
From the Hut to the Cathedral
Small hints on modular software development

D. Renault

ENSEIRB-Matmeca

March 13, 2019, v. 1.0.1

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 1 / 25



Software design promotes a set of programming qualities (cf. [Booch]) :

Abstraction : the ability to represent parts of a program with a
summary of their essential characteristics ;
Encapsulation : the possibility to expose public parts and hide private
parts of an abstraction ;
Modularity : the ability to decompose a program into a set of
cohesive and loosely coupled components ;

Some goals :

Maintenability : is it easy to modify and extend a program ?
Reusability : is it possible to avoid code duplication ?

Basic example : a library based on sets, developed in Racket.
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Types of specifications (1/2)

Code specification may take different forms :

Functional specification :
I It should be possible to define sets containing any kinds of objects of

the same type.
I It should be possible to add and remove elements from a set, and to

tell if an element belongs to a set or not.

Non-functional specification :
I The implementation should run efficiently on current computers.
I The implementation should handle correctly sets of arbitrary sizes.

Here comes a problem of validation : how can specifications be checked ?
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Types of specifications (2/2)

Interface / Type specification :

;; T is the type of the
;; elements inside the set.
type set[T];

set_empty : set[T]
set_is_empty : set[T] → boolean
set_add : set[T]∗T → set[T]
set_remove : set[T]∗T → set[T]
set_find : set[T]∗T → boolean

Formal specification :
set_is_empty(set_empty) = true
set_is_empty(set_add(s,i)) = false

set_find(set_empty , i) = false
set_find(set_add(s, i), i) = true
set_find(set_add(s, i), i’) = set_find(s, i’)

set_add(s, i) = s [if set_find(s,i)=true]
[unconstrained otherwise]

set_remove(set_empty , i) = set_empty
set_remove(set_add(s, i), i) = s
set_remove(set_add(s, i), i’) = set_add(set_remove(s, i’), i)
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Modules

Definition : Module
A module is a construct representing a unit of code (set of types, values,
functions and any expression allowed by a language) and satisfying :

Interface : a module may publicly provide and require a set of
components ;
Encapsulation : a module may hide or make abstract some of its
components ;

Sets of modules are meant to be connected according to the dependencies
induced by their interfaces.

Independence : a module should depend only on the interfaces of its
dependencies.

Examples : .c and .h files in C, modules in OCaml.
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Example : modules in C

The set module

A client module

struct set;

struct set∗ set_empty ();
int set_is_empty(const struct set∗ s);

Interface

#include "set.h"

#define SET_SIZE 40
#define SET_SENTINEL −1

struct set { int t[SET_SIZE ]; }

struct set∗ set_empty () {
struct set∗ r = malloc(sizeof(struct set));
r→t[0] = SET_SENTINEL;
return r;

}
int set_is_empty(const struct set∗ s) {

return s→t[0] == SET_SENTINEL;
}

Implementation

#include "set.h"

void test_emptiness () {
struct set∗ s = set_empty ();
// Cannot access SET_SENTINEL
assert(set_is_empty(s));
set_free(s);

}

Implementation

Interface X Encapsulation X Independence X
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Modules and modules . . .

Many programming languages provide modules complying only to a subset
of these properties :

Interfaces may provide different levels of verification : names only
(Racket, Python), types (C, OCaml)
Encapsulation may not exist (cf. Python module privates) ;
Interfaces must sometimes be shipped with the module (Racket,
Haskell) or live as independent citizens (C, OCaml).

In the following, we investigate the capabilities of Racket in regard to
modules.
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“No module” development

Definition
All the code is written in a single unit, with little specifications.

(define (set−empty) ’())
(define set−is−empty? null?)
(define (set−add l x) (cons x l))
(define (set−remove l x) (remove x l))
(define (set−find l x) (member x l))

(set−is−empty? (set−empty)) ;; → #t
(set−find (set−add 1 (set−empty)) 1 ;; → #t

Favorable features :
REPL (simplifies incremental development)
Dynamic type system (delays verification)
Extensible language (simplifies writing ad-hoc code)
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Problems

Induces a monolithic development :

parts of the code with different purposes are all mixed up in a single
file (ex : implementation and tests) ;
hinders code reuse / modification of a subset (e.g. modification of
the set representation) ;
complexifies the verification of the code (all or nothing) ;
not adapted to separate compilation, separate testing, team
development . . .
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Modular programming

Modular programming
Break the code into a set of cohesive and loosely coupled modules, that
shall be composed depending on the specification.

