 ≤mb ej . So there is an edge from Ci+1 to Cj in G(u). This
is a contradiction to the topological sorting of SCC. So we can apply the ∗ operator between
u′
0→i and u′

i+1. Thus u′ = u′
1 ∗ . . . u′

n is a k-synchronous sequence of actions. It is equivalent
to u, therefore u is k-synchronizable.

Now we show the left-to-right implication. Let us suppose that u is k-synchronizable. We
then have a sequence u′ = u′

1 ∗ u′
2 ∗ . . . u′

n, equivalent to u such that every u′
i is a k-exchange.

We will show that every strongly connected component of G(u) is included in a k-exchange.
To do so we will assign a rank to every event π : Eu → N in u, corresponding to the index of
the k-exchange containing it. Note that for any two events e and f we have

1. (e, f) ∈ msg(M) or (f, e) ∈ msg(M) =⇒ π(e) = π(f).

2. e≤P f or e≤mb f =⇒ π(e) ≤ π(f).

14

Now we want to show that for every SCC C of G(u), the rank of every event in C must be the
same. First let take a cycle in G(u), composed of the events e0 → e1 → . . . en → e0. For each
pair of events ei and ei+1 next to each other in the cycle, there is an edge, so either they are in
the same message, or there is an order from ei to ei+1 in M . Either way, π(ei) ≤ π(ei+1). By
applying this to every edge of the cycle, we get π(e0) ≤ π(e1) ≤ . . . π(en) ≤ π(e0). So the
rank of every event of the cycle is the same. So the events of a SCC of G(u) share the same
rank. Therefore every SCC of G(u) is included in some k-exchange, and has thus at most k
sends actions.

The last claim of the lemma follows easily: u ≡ u1 ∗ · · · ∗ un was shown in the first half
of the proof, whereas ui being indivisible was shown in the second part.

2.2 Detecting k-synchronizability
Now that we have defined and characterized k-synchronizable traces, we need to show how we
can detect them in a CFM. To do so, we will first show that if the CFM is non-k-synchronizable,
there is some trace of bounded length that is not k-synchronizable, and then we will give an
algorithm to detect such traces using polynomial memory.

First we know that our CFM has a finite number of processes, and each process has a finite
number of states. This means the number of possible global states of our CFM is bounded.
We can see that if we take a trace which is long enough, there will be two identical global
states. By removing all the events between those global states, and taking care of the contents
of the mailboxes, we can still obtain a viable trace. From this idea we get the following lemma:

Lemma 3. Let A be a CFM. If A is not k-synchronous, then it has some trace of size at most
2k · |P| ·L|P| · (k+ 2) + 2k ·L|P| that is not k-synchronizable, with L = max(|Lp| | p ∈ P).

We call this trace a witness of the non-k-synchronizability of our CFM.

Proof. LetA be notk-synchronous, u a minimal length witness for the non-k-synchronizability
of A, and G(u) the interlocking graph of u. As u has minimal length, we can assume it is a
*-product of k-exchanges, followed by a sequence that is indivisible and has more than k send
actions. So we can write u = u0 ∗ u1 ∗ . . . um ∗ v with each ui a k-exchange, 0 ≤ i ≤ m, and
v the sequence with more than k sends actions.

First we consider the size of u0 ∗ u1 ∗ . . . um. If we have more than 2k ·L|P| events before
v, then m > L|P|. So we must have at least two global states that are identical, say after
u0 ∗ · · · ∗ui and after u0 ∗ · · · ∗uj , i < j ≤ m. By removing all the events of ui+1 ∗ · · · ∗uj we
still have a trace (u0 ∗ . . . ui ∗ uj+1 ∗ · · · ∗ um is well-defined, see remark after Definition 6).
The new trace is strictly smaller than u, and is not k-synchronizable, so u was not a minimal
witness. Thus there are at most 2k · L|P| events before v.

15

Now we consider the size of v. First, v must end by a receive action f , since an unmatched
send as last event contradicts the minimality of u. Moreover, if we remove the receive action
f , umust be k-synchronizable (again by minimality). So we know that the sequence v without
its last receive f is a *-product of k-exchanges. We write v′ = v0 ∗ v1 ∗ . . . vn for the division
in k-exchanges of v without f . We can assume that v is smallest possible, i.e. every vi is
necessarily in v; this means that v0 contains the send event e that will be matched with f , and
for every vi, some event of vi is reachable from v0 and some event of vi is co-reachable from
f in G(u). For brevity we say that vi is reachable from v0 and co-reachable from f . Let us
suppose that there are more than L|P| · |P| · (k + 2) · (2k) events in v. This means that there
are at least L|P| · |P| · (k + 2) k-exchanges in v′. Thus we have a repetition of global states,
and also a repetition of the processes used in the k-exchanges: there exists a process p and a
global state ℓ such that there are at least (k + 2) k-exchanges containing an action on p and
ending by the global state ℓ. We can then rewrite v′ as:

v′ = v0 ∗ . . . vp(0) ∗ . . . vp(1) ∗ . . . vp(k+1) ∗ . . . vn

with every vp(i) being a k-exchange containing an action on p and ending by the global state
ℓ. As they all end by the same global state, we can remove the events from the end of one of
the vp(i) to the end of the next one and still have a viable trace. Let i be an integer. We want
to remove the events from the end of vp(i) to the end of vp(i+1) (the ones highlighted below),
we call the sequence without these events v′′:

v′ = v0 ∗ . . . vp(0) ∗ . . . vp(i) ∗ . . . vp(i+1) ∗ . . . vp(i+2) ∗ . . . vp(k+1) ∗ . . . vn

