
Bordeaux University
Year 2015-2016

Master ESSV
MtoCPL

TD n°1 - Type systems and derivations

Exercice 1: Basic evaluation
The following example, taken from Pierce’s “Types and Programming Languages” defines
a very simple language on booleans and integers, and its evaluation rules :

Syntax :
t ::= terms

true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value

Evaluation rules :

if true then t2 else t3 → t2

if false then t2 else t3 → t3

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

Syntax :
t ::= . . . terms

0 constant zero
succ t successor
iszero t zero test

v ::= . . . values
natv numeric values

natv ::= numeric values
0 zero value
succ natv successor value

Evaluation rules :

t1 → t′1
succ t1 → succ t′1

iszero 0 → true
iszero(succ natv1) → false

t1 → t′1
iszero t1 → iszero t′1

In this diagram, the column on the left represents languages (described by a grammar,
rules being added gradually), whereas the right column represents deduction rules. By
convention, every symbol t[

′]
[i] represents an element of the language generated by the non-

terminal t.

1. Give an example of a stuck expression in this language. Is the language type-safe ?

2. Explain why there is a distinction between v and natv.

For the sake of simplicity, the pred function has been removed from the language. This
function has the particularity to be a partial function on natural numbers.

1

3. What evaluation rule could we propose for pred 0 ? And more generally, what other
evaluation rules could we propose for pred ?

4. Write the evaluation tree of the following expression :

if (iszero (pred (succ zero))) then succ 0 else false

5. Prove the following results for this particular language :

(i) Every value is in normal form ;

(ii) If t →∗ t′ and t →∗ t′′, where t′, t′′ are normal forms, then t′ = t′′ ;

(iii) For every expression t, there is some normal form t′ such that t →∗ t′.

2

. OCaml (http://caml.inria.fr) is a functional programming language developed at IN-
RIA, distributed with a compiler ocamlc and an interaction loop ocaml.
In order to write OCaml code, the most direct way consists in launching emacs on a
.ml file, and then running the tuareg-mode. Then, it becomes possible to execute
every expression in the interaction loop using the C-x C-e shortcut.

Exercice 2: Syntax derivations
Let us represent the code in OCaml using sum types, in the following way :

type id = string (∗ I d e n t i f i e r s ∗)

type term =
| TmTrue | TmFalse (∗ Booleans ∗)
| TmZero | TmSucc of term (∗ Natu ra l s ∗)
| TmIsZ of term (∗ Zero t e s t ∗)
| TmIf of term ∗ term ∗ term (∗ Cond i t i o na l ∗)

Download and compile the source code given with the tutorials. In order to test this code,
it is necessary to start OCaml with the command ocaml syntax.cma. Then it becomes possible
to parse expressions in the following manner :

Parser.parse_term "if true then false else true ";;

The syntax is the natural one, with the possibilities to add parentheses.

1. Construct the previous term in the OCaml interpreter.

The bussproofs LATEX package allows to build derivation trees in a simple manner :

\begin{prooftree}
\AxiomC{}
\UnaryInfC{0}\UnaryInfC{iszero 0}
\AxiomC{}
\UnaryInfC{true}
\AxiomC{}
\UnaryInfC{false}
\TrinaryInfC{if (iszero 0) then t

else f}
\end{prooftree}

0
iszero 0 true false
if (iszero 0) then t else f

2. Construct a function that builds a derivation tree for a term.

You may take inspiration from the term_to_string function in the syntax.ml file. The code is
already designed to print the result string on the standard output when using the make latex

command, and generate a syntax.pdf file.

3

http://caml.inria.fr

Exercice 3: Basic types
Starting from the previous language, Pierce defines the following typing rules :

Syntax :
T ::= types

Bool type of booleans

Typing rules :
true : Bool
false : Bool

t1 : Bool t2 : T1 t3 : T1[If]
if t1 then t2 else t3 : T1

Syntax :
T ::= . . . types

Nat type of naturals

Typing rules :
0 : Nat

t1 : Nat[Succ]
succ t1 : Nat

t1 : Nat[IsZero]
iszero t1 : Bool

1. How to implement types in our language ?

2. What is the role of the type variables T1 in the [If]-typing rule ?

3. How can we decide whether an expression is correctly typed, and in this case infer
the type of this expression ?

4. Write an algorithm that infers a typed derivation tree for a given expression.

5. How would you prove the following results ?

(i) Each typable expression has at most one type ;

(ii) There is just one typing derivation (one proof) for checking t : T .

4

	Basic evaluation
	Syntax derivations
	Basic types