(define set? (...))
(define set_add (...))
(define set_empty (...))
(define set_find (...))
(define test_add (...))
(define test_empty (...))
(define test_find (...))
(define set_recipes (...))
(define find_recipe (...))
(define bartender (...))
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Modular programming

Modular programming
Break the code into modules with different responsibilities, that shall be
composed depending on the specification.

(define set? (...))
(define set_add (...))
(define set_empty (...))
(define set_find (...))

Type implementation

(define test_add (...))
(define test_empty (...))
(define test_find (...))

Test module

(define set_recipes (...))
(define find_recipe (...))

Client module

(define bartender (...))
Client client module
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Modules in Racket

In Racket, files are modules, and can require or provide implementations :

set-impl.rkt

(require) ;; Required module (none)
(provide set? set_empty set_add) ;; Exported functions

(define set? list ?))
(define (set_add l x) (cons x l))
(define (set_empty) ’())

set-test.rkt

(require "set−impl.rkt") ;; Required module

(define (test_add) (eq? (set_add (set_empty) 1) ’(1)))

set-client.rkt

(require "set−impl.rkt") ;; Required module
(provide set_recipes add_recipe) ;; Exported functions

(define set_recipes ’((1 . goulash) (3 . spatzle )))
(define (add_recipe key sym)

(set! set_recipes (set_add (cons key sym) set_recipes )))
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Summary : modular programming in Racket

Advantages :

Facilitates code reuse : both tests and clients can make use of the
same implementation module ;
Allows multiple implementations : the client can select an
appropriate implementation module without modification of its code ;
Ensures verification that required functions are effectively provided.

Limitations in Racket :

Verification limited to checking the presence/absence of names ;
Dependencies of the modules embedded inside the code.
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Predicates and Types

Definition for the children : Type
A type is a subset of the values of the language.

Example : the boolean type is the set {true, false}.

Definition : Predicate
A predicate is a function taking any possible value and returning a boolean.

A predicate is the characteristic function of a type (e.g. boolean?).
Predicates are usually the sign of a language with dynamical type
checking (Lisp, Racket).
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Racket contracts

Definition : Contracts
In Racket, contracts are predicates that constrain the behavior
(precondition, postcondition, invariant) of the functions inside a module.

As for assertions, contracts are checked dynamically.

Example
Documentation of list−set :
(list−set lst pos val) → list?

lst : list?
pos : (and/c (>=/c 0) (</c (length lst)))
val : any/c

pos must be a valid index in lst.

Erroneous usage :
(list−set ’(1) 2 ’one)

<=: contract violation
expected: (and (>= 0) (< 1))
given: 2

Typical languages : Eiffel, Racket, C# with Code Contracts
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Contracts in Racket

Racket contracts are merely particular provide forms :

set-impl.rkt

(require)
(provide (contract−out

[set? (→ any/c boolean ?)]
[set_add (→i ([s set?] [x any/c])

[result (x) (lambda (r) (set_find r x))])]
[set_find (→ set? number? boolean ?)]
[set_size (→i ([s set?])

[result (s) (and/c number? positive ?)])
)]))

(define set? list?)
(define (set_add l x) (cons x l))
(define (set_find s x) (member x s)) ;; ...

set-test.rkt and set-client.rkt remain unchanged.
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Summary : contracts programming in Racket

Advantages :

Very precise definition of the interactions between modules
(contracts may be expressed as Racket functions) ;
Blends naturally with the Racket standard library.

Limitations :

The contracts are checked dynamically (undecidability problems).
Requires tests to verify that the contracts are enforced.
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Typed programming

Definition : Type system [modified from Pierce]
A type system is a formal method applied to a program which aims at
classifying elements of the program with types so as to guarantee some
correctness of its behavior.

Example in OCaml
Documentation of Array.set :
’a array → int → ’a → unit

takes an array, an index and a value ;
the index is any integer ;
the type of the value must be the
same as those inside the array.

Erroneous (static) usage :
Array.set [||] "zero" 1;;

Characters 15−21:
Array.set [||] "zero" 1;;

^^^^^^
Error: This expression has
type string but an expr
was expected of type int
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Sorts of type systems

Depending on the language and its compiler, type systems may come in
different flavours :

Dynamic type checking :
I all verifications are done at runtime,
I no type annotations necessary.