v′′ = v0 ∗ . . . vp(0) ∗ . . . vp(i) ∗ . . . vp(i+2) ∗ . . . vp(k+1) ∗ . . . vn

We know that we will still have a viable trace. We now show that this new trace is still not
k-synchronizable. To do so, we demonstrate that we have still enough events trapped between
v0 and f . By removing some events, we may have removed paths in the graphG(u). However,
every k-exchange until vp(i) is still reachable from v0, and every k-exchange from vp(i+2) to
vn is still co-reachable from f . Since vp(i) and vp(i+2) both contain some action on p, there
is an edge from vp(i) to vp(i+2) in G(u). So there is a path from v0 to f going through every
vp(j). Because of the edge from f back to e these k-exchanges< are trapped in v′′f . This path
contains at least (k+1) k-exchanges, so there are at least k+1 sends in v′′f that belong to the
same SCC of u′ = u0 ∗ · · · ∗uh ∗v′′f . The trace u′ is therefore not k-synchronizable, so u was
not a minimal witness, contradiction. To conclude there are at most L|P| · |P| · (k + 2) · (2k)
events in v.

By Lemma 3 we know now that if the CFM is not k-synchronizable, then there is a bounded
witness of non-k-synchronizability. We now will show how we can generate such a witness
with a PSPACE algorithm. To do so, we will describe a new representation of our sequences.

16

p0 p1 p2 p3
u0

u1

u2

u0

u1

u2

p1

p0

p1

Figure 2.4: An MSC and its corresponding DAG

We need a way to display the order between the k-exchanges in a k-synchronous sequence.
Let u = u0 ∗ u1 · · · ∗ un be a k-synchronous sequence, with every ui being a k-exchange. We
first construct a graph H(u) where the vertices are the k-exchanges, and for two vertices ui

and uj , there is an edge between ui and uj if and only if there is an edge from one event of
ui to an event of uj in the interlocking graph G(u). Each edge in H(u) is labelled by some
process: either it is a process shared by ui and uj , or a (receiver) process corresponding to an
≤mb-edge. One can see that this graph is a DAG, since the vertices correspond to the SCC of
the interlocking graph. We give an example of this DAG in Figure 2.4.

We can see that the maximal width of the DAG (i.e., the number of vertices that are not
accessible from each other) is |P|. Indeed, as all events on a given process are ordered, there
will be a path between two k-exchanges containing actions on the same process. Moreover,
if we take a minimal witness of non-k-synchronizability, we know that the last indivisible
sequence ends with a receive action, and that the sequence becomes k-synchronizable if we
remove this action. Another point that can be shown in this DAG is that there is only one
k-exchange that has an edge going to this last receive action. Indeed this edge can only be one
corresponding to a process order. We have an example of those phenomena in Figure 2.5.

So, to generate a witness of non-k-synchronizability, we need to construct a sequence of
k-exchanges v = v0 ∗v1 · · · ∗vn starting with a k-exchange v0 that has an unmatched send p!q,
and ending with a k-exchange vn that has an action on q, such that every vi is accessible from
v0 and coaccessible from vn in H(v), and such that |v|S| > k. We will guess the k-exchanges
in this sequence, and to reduce the amount of information we need to store to construct it, we
will only remember the maximal k-exhanges (i.e., the farthest ones from v0 in H(v)) at each
step of the construction. As the DAG is of maximal width |P|, we know that there will be at

17

q p1 p2 p3 p4 p5

s

u0

u1

u2

u3

u4

u5

u6

r

u0

u1u3

u4 u2

u5

u6

r

p1p3

p3 p1
p2

p3 p5

p3

q

Figure 2.5: The MSC of an indivisible sequence, and the DAG constructed by removing the
last receive action

most |P| k-exchanges stored at the same time.
We can then construct an algorithm (presented below) that takes a global state of a system

and the set of blocked processes (that cannot do any receive action anymore). It will then
guess a sequence of k-exchanges that have more than k send actions, and a process q such
that if we add a receive action after the sequence it will make the entire sequence indivisible.

To do so, we define a function validity_check(A,l,B,u) that checks for the CFM A
at global state l, if the sequence u is indivisible, and can be done with no reception on any
process in B ⊆ P (these verifications can be done in a polynomial time). We also define a
function update(A, l, u) that returns the new global state of the CFM A after applying the
actions of u from the global state l.

We give an example of a run of this algorithm in Figure 2.6 on the sequence of the MSC
from Figure 2.5, showing that this sequence is non-k-synchronizable for every k < 10. As

18

we can see, Algorithm 1 requires polynomial space. However, as we want to construct a
minimal witness of non-k-synchronizability, we also need to check if the global state L is
accessible through k-exchanges, and with the processes in B blocked. We can construct a
PSPACE algorithm to do so, by guessing the k-exchanges needed, and by storing at each step
only the global state reached and the set of processes blocked.

Theorem 1. LetA be a CFM and k be given, then checking ifA is k-synchronizable is doable
in PSPACE.

Algorithm 1 Detecting non k-synchronizability witnesses
INPUT : A a CFM,
INPUT : l a global state,
INPUT : B a set of blocked processes without q,
INPUT : q the process that will cause the non k-synchronizability,
OUTPUT : true if there is a witness of non k-synchronizability in A from l, caused by the process q
guess v0 with |v0|S | ≤ k s.t. (∃a ∈ v0, a = p!q(m), a unmatched)
if ! validity_check(A,l,B,v0) then

