
Bordeaux University
Year 2015-2016

Master ESSV
MtoCPL

TD n°4 - Constrained polymorphism

. Haskell is a purely-functional programming language with cutting-edge type-
checking abilities. The compiler used here is the Glasgow Haskell Compiler, ac-
cessible with the command ghc, and its interaction loop ghci.

In order to write a Haskell program, you can open a .hs file in emacs, and compile
it with the following command :

ghc "file.hs"
Alternatively, it is possible to start the interaction loop and load the file.

:load file.hs
Notice that ghci provides auto-completion for a lot of things.

The translation between λ-calculus, OCaml and Haskell code goes like this :

λ-calculus OCaml Haskell

Conditional if then else if then else if then else

Application t u t u t u

Abstraction λx.t fun x → t \x → t

λx:T.t fun (x:T) → t \(x::T) → t 1

Multiple abstraction λx.λy.t fun x y → t \x y → t

The types used for naturals will be int in OCaml (resp. Int in Haskell). The types used for
booleans will be bool (resp. Bool). The rules of associativity for expressions are :

Expressions Application is associative to the left fgh ≡ (fg)h
Types Arrow is associative to the right a→ b→ c ≡ a→ (b→ c)

Both programming languages have the following properties :

• Displaying types : in OCaml, every expression e entered in the interaction loop is
evaluated and its return value is displayed with its type. In Haskell, :t e displays the
type of the expression e.

1The ScopedTypeVariables extension must be enabled in order to allow this construct.

1

• Naming values : in each language, it is possible to give a name to a value at the
toplevel using the following construct :

OCaml Haskell
let 〈name〉 = 〈expr〉 〈name〉 = 〈expr〉

• Syntaxic sugar for functions : instead of writing a series of fun, it is possible to define
a function with multiple arguments using the following construct :

let 〈f〉 〈arg1〉 〈arg2〉 = 〈e〉 ≡ let 〈f〉 = fun 〈arg1〉 → fun 〈arg2〉 →〈e〉

Exercice 1: Haskell polymorphism
In the Haskell interaction loop, it is possible to retrieve the type of a value :

let f = \x → x
:t f −− ⇒ f : : t → t

The following functions allow to use our language in Haskell :

succ :: Int → Int
succ x = x+1
pred :: Int → Int
pred x = if (x<=0) then 0 else (x−1)
is_zero :: Int → Bool
is_zero x = (x == 0)
empty = [] −− the empty l i s t
cons x e = (x:e) −− cons o f a head and a t a i l
is_empty l = (l == []) −− t e s t s i f a l i s t i s empty or not

For each of the following functions, first compute their generic type and then verify it by
writing the corresponding Haskell code :

1. the projection function, that takes n parameters and returns the k-th (take for
example n = 5 and k = 3).

2. a fixpoint-search function, that takes a function f and a starting point x0, and
returns (when terminating) a fixed point of f (the following function can be used
for testing : \x → if (x <= 5) then x + 1 else x).

What is the meaning of Eq a in the type of this function ?

2

Haskell has a type called Maybe a and two constructors for values in this type :
Just :: a → Maybe a, and Nothing :: Maybe a. Concretely, a value of type Maybe a is either unk-
nown (Nothing) or known with a value x (Just x). This type handles the cases where no
return value is known for a function. To test if a value of type Maybe a is a Nothing or a Just,
it suffices to use the case construct :

fromMaybe :: a → Maybe a → a −− Take a d e f a u l t va l ue and and Maybe va lue .
fromMaybe dflt may = case may of −− I f the Maybe i s Nothing , r e t u r n the d e f a u l t
| Just val → val −− Otherwise , r e t u r n the va lue i n the Jus t
| Nothing → dflt

3. Write a search function within a list that returns the index of an element in a list
and returns Nothing if not found.

Exercice 2: Interlude : Interfaces in Java
In the Java standard library, one can find generic interfaces over the type T (for example
Comparable<T>, cf. https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html) that define
a set of generic functions over T (in our case int T.compareTo(T o)). Naturally, every class
implementing this interface must also implement this set of functions.

Now it is possible to define code that depends on all the classes implementing such
an interface.

1. Define a generic interface Sortable<T> that contains a sort function, such that the
type variable T can only range over all classes implementing Comparable<T>.