Typical languages : Racket, Python, Ruby

Static type checking :
I all verifications are done at compile time,
I type annotations are either required (C, Java)

or inferred (OCaml, Haskell).
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Typed Racket

Vanilla Racket possesses a dynamical type system, but the language allows
different dialects to be written, one of them being called Typed Racket.

Gradual type checking : type annotations may be added incrementally
inside the code, thus mixing annotated and non-annotated expressions.

Example :
#lang typed/racket ;; Choice of the language
(: num−fun (Number → Number ));; Type annotation of num−fun (optional)
(define (num−fun n) (add1 n)) ;; Definition with type (checked)
(define (oth−fun n) (sub1 n)) ;; Definition without type (unchecked)
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Types in Typed Racket

set-impl.rkt

#lang typed/racket
(provide set? set_add set_empty set_is_empty? set_size)

(define−type (Set a) (Listof a))
(: set? (Any → Boolean ))
(define set? list?)

(: set_add : (All (a) ((Set a) a → (Set a))))
(define (set_add l x) (cons x l))

(: set_empty : (All (a) (→ (Set a))))
(define (set_empty) ’())

(: set_is_empty? : (All (a) ((Set a) → Boolean )))
(define (set_is_empty? l) (null? l))

(: set_size : (All (a) ((Set a) → Number )))
(define set_size length)

set-test.rkt and set-client.rkt remain unchanged.
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Summary : typed modular programming in Racket

Advantages :

The types are checked statically ;
The Typed/Racket type system is pretty expressive.

Limitations in Racket :

Types (as set of values) are not as expressive as contracts ;
Types and contracts libraries in Racket do not mix well
(for technical reasons).

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 21 / 25



Back to interfaces . . .

Separating an interface from its implementation is done via signatures.
The set module

A client module

(require)
(provide Set set−adt^)

(define−type (Set a) (Listof a))

(define−signature set−adt^
([ set_add : (All (a) ((Set a) a → (Set a)))]
[set_remove : (All (a) ((Set a) a → (Set a)))]
[set_empty : (All (a) (→ (Set a)))]
[set_is_empty? : (All (a) ((Set a) → Boolean ))]
[set_find : (All (a) ((Set a) a → Boolean ))]
[set_size : (All (a) ((Set a) → Number ))]
))

Interface

(require "set−sig.rkt")
(provide set−adt^ set−impl@)

(: ext_set_add : (All (a) ((Set a) a → (Set a))))
(define (ext_set_add l x) (sort (cons x l) <))
(: ext_set_remove : (All (a) ((Set a) a → (Set a))))
(define (ext_set_remove l x) (remove x l)) ;; ...

(define−unit set−impl@
(import) (export set−adt^)

(define set_add ext_set_add)
(define set_remove ext_set_remove) ;; ...

)

Implementation

(require "set−impl.rkt")
(define−values/invoke−unit set−impl@

(import) (export set−adt^))
(set_add (set_empty) 1)
(set? (set_empty ))
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. . .and to abstraction

Abstract data types
an abstract and independent representation of a component ;
possibly multiple different implementations for the same abstraction ;
possibly multiple clients for the same abstraction.

Complete independence is still missing in Racket :

the client depends on the implementation and not on the interface ;
require statements instantiate their modules.

Racket lacks truly separate compilation.
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Signatures in other languages

Interfaces : in Java (here in a functional manner)
interface Set <T> {

Set <T> set_add(Set <T> set , T el);
Set <T> set_remove(Set <T> set , T el);
Set <T> set_empty ();
boolean set_is_empty(Set <T> set);
boolean set_find(Set <T> set , T el);
int set_length(Set <T> set);

}

Signatures : in OCaml
module type SET = sig

type ’a set
val set_add : ’a set → ’a → ’a set
val set_remove : ’a set → ’a → ’a set
val set_empty : unit → ’a set
val set_is_empty : ’a set → bool
val set_find : ’a set → ’a → bool
val set_length : ’a set → int

end
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Some pointers
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B. Meyer, Applying « Design by Contract », Computer, vol. 25, 1992.
B. J. Pierce, Types and Programming Languages, MIT Press, 2002.
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