STOP
end if
Q = {v0}
cpt = |v0|S |
Act = set of all processes doing an action in v0
Rec = set of all processes doing a receive action in v0
B = B ∪ set of all processes destination of an unmatched send action in v0
l = update(A, l, v0)

repeat
guess w with |w|S | ≤ k s.t. there is a ∈ w with P (a) ∈ Act or a = p!q, is unmatched and q ∈ Rec

if ! validity_check(A,l,B,w) then
STOP

end if
cpt+ = |w|S |
Act = Act ∪ set of all processes doing an action in w

Rec = Rec ∪ set of all processes doing a receive action in w

B = B ∪ set of all processes destination of an unmatched send action in w

for all vi ∈ Q do // Removing the non-maximal elements in Q

if ∃ei ∈ vi, ew ∈ w s.t. ei ≤P ew or ei ≤mb ew then
Q = Q\{vi}

end if
end for
Q = Q ∪ {w}
l = update(A, l, v0)

until Q contains only one sequence that has an action on process q and cpt > k and q can do the action
q?_(m) from l

return true

19

init u1 u2 u3 u4 u5 u6

Q = {u0} {u1} {u2} {u2, u3} {u2, u4} {u5} {u6}

cpt = 3 4 5 7 8 9 10

Act = {p1, p3} {p1, p2, p3} P\{p4} P P P P

Rec = {p1, p3} {p1, p2, p3} {p1, p2, p3} P\{p5} P\{p5} P\{p5} P\{p5}

B = {q} {q} {q, p2} {q, p2} {q, p2} {q, p2} {q, p2}

Figure 2.6: An run example of Algorithm 1 on one linearization of the MSC in Figure 2.5

20

2.3 Undecidability of ∗-synchronizability
In the previous section, we gave a PSPACE algorithm to check if, for a given k, the CFM A is
k-synchronizable. The next question is “does there exist k such that A is k-synchronizable?”
This problem will be called ∗-synchronizability.

We will now show that this question is undecidable. To do so, we will reduce the halting
problem on a Minsky machine with 2 counters to the problem of ∗-synchronizability.

Definition 10 (Minsky machine)
A Minsky machine [8] with counters c1, c2, . . . , cm is a sequence of labeled instructions

0: instr0;

1: instr1;

. . .

n: instrn;

Where instrn = HALT, and instri for 0 ≤ i < n is of the one of the forms

• c := c+ 1; goto l, for a counter c and a label l

• if c = 0 then goto lt else (c := c− 1; goto lf), for a counter c, and labels lt
and lf .

We start a computation of a Minsky machine at label 0with all counters 0. For a given Minsky
machine, there is one maximal trace. This maximal trace is finite if the machine reaches HALT,
it is infinite otherwise. We have the following theorem:

Theorem ([8]). The problem of determining if a Minsky machine with two counters initialized
at 0 reaches the HALT instruction is undecidable.

By reducing this halting problem to our problem, we will show that the later one is undecidable.

Lemma 4. The ∗-synchronizability problem is undecidable.

Proof. LetB be a Minsky machine with two counters c0 and c1. We will simulate this machine
by a CFM with two processes p, q, and we will use sequences of messages to describe the
values of the registers. LetM = {%, a, $, b,#} be the message contents. The word%an$bm#

represents the value of the counters of the Minsky machine B with c0 = n and c1 = m. The
process p will have states bearing the labels of the instructions of B, and intermediate states
that we will use for our simulation. It will initialize the messages sequence (by sending the
messages %, $,#) before going to state 0, and then it will simulate the operations of the

21

start

...

q?_(%)
q!p(%)

q?_(a)

q!p(a)

Figure 2.7: The automata representing the process q of the reduction

Minsky machine. The process q will just send back (we will say relay) every messages that it
receives (we give the automata representing q in Figure 2.7).

To simulate the instruction c := c + 1; goto l, process p relays the first message % and
then sends an extra a message to q, before relaying the rest of the messages received from q.
When it sends the # message it goes to the state l.

To simulate the instruction if c = 0 then goto lt else (c := c − 1; goto lf),
process p relays the first message %. Then if p receives $ from q, it relays the rest of the
messages up to #, and goes to the state lt. Otherwise, if the next message is an a, then p

doesn’t relay this message and it relays the rest up to #. Then it goes to the state lf .
For operations on c1, process p does the same but it first relays all messages up to $.
We know that our Minsky machine has one maximal run, and that every smaller run is

a prefix of the maximal one. We have constructed our system to simulates the same set of
instructions and to start with the same values as B, so for every run of B there exists an trace
of our CFM where p crosses the labeled states in the same order as the run of B crosses the
label of the instructions. In the other way, our system is deterministic, and it does the same
operations as B, so every projection of a run of our CFM on the labeled states of p correspond
to a run of B.

We will now show by double implication that our Minsky machine terminates iff there is
some k such that our system is k-synchronizable.

We will start by the left-to-right direction. Let suppose that B terminates. Then the
maximal run of B is finite. There is then a finite number of runs of B (as each run is a prefix
of the maximal one). Let suppose we have an infinite trace in our CFM. We have constructed
it to have a finite number of actions between two labeled states (as this number of action
is bounded by the size of the message sequence representing the counters). So we must go
through labeled states infinitely often. Or every projection of an trace of our CFM on the
labeled states of p corresponds to a run in B, which contradicts the fact that all runs of B are
finite. So every trace of our CFM is finite. By using König’s lemma, we know that every trace
of our system is bounded. Hence there exists some k such that our system is k-synchronizable,

22

with k being e.g. the bound on our traces.
Now for the other direction, let suppose that B does not terminate. We will show that for

every k, we can construct an trace that has an indivisible sequence of actions with more than
k sends. Let k be an integer. We know that for every run of our Minsky machine B, there is
at least one trace in our CFM that does the same operations as this run. In this trace, after we
sent the initial message sequence, we have a viable sequence corresponding to a projection of
a run.

The emptiness of all the mailboxes is a necessary condition to divide a sequence composed
of matched send. As we have always at least 3 messages transiting between p and q, the
mailboxes are never all empty at the same time. So if we take a run of B with more than
k steps, we know that we will have an trace of our CFM with an indivisible sequence with
more than k messages. So this trace is not k-synchronizable, and our system is non-k-
synchronizable, for any k.

23

Chapter 3

Decidability of ∗-synchronizability for
SR-exchanges

In this chapter, we consider k-synchronizability with SR-exchanges, as done in [2], and show
how this restriction guarantees decidability for the question of ∗-synchronizability.