2. Write a generic class SortableLinkedList<T> that extents LinkedList<T> and implements
Sortable<T>. In order to implement the sort function, you can use Collections.sort.

Collections.sort(ls, new Comparator<?!>(){ // Replace ? ! with c o r r e c t type
public int compare (?! o1, ?! o2) {

return −1;
}});

Exercice 3: Basic type classes
Type classes are Haskell constructs that, according to the definition of the Real World
Haskell book, “define generic interfaces providing a common feature set over a wide variety
of types”. They define a sort of constrained polymorphism. The simplest type class in
Haskell is the Show class, which implements the show method as :

class Show a where
show :: a → String

3

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

It is heavily used in the interaction loop, because the show function is used to print every
value. The equivalent in Java would be the overloaded method toString. For example, when
defining a new datatype for a polymorphic list List a,

data List a = Nil | Cons a (List a)

. . . it is impossible to even have a look at the value Nil in the interaction loop before
implementing the Show typeclass for List a, by the creation of an instance :

instance Show a ⇒ Show (List a) where
show Nil = "[]"
show (Cons x l) = (show x) ++ ";" ++ (show l)

Notice that in order to be able to “show” a list of elements of type a, it is necessary to
be able to show an element of type a. This requirement is expressed with the expression
Show a ⇒ Show (List a). In the end, the type of the show function is :

show :: (Show a) ⇒ a → String −− : t show

1. As a warm-up, implement a show function that correctly displays a List a, for example
[] if empty, and [1;2;3;4] when not empty.

2. Explore and explain the type classes representing the numeric types in Haskell. In
particular, explain the types of (/), (%), and (^) (you can refer to http://www.haskell.

org/tutorial/numbers.html).

3. Consider the classes Eq a and Ord a (for example in http://www.haskell.org/tutorial/

classes.html). What functions do they implement ? What instances do they possess ?

Exercice 4: Haskell and JSON
Suppose that we want to represent JSON2 data in Haskell. The type used to represent
JSON values could look like 3 :

data JValue = JChar Char
| JNumber Double
| JArray [JValue]

deriving (Eq, Ord , Show)

example1 :: [Double]
example1 = [1,2,3]

main = do
putStrLn $ show $ JArray (map JNumber example1)

2Javascript Object Notation, a serialization format widely used in client-server exchanges.
3Example taken from http://book.realworldhaskell.org/read/using-typeclasses.html

4

http://www.haskell.org/tutorial/numbers.html
http://www.haskell.org/tutorial/numbers.html
http://www.haskell.org/tutorial/classes.html
http://www.haskell.org/tutorial/classes.html
http://book.realworldhaskell.org/read/using-typeclasses.html

Notice that this encoding allows recursive values. Moreover, thanks to the deriving expres-
sion, this datatype already implements the fonctions (==), (<) and show. Now, it should be
possible to transform usual values into JSON values and back. For this, we propose to
implement the following type class :

class JSON a where
toJValue :: a → JValue
fromJValue :: JValue → Maybe a

instance JSON JValue where
toJValue = id
fromJValue = Just

1. Write an instance of the JSON typeclass for the type Double.

2. Write another instance for [a] where a is a type variable.

Hint : the function fromJValue needs to propagate the first error encountered.

3. Why is this a form of constrained polymorphism ?

4. Inside a Haskell expression containing a call to the fromJValue function, how is the
parameter a determined ?

Suppose now that we want to extend the behavior of our JValue with an unsafe method
unsafefromJValue :

unsafefromJValue :: JValue → a

5. Write a new type class JSON_Ext that extends JSON, and the implementations corres-
ponding to JSON_Ext Double and JSON_Ext [a].

6. What is the behavior of the unsafe version when no correct solution exists ? For
example, how do you explain the behavior of the following calls :

example2 :: JValue
example2 = JArray ([JNumber 2.0, JNumber 3.0])

example3 :: JValue
example3 = JArray ([JChar ’a’, JNumber 3.0])

(unsafefromJValue example2)::([Double])
(fromJValue example3) ::(Maybe [Double])
(unsafefromJValue example3)::([Double])

5

	Haskell polymorphism
	Interlude : Interfaces in Java
	Basic type classes
	Haskell and JSON

