
From the Hut to the Cathedral
Small hints on modular software development

D. Renault

ENSEIRB-Matmeca

March 13, 2019, v. 1.0.1

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 1 / 25

Software design promotes a set of programming qualities (cf. [Booch]) :

Abstraction : the ability to represent parts of a program with a
summary of their essential characteristics ;
Encapsulation : the possibility to expose public parts and hide private
parts of an abstraction ;
Modularity : the ability to decompose a program into a set of
cohesive and loosely coupled components ;

Some goals :

Maintenability : is it easy to modify and extend a program ?
Reusability : is it possible to avoid code duplication ?

Basic example : a library based on sets, developed in Racket.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 2 / 25

Types of specifications (1/2)

Code specification may take different forms :

Functional specification :
I It should be possible to define sets containing any kinds of objects of

the same type.
I It should be possible to add and remove elements from a set, and to

tell if an element belongs to a set or not.

Non-functional specification :
I The implementation should run efficiently on current computers.
I The implementation should handle correctly sets of arbitrary sizes.

Here comes a problem of validation : how can specifications be checked ?

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 3 / 25

Types of specifications (2/2)

Interface / Type specification :

;; T is the type of the
;; elements inside the set.
type set[T];

set_empty : set[T]
set_is_empty : set[T] → boolean
set_add : set[T]∗T → set[T]
set_remove : set[T]∗T → set[T]
set_find : set[T]∗T → boolean

Formal specification :
set_is_empty(set_empty) = true
set_is_empty(set_add(s,i)) = false

set_find(set_empty , i) = false
set_find(set_add(s, i), i) = true
set_find(set_add(s, i), i’) = set_find(s, i’)

set_add(s, i) = s [if set_find(s,i)=true]
[unconstrained otherwise]

set_remove(set_empty , i) = set_empty
set_remove(set_add(s, i), i) = s
set_remove(set_add(s, i), i’) = set_add(set_remove(s, i’), i)

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 4 / 25

Modules

Definition : Module
A module is a construct representing a unit of code (set of types, values,
functions and any expression allowed by a language) and satisfying :

Interface : a module may publicly provide and require a set of
components ;
Encapsulation : a module may hide or make abstract some of its
components ;

Sets of modules are meant to be connected according to the dependencies
induced by their interfaces.

Independence : a module should depend only on the interfaces of its
dependencies.

Examples : .c and .h files in C, modules in OCaml.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 5 / 25

Example : modules in C

The set module

A client module

struct set;

struct set∗ set_empty ();
int set_is_empty(const struct set∗ s);

Interface

#include "set.h"

#define SET_SIZE 40
#define SET_SENTINEL −1

struct set { int t[SET_SIZE]; }

struct set∗ set_empty () {
struct set∗ r = malloc(sizeof(struct set));
r→t[0] = SET_SENTINEL;
return r;

}
int set_is_empty(const struct set∗ s) {

return s→t[0] == SET_SENTINEL;
}

Implementation

#include "set.h"

void test_emptiness () {
struct set∗ s = set_empty ();
// Cannot access SET_SENTINEL
assert(set_is_empty(s));
set_free(s);

}

Implementation

Interface X Encapsulation X Independence X

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 6 / 25

Example : modules in C

The set module

A client module

struct set;

struct set∗ set_empty ();
int set_is_empty(const struct set∗ s);

Interface

#include "set.h"

#define SET_SIZE 40
#define SET_SENTINEL −1

struct set { int t[SET_SIZE]; }

struct set∗ set_empty () {
struct set∗ r = malloc(sizeof(struct set));
r→t[0] = SET_SENTINEL;
return r;

}
int set_is_empty(const struct set∗ s) {

return s→t[0] == SET_SENTINEL;
}

Implementation

#include "set.h"

void test_emptiness () {
struct set∗ s = set_empty ();
// Cannot access SET_SENTINEL
assert(set_is_empty(s));
set_free(s);

}

Implementation

Interface X Encapsulation X Independence X

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 6 / 25

Modules and modules . . .

Many programming languages provide modules complying only to a subset
of these properties :

Interfaces may provide different levels of verification : names only
(Racket, Python), types (C, OCaml)
Encapsulation may not exist (cf. Python module privates) ;
Interfaces must sometimes be shipped with the module (Racket,
Haskell) or live as independent citizens (C, OCaml).

In the following, we investigate the capabilities of Racket in regard to
modules.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 7 / 25

“No module” development

Definition
All the code is written in a single unit, with little specifications.

(define (set−empty) ’())
(define set−is−empty? null?)
(define (set−add l x) (cons x l))
(define (set−remove l x) (remove x l))
(define (set−find l x) (member x l))

(set−is−empty? (set−empty)) ;; → #t
(set−find (set−add 1 (set−empty)) 1 ;; → #t

Favorable features :
REPL (simplifies incremental development)
Dynamic type system (delays verification)
Extensible language (simplifies writing ad-hoc code)

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 8 / 25

Problems

Induces a monolithic development :

parts of the code with different purposes are all mixed up in a single
file (ex : implementation and tests) ;
hinders code reuse / modification of a subset (e.g. modification of
the set representation) ;
complexifies the verification of the code (all or nothing) ;
not adapted to separate compilation, separate testing, team
development . . .