3.1 Definitions
We have shown previously that for our definition of a k-exchange, we can decide with a
PSPACE algorithm if the system is k-synchronizable for a given k, but it is undecidable to find
such a k.

However, Di Giusto et. al. have shown in [6] that the ∗-synchronizability problem is
decidable restricted to SR-exchanges. As the definition of an MSC in their paper differs from
our own, we will now re-prove this result in our setting.

For the rest of this chapter, we fix a CFM A over a set of message M .

Definition 11 (SR-exchange)
An SR-exchange is a viable sequence of actions where all the send actions are before all the
receives actions. An SR-k-exchange is an SR-exchange with at most k send actions.

Remark. One can see how we can formulate our different types of exchanges using regular
languages. A k-exchange is a viable sequence of actions in the language (SR∗)≤k, whereas a
SR-k-exchange is a viable sequence of actions in the language S≤kR∗.

We say that a sequence is SR-synchronous if it is a ∗-product of SR-exchanges, and a sequence
is SR-synchronizable if it is equivalent to an SR-synchronous sequence. A system is SR-
synchronizable if all its traces are SR-synchronizable. The definitions of SR-k-synchronous
and SR-k-synchronizable are analoguous to those of k-synchronous and k-synchronizable, up
to the fact that we use SR-exchanges.

24

In this chapter we will show that verifying if a system is SR-synchronizable and the
existence of a k such that a system is SR-k-synchronizable (or SR-∗-synchronizability) are
two decidable questions in PSPACE.

To show that our problems are solvable in PSPACE, we will devise a method to recognize
indivisible SR-exchanges. We divide this process by creating two kinds of automata, each
one checking a different property in the following list:

• The sequence is an SR-exchange and is executable in the system.

• The sequence is indivisible.

For the problem of SR-synchronizability, we will check if we can construct a sequence that
is not equivalent to an SR-exchange by constructing a sequence of SR-exchanges that will be
trapped after a receive action (with the same idea as what we did for Theorem 1). For the
problem of SR-∗-synchronizability, we will check if there is a loop in the product of these
automata, hence permitting to inflate an indivisible exchange and making the system non
SR-k-synchronizable for any k.

As the sequences we work on are meant to be SR-exchanges we show that it suffices to
work with regular languages, by focusing on the send actions of our sequences. However, we
still need to know which send is matched and which one is not. To this purpose we introduce
marked send sequences, where symbols in S denote sends as usual, whereas symbols in S

denote unmatched sends:

Definition 12 (marked send sequence)
A marked send sequence (ms-sequence for short) is a sequence of actions v = a0 . . . an in
(S ∪ S)∗ such that for all i < j and p ∈ P , vi ∈ S→p implies vj ̸∈ S→p.

The mapping ms : S∗R∗ → (S ∪ S)∗ takes an SR-exchange u = s0 . . . sn r0 . . . rm and
returns its corresponding ms-sequence ms(u) = s′0 . . . s

′
n, where s′i = si if si is matched in u,

and s′i = si otherwise.
We say that action a bears the process p if a ∈ Sp ∪Sp ∪S→p ∪S→p, and it actively bears

the process p if it bears p and is not in S→p. We say also that an ms-sequence v bears p if
there some action of v that bears p.

Remark. It is possible to construct a function that takes a marked send sequence and returns
a corresponding SR-exchange, see lemma below.

The interest behind ms-sequences is the following property:

Lemma 5. Let u and u′ be two SR-exchanges, if ms(u) = ms(u′) then u ≡ u′.

Proof. Indeed, as ms(u) = ms(u′), the send actions in u and v have the same order. Thus
MSC(u) and MSC(v) have the same partial order on their receives, since we work in the
mailbox semantics. So MSC(u) = MSC(v).

25

3.2 Automata constructions

3.2.1 Automata for SR-exchanges
As expressed before, we first want a way to generate sequences that are SR-exchanges and can
be executed in our CFM. To do so, we will construct a finite state machine (FSM) that reads
ms-sequences following the transitions of TA. Each state of the FSM will be the product of
two global states of TA and a set of processes. Our construction is similar to the one in [6].

The first global state represents the local states of each process after reading send actions
in the sequence, the second state corresponds to the local states of the processes after reading
corresponding receive actions (of matched sends); the set of processes will represent the
processes blocked due to unmatched sends. The idea is that we do not need to store messages,
since due to the SR condition we can do the transitions receives in parallel to the ones on
sends.

We will call ASR = (ΣSR, HSR, δSR) the FSM where:

• ΣSR = S ∪ S is the alphabet

• H = L× L× 2P is the set of states

• δSR is built as follows. Let (l, h, B) and (l′, h′, B′) be states of HSR, let p, q ∈ P and
m ∈ M , then:

(l, h, B)
p!q(m)−−−→ (l′, h′, B′)

iff

lp
p!q(m)−−−→p l

′
p and lr = l′r for all r ̸= p ,

hq
q?_(m)−−−−→q h

′
q and hr = h′

r for all r ̸= q ,

B = B′ and q ̸∈ B

and
(l, h, B)

p!q(m)−−−→ (l′, h′, B′)

iff

lp
p!q(m)−−−→p l

′
p and lr = l′r for all r ̸= p , h = h′ and B′ = B ∪ {q}

From this FSM we can construct any automaton that recognizes all ms-sequences between
two global states of TA. Let l and l′ be two global states of our system and B and B′ two
sets of processes. We can construct the automaton accepting all ms-sequences that represent
SR-exchanges going from l with blocked processes B to l′ with blocked processes B′ in
TA by taking the union of all automata constructed from ASR where the initial state is set

26

p0 p1 p2

m0

m3

m2

m1

r3 r1

s0

r2

r0 s1

s3 s2

0 2

1

3

2
p1!p2(m1) ,

3
p1!p0(m0) ,

0
p1!p0(m3) ,

1
p2!p1(m2)

Figure 3.1: An MSC, its interlocking graph and the labeling of its ms-sequence witnessing a
path from the last to the first event of process p0

to (l, lint, B) and the final state is set to (lint, l
′, B′) for all lint ∈ L. This automaton has

|L|3 × 2|P| states. If we want an automaton that accepts all SR-exchanges between two global
states no matter the blocked processes, we must construct the union of all the automata for
any B and B′. We must multiply the number of states by 22|P|.

