
Bordeaux University
Year 2014-2015

Master ESSV
MtoCPL

TD n°3 - Constrained polymorphism

Exercice 1: Functions
The natural way to complete our language consists in adding the possibility to write
functions :

Syntax :
t ::= . . . terms

x variable
λx :T . t abstraction
(t) t application

v ::= . . . values
λx :T . t abstraction value

T ::= . . . types
T → T type of functions

Γ ::= contexts
∅ empty context
Γ, x :T term binding

Evaluation rules :

t1 → t′1
(t1) t2 → (t′1) t2

t2 → t′2
(v1) t2 → (v1) t′2

(λx :T1 . t1) v2 → [x 7→ v2] t1

Typing rules :
x :T1 ∈ Γ

Γ ` x :T1

Γ, x :T1 ` t2 :T2

Γ ` λx :T1 . t2 : T1 → T2

Γ ` t1 :T1 → T2 Γ ` t2 :T1

Γ ` (t1) t2 :T2

In this addition, variables make their apparition to denote function parameters, and the
notion of context is used for storing a set of typed variables.

1. In which aspects is this language thoroughly different from the previous one ?

2. Write an expression corresponding to the composition of two functions.

Consider the following expression :

E ≡ λ x:X. λ y:Y. λ z:Z. ((x) z) ((y) z) : S

3. Find (informally) the set of constraints for E and a substitution that solves them.

1

Consider the expression for the double function :

double ≡ λ f. λ x. f (f x)

Recall that there exist two questions about the typing of this expression :

1. Type Checking : exhibit a derivation tree for this expression using the typing rules.
The types need not be the most general, only the tree must be correct with regard
to the typing rules. For example :

f :Nat → Nat ∈ Γ
Γ ` f :Nat → Nat

f :Nat → Nat ∈ Γ
Γ ` f :Nat → Nat

x :Nat ∈ Γ
Γ ` x :Nat

Γ ` f x :Nat
Γ ::= {f :Nat → Nat, x :Nat } ` f(f x) :Nat

{f :Nat → Nat } ` λx :Nat . f(f x) :Nat → Nat

{} `
(
λ f :Nat → Nat . λx :Nat . f(f x)

)
: (Nat → Nat) → Nat → Nat

2. Type Inference : find a type for this expression that is the most general. This is done
using for example the typing rules with constraints and solving the constraints :

f :T1∈ Γ
Γ ` f :

f :T1 ∈ Γ
Γ ` f :

x :T2 ∈ Γ
Γ ` x :

Γ ` f x : | { }
Γ ::= {f :T1, x :T2 } ` f(f x) : | { }

{f :T1} ` λx :T2 . f(f x) : | { }
{} ` λ f :T1 . λx :T2 . f(f x) : | { }F

ir
st

pa
ss

Se
co
nd

pa
ss

f :T1 ∈ Γ
Γ ` f :T1

f :T1 ∈ Γ
Γ ` f :T1

x :T2 ∈ Γ
Γ ` x :T2

Γ ` f x :T3 | {T1 = T2 → T3}
Γ ::= {f :T1, x :T2 } ` f(f x) :T4 | C ::= {T1 = T2 → T3,T1 = T3 → T4}

{f :T1} ` λx :T2 . f(f x) : T5 | C ∪ {T5 = T2 → T4}
{} ` λ f :T1 . λx :T2 . f(f x) : T6 | C ∪ {T5 = T2 → T4,T6 = T1 → T5}

In general, these trees are computed algorithmically. Solving the constraints yields here :

T2 = T3 = T4, T1 = T4 → T4, T5 = T2 → T4, T6 = T1 → T2 → T4

2

The following figure summarizes the typing rules augmented with constraints that describe
the relations between the type variables :

x :T1 ∈ Γ[CT-Ax]
Γ ` x :T1 | {}

Γ ` t1 :T1 | C1 Γ ` t2 :T2 | C2 Γ ` t3 :T3 | C3[CT-If]
Γ `

(
if t1 then t2 else t3

)
:T2 | C ′ = C1 ∪ C2 ∪ C3 ∪ {T1 = Bool} ∪ {T2 = T3}

Γ, x :T1 ` t2 :T2 | C1[CT-Abs]
Γ `

(
λx :T1 . t2

)
:T3 | C ′ = C1 ∪ {T3 = T1 → T2}

Γ ` t1 :T1 | C1 Γ ` t2 :T2 | C2[CT-App]
Γ `

(
t1 t2

)
:T3 | C ′ = C1 ∪ C2 ∪ {T1 = T2 → T3}

4. Explain the constraints for each rule. In particular, comment on the fact that an
if-then expression without the “else” part is in general ill-typed.

5. Write the set of constraints for E ≡ λ x:X. λ y:Y. λ z:Z. ((x) z) ((y) z) : S using a de-
rivation tree.

Further extending the language may be more or less diffcult depending on the expressive
power of the construction that we want to add. We give here two examples :

6. Extend the language with a rule testing the equality of two expressions.

7. Extend the language with a rule allowing recursion.
What kind of problems does it stir up ?

3

Syntax :
t ::= terms

true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
iszero t zero test
x variable
λx :T . t abstraction
(t) t application

v ::= values
true true value
false false value
natv numeric values
λx :T . t abstraction value

natv::= numeric values
0 zero value
succ natv successor value

T ::= types
Bool type of booleans
Nat type of naturals
T → T type of functions

Γ ::= contexts
∅ empty context
Γ, x :T term binding

Evaluation rules :
if true then t2 else t3 → t2
if false then t2 else t3 → t3

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

t1 → t′1
succ t1 → succ t′1

iszero 0 → true
iszero(succ natv1) → false

t1 → t′1
iszero t1 → iszero t′1

t1 → t′1
(t1) t2 → (t′1) t2

t2 → t′2
(v1) t2 → (v1) t′2

(λx :T1 . t1) v2 → [x 7→ v2] t1

Typing rules : true : Bool
false : Bool

0 : Nat

t1 : Bool t2 : T1 t3 : T1[If]
if t1 then t2 else t3 : T1

t1 : Nat[Succ]
succ t1 : Nat

t1 : Nat[IsZero]
iszero t1 : Bool

x :T1 ∈ Γ

Γ ` x :T1

Γ, x :T1 ` t2 :T2

Γ ` λx :T1 . t2 : T1 → T2

Γ ` t1 :T1 → T2 Γ ` t2 :T1

Γ ` (t1) t2 :T2

4

	Functions