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 9 / 25

Modular programming

Modular programming
Break the code into a set of cohesive and loosely coupled modules, that
shall be composed depending on the specification.

(define set? (...))
(define set_add (...))
(define set_empty (...))
(define set_find (...))
(define test_add (...))
(define test_empty (...))
(define test_find (...))
(define set_recipes (...))
(define find_recipe (...))
(define bartender (...))

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 10 / 25

Modular programming

Modular programming
Break the code into a set of cohesive and loosely coupled modules, that
shall be composed depending on the specification.

(define set? (...))
(define set_add (...))
(define set_empty (...))
(define set_find (...))
(define test_add (...))
(define test_empty (...))
(define test_find (...))
(define set_recipes (...))
(define find_recipe (...))
(define bartender (...))

Implementation

Tests

Client code

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 10 / 25

Modular programming

Modular programming
Break the code into modules with different responsibilities, that shall be
composed depending on the specification.

(define set? (...))
(define set_add (...))
(define set_empty (...))
(define set_find (...))

Type implementation

(define test_add (...))
(define test_empty (...))
(define test_find (...))

Test module

(define set_recipes (...))
(define find_recipe (...))

Client module

(define bartender (...))
Client client module

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 10 / 25

Modules in Racket

In Racket, files are modules, and can require or provide implementations :

set-impl.rkt

(require) ;; Required module (none)
(provide set? set_empty set_add) ;; Exported functions

(define set? list ?))
(define (set_add l x) (cons x l))
(define (set_empty) ’())

set-test.rkt

(require "set−impl.rkt") ;; Required module

(define (test_add) (eq? (set_add (set_empty) 1) ’(1)))

set-client.rkt

(require "set−impl.rkt") ;; Required module
(provide set_recipes add_recipe) ;; Exported functions

(define set_recipes ’((1 . goulash) (3 . spatzle)))
(define (add_recipe key sym)

(set! set_recipes (set_add (cons key sym) set_recipes)))

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 11 / 25

Summary : modular programming in Racket

Advantages :

Facilitates code reuse : both tests and clients can make use of the
same implementation module ;
Allows multiple implementations : the client can select an
appropriate implementation module without modification of its code ;
Ensures verification that required functions are effectively provided.

Limitations in Racket :

Verification limited to checking the presence/absence of names ;
Dependencies of the modules embedded inside the code.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 12 / 25

Predicates and Types

Definition for the children : Type
A type is a subset of the values of the language.

Example : the boolean type is the set {true, false}.

Definition : Predicate
A predicate is a function taking any possible value and returning a boolean.

A predicate is the characteristic function of a type (e.g. boolean?).
Predicates are usually the sign of a language with dynamical type
checking (Lisp, Racket).

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 13 / 25

Racket contracts

Definition : Contracts
In Racket, contracts are predicates that constrain the behavior
(precondition, postcondition, invariant) of the functions inside a module.

As for assertions, contracts are checked dynamically.

Example
Documentation of list−set :
(list−set lst pos val) → list?

lst : list?
pos : (and/c (>=/c 0) (</c (length lst)))
val : any/c

pos must be a valid index in lst.

Erroneous usage :
(list−set ’(1) 2 ’one)

<=: contract violation
expected: (and (>= 0) (< 1))
given: 2

Typical languages : Eiffel, Racket, C# with Code Contracts

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 14 / 25

Contracts in Racket

Racket contracts are merely particular provide forms :

set-impl.rkt

(require)
(provide (contract−out

[set? (→ any/c boolean ?)]
[set_add (→i ([s set?] [x any/c])

[result (x) (lambda (r) (set_find r x))])]
[set_find (→ set? number? boolean ?)]
[set_size (→i ([s set?])

[result (s) (and/c number? positive ?)])
)]))

(define set? list?)
(define (set_add l x) (cons x l))
(define (set_find s x) (member x s)) ;; ...

set-test.rkt and set-client.rkt remain unchanged.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 15 / 25

Summary : contracts programming in Racket

Advantages :

Very precise definition of the interactions between modules
(contracts may be expressed as Racket functions) ;
Blends naturally with the Racket standard library.

Limitations :

The contracts are checked dynamically (undecidability problems).
Requires tests to verify that the contracts are enforced.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 16 / 25

Typed programming

Definition : Type system [modified from Pierce]
A type system is a formal method applied to a program which aims at
classifying elements of the program with types so as to guarantee some
correctness of its behavior.

Example in OCaml
Documentation of Array.set :
’a array → int → ’a → unit

takes an array, an index and a value ;
the index is any integer ;
the type of the value must be the
same as those inside the array.

Erroneous (static) usage :
Array.set [||] "zero" 1;;

Characters 15−21:
Array.set [||] "zero" 1;;

^^^^^^
Error: This expression has
type string but an expr
was expected of type int

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 17 / 25

Typed programming

Definition : Type system [modified from Pierce]
A type system is a formal method applied to a program which aims at
classifying elements of the program with types so as to guarantee some
correctness of its behavior.