Lemma 6. For a CFM A and two global states l and l′ of A, we can construct an automaton
with |L|3 × 2O(|P|) states that accepts the ms-sequences corresponding to SR-exchanges that
can be executed from the global state l to the global state l′ of A.

3.2.2 Automata for indivisible sequences
Let u be an SR-exchange and v = ms(u). To show that u is indivisible, we will proceed
in two steps: First we will show that for every process p doing an action, there is a path in
the interlocking graph G(u) that goes from the last action of p to the first action of p, hence
showing a cycle containing all its actions, and making them indivisible. Then we will show
that there is a cycle going through every process doing an action. As each process has its
actions indivisible, if we have a cycle going through every process, the entire sequence must
be indivisible, according to Lemma 2. Let first show how we verify the existence of a path in
G(u).

To show that there is a path inG(u) between two events, we will label a list of actions in the
ms-sequence representing the steps of the path. Indeed, we do not need the entire ms-sequence
to show a path between two events. An example of such a labeling is provided in Figure 3.1. We
will define a labeling of an ms-sequence v as a total function π : {0, . . . , n} → {0, . . . , |v|},
where π(i) = j means that the elements vj of v is labeled i. To show how the labeling works,

27

we will distinguish two orders between the elements of our ms-sequence :

• The direct order corresponds to the order between two elements of the same type – two
sends or two receives – due to a process order ≤P or the mailbox order ≤mb. In the
direct order, the two elements we compare are ordered in the ms-sequence, and they
bear the same process as sender or receiver of the message. One such example of direct
order is between element 2 and element 3 of the labeling for the sequence in Figure 3.1:
p1!p2(m1) , p1!p0(m0). Formally, for i < j ≤ |v| and for some p:

vi ∈ Sp ∪ Sp and vj ∈ Sp ∪ Sp (process order), or

vi ∈ S→p and vj ∈ S→p ∪ S→p (mailbox order)

• The indirect order involves a message arc. As we know that each sequence is an SR-
exchange, if we have a send action and a receive action on the same process, the send
action is always first. Unlike the direct order, the element we compare do not need to
be ordered in the ms-sequence. Two examples of this order can be found in Figure 3.1,
one is from element 0 to element 1: p1!p0(m3) , p2!p1(m2). There is also an indirect
order from element 1 to element 2 of the labeling. Note they are not ordered this way in
the ms-sequence, but we use here the reverse msg edges. Formally, for i and j smaller
than |v|, and for some p:

vi ∈ Sp ∪ Sp and vj ∈ S→p.

We see that if two elements of v are in direct or indirect order, there is a path between their
events in G(u). Let v be a ms-sequence, and for some n, π : {0, . . . , n} → {0, . . . , |v|} the
labeling of v. Note that an element of v can be used multiple times in our labeling, but each
label is used only once.

We say that v is well-labeled by π if for every 0 ≤ i < n:

• if π(i) > π(i + 1) (i.e., the element labeled i is after the element labeled i + 1 in v)
then vπ(i) ∈ Sp ∪ Sp and vπ(i+1) ∈ S→p (indirect order) for some p.

• if π(i) < π(i + 1) (i.e., the element labeled i is before the element labeled i + 1 in v)
then, for some p

vπ(i) ∈ Sp ∪ Sp and vπ(i+1) ∈ Sp ∪ Sp, or

vπ(i) ∈ S→p and vπ(i+1) ∈ S→p ∪ S→p, or

vπ(i) ∈ Sp ∪ Sp and vπ(i+1) ∈ S→p

We now will show the following lemma:

28

Lemma 7. Let u be an SR-exchange. There is a path in the interlocking graph G(u) between
two elements ui and uj if and only if there is a well-labeling of ms(u) starting in ui and ending
in uj .

Proof. Let u be an SR-exchange. We start by the right-to-left direction: if we have a well-
labeling π of ms(u) such that π(0) = i and π(n) = j, we know that two consecutive elements
of the labeling are either in direct or indirect order, showing a path in G(u) between their
events, hence there is a path from the first element of the labeling ui to the last element of the
labeling uj .

Now we show the left-to-right direction. Let us suppose we have a path from ui to uj in
G(u). We construct a labeling π of v = ms(u) that starts in the send action of ui and ends in
the send action of uj , and we label each marked send in v in the order they are seen on the path
from ui to uj . Let us show for any element k of our labeling, that there is a direct or indirect
order between vπ(k) and vπ(k+1) in v. We will call sk the send action in u corresponding to
vπ(k). We know that there is no send between sk and sk+1 in the path of G(u), so either they
are consecutive, or there are receive actions between them.

• If we have no receive action between sk and sk+1, then they are either in process order,
or in mailbox order in MSC(u). So sk is before sk+1 in u, and vπ(k) is before vπ(k+1) in
v, and they bear the same process as sender or the process actively bear as receiver by
vπ(k) is bear as receiver by vπ(k+1). So vπ(k) and vπ(k+1) are in direct order in v.

• Let suppose they are receive actions between sk and sk+1 in the path. We will denote
rk for the receive action linked to sk (if there is one), and rk+1 for sk+1 (if there is one).
We know that, if they are receive actions between sk and sk+1 in the path, the last one
must be rk+1. Indeed, the only edge possible from a receive action to a send action that
are not from the same message must be created by process order, and as we are in an
SR-exchange, it is impossible to have a receive action before a send action. If rk+1 is on
the same process p as sk, then we have an indirect order between vπ(k) and vπ(k+1), as
vπ(k) bears p as an sender, and vπ(k+1) actively bears p as a receiver. Otherwise, if rk+1

is on another process than sk, it means that we change of process to access rk+1 from
sk, and as there is no send action between them, we must go through the edge between
sk and rk. As we cannot change of process after that, it means that rk if before rk+1

on the same process p. There is then a mailbox order between sk and sk+1, and as said
before, there is a direct order between vπ(k) and vπ(k+1).

So there is a direct or indirect order between vπ(k) and vπ(k+1) in v, and π is a well-labeling of
v.

29

Automaton for indivisible actions on a process

Let u be a viable sequence, and v = ms(u). For a process p, all events of p are indivisible if
there is a well-labeling of v such that the last element actively bearing p in v is labeled 0, and
the first element actively bearing p in v is also labeled (to minimize the labeling, we might
want it to have the biggest label).

To construct an automaton that will check if each process respects this characterization
we need a bound on the number of elements of a well-labeling:

Lemma 8. Let u be a viable sequence of action, and ms(u) = v = v0 . . . vn be its ms-
sequence. For every i and j, if there is a path between an action of vi and an action of vj
in the interlocking graph G(u), then there exists a well-labeling of ms(u) starting in vi and
ending in vj with at most |P|2 elements.

Proof. To prove this lemma, we will show that if there is a path, there exists a well-labeling
with at most |P| indirect order edges between two labeled elements, and then we will show
that the number of element between two consecutive indirect orders is bounded by |P|. Let u
be an SR-exchange and v = ms(u).

First, let suppose we have a minimal well-labeling going from an element va to an element
vb of our sequence with more than |P| indirect orders. It means that there is a process used
in at least two indirect order. Let i < j be two labels preceding an indirect order on the same
process p. We know that i and j represent send actions on p, and i + 1 and j + 1 receive
actions on p. So we also have an indirect order between i and j + 1, and we can construct a
well-labeling that goes from va to vb without the elements from i+ 1 to j, contradiction.

Now let us suppose that we have a minimal well-labeling going from va to vb with less
than |P| indirect orders. Let i and j be two labeled elements of v preceding an indirect order,
such that j − i > |P|, and such that there is no other indirect order used between i and j. As
there are more than |P| elements, we must have two elements m and m′ preceding a direct
order on the same process p. As all the elements between i and j are in direct order, we
respect the order of the ms-sequence v, so we also have an order between m and m′ + 1 (it
can be direct or indirect). So we can create a new well-labeling where we go directly from m

to m′ + 1, which is smaller than our former labeling, contradiction.

We can then construct an automaton of exponential size that checks if, for a process p,
all the events done on p in the SR-exchange u are indivisible by reading the corresponding
v = ms(u). To do so, we guess the size n of the labeling, then we construct a list that will
represent our labeling. While reading the sequence v we guess the elements of the labeling.
We also store the time we added them, i.e., the number of elements that were added before it
in the list; this will be used to remember the order of the elements in v.

We make sure as we construct the list that the first element of the list corresponds to the
last element actively bearing p in v, and that the last element of the list corresponds to the first

30

element actively bearing p in v. When we have read the whole ms-sequence, we check that
the list corresponds to a well-labeling.

One can see how we can construct an automaton that will accept the ms-sequences that if
they correspond to SR-exchanges, then for the process p, all the actions on p are indivisible.
The states will be possible contents of the list. When the automaton reads an element of
v, it chooses to add it in the list or not, and the final states are the ones containing a well-
labeling. If the process does not do any action, the list must stay empty. The number of states
is (2× |P| × |P| × |M |)|P|2 × (|P|2)|P|2 , as we have a list of size |P|2 containing marked
sends, and a list of size |P|2 containing the adding instant of each element of the list (going up
to |P|2). As we have to do this for each process, we can do the product of all those automata,
and we get an automaton that has (|P|2 × |M |)O(|P|2) states.

Automaton for cycle between processes

We have now a way to check if all actions of a process are indivisible, but we also need to
check if all the strongly connected components of each process are linked. To do so we will
use a well-labeling between every pair of processes, checking that, if they act, there is a path
from the first one to the second.

For an SR-exchange u and v = ms(u), where every process acting has its actions indivisi-
ble, u is an indivisible sequence if for every processes p and q doing an action in u, there is
a well-labeling of v where there is some element of v actively bearing p that is labeled, and
another element actively bearing q that is labeled.

For p and q two processes, as we have done for checking the indivisibility over one
process, we can construct an automaton that has as states possible lists representing guessed
labelings, and as final states well-labelings starting in an action of p and ending in an action
of q if they both act, or an empty labeling if one of them does not. This automaton has
(2× |P| × |P| × |M |)|P|2 × (|P|2)|P|2 states. We construct this automaton for each pair
of processes, and then do the product of these automata. We obtain an automaton of size
(|P|2 × |M |)O(|P|2).

If we do the product of the two automata of this section, we get an automaton that accepts
all ms-sequences such that, if they correspond to the projection of an SR-exchange, then this
SR-exchange is indivisible:

Lemma 9. Let A be a CFM. There is an automaton of size (|P|2 × |M |)O(|P|2) that accepts
all sequences v ∈ S ∪ S such that every SR-exchange u with v = ms(u) is indivisible.

The above automaton accepts also sequences of marked sends that do not correspond to any
SR-exchange (one can even construct sequences of marked sends that does not correspond
to any viable sequence). If we take the product with the first automaton of Section 3.2.1
then we accept only sequences of marked sends corrsponding to SR-exchanges. Since two

31

SR-exchanges having the same ms-sequence are equivalent (see Lemma 5), we can build an
automaton that accepts for every indivisible SR-exchange some linearization (more precisely,
the one where receives are in the same order as their sends).