Example in OCaml
Documentation of Array.set :
’a array → int → ’a → unit

takes an array, an index and a value ;
the index is any integer ;
the type of the value must be the
same as those inside the array.

Erroneous (dynamic) usage :
Array.set [||] 1 1;;

Exception: Invalid_argument
"index␣out␣of␣bounds".

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 17 / 25

Sorts of type systems

Depending on the language and its compiler, type systems may come in
different flavours :

Dynamic type checking :
I all verifications are done at runtime,
I no type annotations necessary.

Typical languages : Racket, Python, Ruby

Static type checking :
I all verifications are done at compile time,
I type annotations are either required (C, Java)

or inferred (OCaml, Haskell).

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 18 / 25

Typed Racket

Vanilla Racket possesses a dynamical type system, but the language allows
different dialects to be written, one of them being called Typed Racket.

Gradual type checking : type annotations may be added incrementally
inside the code, thus mixing annotated and non-annotated expressions.

Example :
#lang typed/racket ;; Choice of the language
(: num−fun (Number → Number));; Type annotation of num−fun (optional)
(define (num−fun n) (add1 n)) ;; Definition with type (checked)
(define (oth−fun n) (sub1 n)) ;; Definition without type (unchecked)

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 19 / 25

Types in Typed Racket

set-impl.rkt

#lang typed/racket
(provide set? set_add set_empty set_is_empty? set_size)

(define−type (Set a) (Listof a))
(: set? (Any → Boolean))
(define set? list?)

(: set_add : (All (a) ((Set a) a → (Set a))))
(define (set_add l x) (cons x l))

(: set_empty : (All (a) (→ (Set a))))
(define (set_empty) ’())

(: set_is_empty? : (All (a) ((Set a) → Boolean)))
(define (set_is_empty? l) (null? l))

(: set_size : (All (a) ((Set a) → Number)))
(define set_size length)

set-test.rkt and set-client.rkt remain unchanged.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 20 / 25

Summary : typed modular programming in Racket

Advantages :

The types are checked statically ;
The Typed/Racket type system is pretty expressive.

Limitations in Racket :

Types (as set of values) are not as expressive as contracts ;
Types and contracts libraries in Racket do not mix well
(for technical reasons).

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 21 / 25

Back to interfaces . . .

Separating an interface from its implementation is done via signatures.
The set module

A client module

(require)
(provide Set set−adt^)

(define−type (Set a) (Listof a))

(define−signature set−adt^
([set_add : (All (a) ((Set a) a → (Set a)))]
[set_remove : (All (a) ((Set a) a → (Set a)))]
[set_empty : (All (a) (→ (Set a)))]
[set_is_empty? : (All (a) ((Set a) → Boolean))]
[set_find : (All (a) ((Set a) a → Boolean))]
[set_size : (All (a) ((Set a) → Number))]
))

Interface

(require "set−sig.rkt")
(provide set−adt^ set−impl@)

(: ext_set_add : (All (a) ((Set a) a → (Set a))))
(define (ext_set_add l x) (sort (cons x l) <))
(: ext_set_remove : (All (a) ((Set a) a → (Set a))))
(define (ext_set_remove l x) (remove x l)) ;; ...

(define−unit set−impl@
(import) (export set−adt^)

(define set_add ext_set_add)
(define set_remove ext_set_remove) ;; ...

)

Implementation

(require "set−impl.rkt")
(define−values/invoke−unit set−impl@

(import) (export set−adt^))
(set_add (set_empty) 1)
(set? (set_empty))

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 22 / 25

. . .and to abstraction

Abstract data types
an abstract and independent representation of a component ;
possibly multiple different implementations for the same abstraction ;
possibly multiple clients for the same abstraction.

Complete independence is still missing in Racket :

the client depends on the implementation and not on the interface ;
require statements instantiate their modules.

Racket lacks truly separate compilation.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 23 / 25

Signatures in other languages

Interfaces : in Java (here in a functional manner)
interface Set <T> {

Set <T> set_add(Set <T> set , T el);
Set <T> set_remove(Set <T> set , T el);
Set <T> set_empty ();
boolean set_is_empty(Set <T> set);
boolean set_find(Set <T> set , T el);
int set_length(Set <T> set);

}

Signatures : in OCaml
module type SET = sig

type ’a set
val set_add : ’a set → ’a → ’a set
val set_remove : ’a set → ’a → ’a set
val set_empty : unit → ’a set
val set_is_empty : ’a set → bool
val set_find : ’a set → ’a → bool
val set_length : ’a set → int

end

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 24 / 25

Some pointers

G. Booch, Object-oriented analysis and design, Addison-Wesley, 1991.
B. Meyer, Applying « Design by Contract », Computer, vol. 25, 1992.
B. J. Pierce, Types and Programming Languages, MIT Press, 2002.

D. Renault (ENSEIRB) From the Hut to the Cathedral March 13, 2019, v. 1.0.1 25 / 25