Theorem 2. Let A be a CFM, and l, l′ two global states. We can construct an automaton of
size |L|3× 2O(|P|)+(|P|2×|M |)O(|P|2) that accepts precisely the ms-sequences of indivisible
SR-exchanges that go from state l to state l′ in A.

3.3 Results
We have shown that we can construct an automaton that accepts the ms-sequences representing
indivisible SR-exchanges between two global states of A. We also know that the accessibility
in an automaton is a LOGSPACE2 problem [1].

We will use these automata to get two results:

• Checking if a CFM is SR-synchronizable is in PSPACE.

• Checking if a CFM is SR-∗-synchronizable is in PSPACE.

3.3.1 SR-synchronizability
To check for SR-synchronizability, we will use a similar method as the one used in Section 2.2.
We will try to construct a trace that is not equivalent to a sequence of SR-exchanges. This
means that this trace contains an indivisible sequence that is not equivalent to a SR-exchange.

We will call this trace a witness. This witness will be minimal when removing the last
action of the sequence makes it SR-synchronizable. First, let us give a more precise definition
of a minimal witness.
Definition 13
Minimal Witness Let A be a system. A minimal witness of non-SR-synchronizability is a
trace t = u ∗ v where u is a SR-synchronizable sequence, and v is an indivisible sequence
of action containing a receive action ordered before a send action, ending by a receive action
such that by removing this receive action, u becomes SR-synchronizable.

Remark. One can see why the indivisible sequence ends by a receive action, and that by
removing this action we get a new division of u into SR-exchanges.

We now prove the following lemma:

Lemma 10. Let A be a CFM. If A is not-SR-synchronizable, then it has a minimal witness
t = u ∗ v, where v contains O(L|P|) SR-exchanges and v can be divided into at most
O(L|P| · |P|) SR-exchanges when its last aciton is removed.

32

Proof. Let t = u ∗ v be a minimal witness. First we show that if u has more than L|P| SR-
exchanges, t is not minimal. Let suppose that u has more than L|P| SR-exchanges, it means
that there is two SR-exchanges ending in the same global state. We can then remove all the
SR-exchanges between those two global states to produce u′, and u′ ∗ v is still a viable trace,
smaller than t, ending by an indivisible non-SR-synchronizable sequence, so it is a smaller
minimal witness, contradiction. So u must have less than L|P| SR-exchanges.

Now let talk about the bound of v. By minimality v must end by a receive action f , so
v = u′f . Moreover, v′ ≡ u′′ for some v′′ that is SR-synchronizable: v′′ = u0 ∗ u1 ∗ . . . ∗ un

with each vi being SR-exchange. Since v is not SR-synchronizable, there must be some
receive action before a send action in the same indivisible part of v. This can only be achieved
by having a process that does a receive action r in some SR-exchange vi, a send action s in a
later SR-exchange vj (so i < j), and vi and vj are indivisible in v.

Now let suppose that v′ contains more that 6 · L|P| · |P| SR-exchanges. By minimality
we know that each SR-exchanges cannot be rearranged out of v. As we have more than
6 ·L|P| · |P| SR-exchanges, we have at least 6 SR-exchanges actively bearing the same process
p and ending in the same global state. As expressed in Section 2.2, we can remove the
SR-exchanges between two indentical state and still have a sequence of action executable in
the system. We still need to prove that we still have an indivisible block by removing these
SR-exchanges. We will differentiate two cases:

• If we have two of these SR-exchanges between vi and vj , by removing the SR-exchanges,
we still have v0 ordered before vi, vi ordered before vj (as they actively bear the same
process), and vj is ordered before vn, so we can still construct an indivisible block
containing a receive action ordered before a send action

• If we do not have two of these SR-exchanges, there is at least 5 of them between v0
and vi and between vj and vn. Let suppose that there is 3 of these SR-exchanges
between v0 and vi (without loss of generality, there is at least 3 on one side). We
write v′ = u0 ∗ . . . up(0) ∗ . . . up(1) ∗ . . . up(2) ∗ . . . ui ∗ . . . un, where vp(i) represent
the i-th SR-exchange actively bearing p and ending in the same state. If we remove the
SR-exchanges between vp(0) excluded to vp(1) included (in bold above), they still are two
SR-exchanges actively bearing p. We have v0 ordered before vp(0), ordered before vp(2),
ordered before vi, and vi is ordered before vn. So we still have an indivisible block with
a receive action before a send action.

We can then construct a smaller indivisible sequence that is not equivalent to an SR-exchange.
Contradiction.

Now that we know the shape of the minimal witness, we can construct as in Section 2.2
a DAG where the nodes are SR-exchanges, and there is an edge between two nodes if there
is an order between their corresponding SR-exchanges. We can see that the maximal width

33

(i.e. the number of nodes we can select that does not share an edge) is |P|. We also see
that there is an initial SR-exchange containing an unmatched send p!q(m), and that the DAG
ends in an SR-exchange followed by a global state from which we can do the receive action
q?_(m). We get from this construction the following algorithm, where we guess the ms
sequences corresponding to the SR-exchanges of the witness. As we cannot store all the
SR-exchanges, we just store one occurence of each marked send in the SR-exchange, which is
enough information to verify the order between them.

With Algorithm 2, we can check with a polynomial space if a CFM can have a viable
indivisible sequence that is not equivalent to an SR-exchange.

Lemma 11. Let A be a CFM. Checking if A is SR-synchronizable is PSPACE.

Remark. With this method, checking if A is SR-k-synchronizable for a fixed k is PSPACE and
can be done by checking if it is SR-synchronizable and then using Algorithm 1.

3.3.2 SR-∗-synchronizability
With the automata we used in this chapter, we can construct an algorithm to verify that a CFM
A is not SR-∗-synchronizable.

The algorithm does the following:

1. It first checks that the system does not have any trace that is non-SR-synchronizable
(using Algorithm 2). If this is not the case, it stops and answers not SR-∗-synchronizable.

2. It guesses two global states l, l′ of A and checks that l is reachable from the initial state
through an SR-synchronous sequence.

3. It checks that the automaton accepting indivisible SR-exchanges (see Section 3.2.2)
leading from l to l′ accepts an infinite language.

The validity is justified as follows. If A is not SR-∗-synchronizable, then (1) either there
exists some trace that is non-SR-synchronizable , or (2) there exists some global states l, l′

that are reachable through an SR-synchronous sequence, but there can be unboundedly many
indivisible SR-exchanges from l to l′. If there were boundedly many indivisible SR-exchanges
from l to l′, for every l, l′, then A would be SR-k-synchronizable for some k. The algorithm is
in PSPACE because PSPACE is closed under complementation, so step (1) uses the algorithm
from Section 3.3.1. . Step (2) uses the same principle as the algorithm from Section 3.3.1
(constructing a sequence of SR-exchanges on the fly that goes from the initial global state to
l). Step (3) works in PSPACE because the automaton is of exponential size, so we can check
for a loop in PSPACE.

Theorem 3. Let A be a CFM. Checking if there exists a k such that A is SR-k-synchronizable
is PSPACE.

34

Algorithm 2 Detection of non SR-synchronizability witness
INPUT : A a CFM,
INPUT : l a global state,
INPUT : B a set of blocked processes without q,
INPUT : q the process that will cause the non SR-synchronizability
OUTPUT : true if there is a witness of non SR-synchronizability in A from l, caused by the process q
fill empty
bool RS_act = false the boolean recording if a process did a send action after a receive action
guess (l′, B′) s.t. q ∈ B′ making sure we have an unmatched send to q
v0, U = check&set(l, B, l′, B′) U is the list of the first unmatched send to each process
if v0 = ∅ then

STOP
end if
Q = {v0}
p!q(m) = U [q]

Act = set of all processes actively bear in v0
Rec = set of all processes actively bear as a receiver in v0
B = B′

l = l′

repeat
guess (l′, B′)

w, _ = check&set(l, B, l′, B′)

if w = ∅ or ! ordered(w,Act,Rec) then
STOP

end if
Act = Act ∪ set of all processes actively bear in w

Rec = Rec ∪ set of all processes actively bear as a receiver in w

B = B′

l = l′

for all vi ∈ Q do // Removing the non-maximal elements in Q

if ∃p ∈ P s.t. p is actively bear in vi and in w or vi ∩ S→p ̸= ∅ and w ∩ S→p ̸= ∅ then
Q = Q\{vi}

end if
end for
if ∃p ∈ Rec s.t. w ∩ (Sp ∪ Sp) ̸= ∅ then

RS_act = true
end if
Q = Q ∪ {w}

until Q contains only one list that actively bears q and RS_act and q can do the action q?_(m) from l

return true

35

Conclusion

During my internship, I have had the opportunity to work on an aspect of automata theory and
of verification which I was unfamiliar with. I got new results on the verification of concurrent
programs under the mailbox semantics. To enlighten the contribution of this internship,
we can classify the different results of synchronizability under mailbox semantics, using the
regular language form of the exchanges presented in Section 3.1 (our results are in red):
We know that we can check accessibility in a CFM with SR-exchanges and k-exchanges, and

from these results we can prove that some global states are never reachable in our CFM, if it
is k-synchronizable or SR-k-synchronizable.

As I will continue to work on this subject for my PhD, I will have the opportunity to
search for better results with other restrictions on asynchronous message passing systems (for
example getting faster algorithms on systems that have a certain topology). Moreover, I intend
to apply what I’ve theorized on real systems by constructing a tool that will parse a program in
Rust and construct its corresponding CFM. I will also implement the algorithms we described
above over CFM, so they can be applied on the CFMs generated from programs.

k fixed k unknown

S≤kR∗ PSPACE [4] Decidable [6]
PSPACE

(SR∗)≤k PSPACE Undecidable

Classification of results over mailbox semantics

36

Bibliography

[1] S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge
University Press, 2009.

[2] A. Bouajjani, C. Enea, K. Ji, and S. Qadeer, On the completeness of verifying message
passing programs under bounded asynchrony, in Computer Aided Verification: 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II 30, Springer, 2018,
pp. 372–391.

[3] D. Brand and P. Zafiropulo, On communicating finite-state machines, Journal of the
ACM (JACM), 30 (1983), pp. 323–342.

[4] C. Di Giusto, L. Laversa, and E. Lozes, On the k-synchronizability of systems, in 23rd
International Conference on Foundations of Software Science and Computer Systems
(FOSSACS 2020), vol. 12077, Springer, 2020, pp. 157–176.

[5] B. Genest, D. Kuske, and A. Muscholl, On communicating automata with bounded
channels, Fundamenta Informaticae, 80 (2007), pp. 147–167.

[6] C. D. Giusto, L. Laversa, and É. Lozes, Guessing the buffer bound for k-
synchronizability, in Implementation and Application of Automata - 25th International
Conference, CIAA 2021, Virtual Event, July 19-22, 2021, Proceedings, S. Maneth, ed.,
vol. 12803 of Lecture Notes in Computer Science, Springer, 2021, pp. 102–114.

[7] L. Hélouët and P. L. Maigat, Decomposition of Message Sequence Charts, 2000.

[8] M. L. Minsky, Computation, Prentice-Hall Englewood Cliffs, 1967.

37

	Introduction
	Definitions
	Preliminaries
	Partial orders and MSCs

	On k-synchronizability
	Definitions
	Detecting k-synchronizability
	Undecidability of -synchronizability

	Decidability of -synchronizability for SR-exchanges
	Definitions
	Automata constructions
	Results

