
Bordeaux 1
Year 2015-2016

Master ESSV
MtoCPL

TD n°5 - Subtyping polymorphism

Exercice 1: Constrained polymorphism in OCaml
The OCaml language possesses constructs to define objects and classes1. For instance, the
following code defines a standalone object :

let cpt = object
val mutable value = 0
method get_value = value
method incr n = value ← value + n

end;;
cpt#incr 123;;

1. How is the type of an object defined ?

2. Write another object with the same type, but different internal state, and check
that they have the same type, for example by putting them into a list.

OCaml objects may be defined with classes. In OCaml, a class is simply a constructor
function for the object, using the class keyword instead of let :

class counter init_value = object
val mutable value = init_value
method get_value = value
method incr n = value ← value + n

end;;
let cpt = new counter 456;;

3. Check the type of the class and compare it to the type of the object it constructs.

Class inheritance is done via the inherit keyword and the coercion operator is written :> :

class resettable_counter init_value = object
inherit counter init_value
method reset = value ← 0

end;;
let cqt = ((new resettable_counter 789) :> counter );;

1The code given here is sufficient for the purpose of the exercise. Additional information can be found
at http://caml.inria.fr/pub/docs/u3-ocaml/ocaml-objects.html.

1

http://caml.inria.fr/pub/docs/u3-ocaml/ocaml-objects.html


4. What is the OCaml policy with regard to upcasts and downcasts ?
How would you qualify such a policy ?

Imagine that you want to write a generic functions on counters that tests whether two
counters possess the same value. At first, this function should not be a method.

5. What is the type inferred by OCaml for such a function ?

6. Is it possible to write this function as a method for the counter class ? What kind of
problem appears ?

. C# is a programming language developped by Microsoft (http://msdn.microsoft.com/
en-us/vcsharp/aa336809.aspx), that possesses an open-source compiler and runtime en-
vironment within project Mono (http://www.mono-project.com). In order to programm in
C# with Mono, one must use the following tools :

• Compilation : use the mcs compiler in the following manner to obtain an .exe
file from a .cs source code file :

gmcs "file.cs"

• Execution : use the runtime environment in the following manner :

mono "file.exe"

Here is an example of a very simple C# program :

using System;
class Program {

public static void Main() {
Console.WriteLine (" Caramba !");

} }

Exercice 2: Subtyping polymorphism in Java and C#
Let us compare the capabilities of Java and C# with regard to the subtyping polymor-
phism. A small hierarchy of classes is available in the sources for both languages, and is
used for the following examples.

Observe the following snippet of code in Java :

2

http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://www.mono-project.com


class P implements Comparable<P> {
public Integer x;
P(Integer x) { this.x = x; }
public int compareTo(P other) {

return (x.compareTo(other.x));
}

}
class SubP extends P {

public Double y;
SubP(Integer x, Double d) { super(x); this.y = d; }
public int compareTo(SubP other) {

if (x.compareTo(other.x) != 0)
return (x.compareTo(other.x));

else
return (y.compareTo(other.y));

}
}

Both classes P and SubP implement the Comparable interface.

1. What kind of relations are expected from an equality or comparison function ?

2. Are these relations respected in this situation ? More concretely, is it possible to
create instances of P and SubP that are different but equal under the compareTo method ?
Try without upcasts and then with upcasts.

3. What happens when trying to upcast or downcast a variable in an ill-typed manner ?
What is the error message, if any, and when does it occur ?

What does it imply in terms of type safety ?

Covariance and contravariance are properties that characterize the type compatibilities
for values occurring in a “type position” : the type of the parameter of a function, the
type of its return value, the type parameter of a generic function . . .

4. Recall the rules with regard to covariance and contravariance for function parameters
and function results.

5. How do Java or C# behave with regard to these rules ?
(replacing the term “function” by “method”)

6. Write an example function for each case of covariance and contravariance.

3



. Java and C# propose two different ways to define constraints on the variables :

• Java/ Use-site variance : the variance indication on the type variable appears
in the method using the variable

class Collections<T> { .. };
public void copy(List <? super T> dst , List <? extends T> src) {
.. };

• C#/ Definition-site variance : the variance indication on the type variable
appears at the definition of the class

interface Collections<in T> {
T getElem ()

.. };

In both cases, the code must satisfy the get-put principle for a generic class C<T> :

• if the type variable T is in a covariant position, one can call every method in
C<T> except the generic methods having an argument of type T.

• if the type variable T is in a contravariant position, one can call every method
in C<T> except the generic methods having a result of type T.

Exercice 3: Type variance
In languages with generics, the Collections and their containers usually provide nice examples
of parameterized types.

1. What is in general (that is to say without taking a specific language into account)
the rule of variance for a parameterized type such as Container<Parameter> ?

2. Verify your proposition by writing examples in Java and C#. What is the error
message, if any, and when does it occur ?

According to the previous questions, if ever an Orange inherits from a class Fruit, then it
implies that there is no relation whatsoever between List<Orange> and List<Fruit>, which
is very restrictive.

3. Give an example that shows how restrictive this choice is.

Now there is a possibility to alleviate this behavior with variance indications. Type com-
patibility is explicitly stated, either at the definition of the variables (definition-site va-
riance, for example in C# and Scala) or at the place they are used, usually the arguments
of functions (use-site variance, for example in Java via the use of wildcards).

4



4. Consult the Java 1.7 documentation page for the Collections class (http://docs.oracle.
com/javase/7/docs/api/java/util/Collections.html), and discuss the types of the functions
fill, copy and max.

5. Consult the C# documentation for the IEnumerable interface http://msdn.microsoft.com/

en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx and discuss the differences with the Java
case, in particular for the max functions.

For these specific types, there is a general principle explaining what kind of methods can
or cannot be applied to a wildcard type. For each of the following citations2, construct a
Java example that does not type-check, and explain why it doesn’t.

6. About covariance :

. For example the type List<? extends Number> is often used to indicate read-only
lists of Numbers. This is because one can get elements of the list and statically
know they are Numbers, but one cannot add Numbers to the list since the list may
actually represent a List<Integer> which does not accept arbitrary Numbers.

7. About contravariance :

. Similarly, List<? super Number> is often used to indicate write-only lists. This
time, one cannot get Numbers from the list since it may actually be a
List<Object>, but one can add Numbers to the list.

Let us write a generic function in to sort elements of a list.

8. Write the prototype of a generic sorting function in C# that takes a list and a
comparison function, that is covariant in the list parameter and contravariant in the
other.

9. Write the prototype of a sorting algorithm in Java that is equivalent to the previous
one. The functional comparison can be replaced by the Comparator interface.

What is the difference with the C# solution ?

10. Suppose that we only require that the type T implements the Comparable interface.
What is the most generic prototype you can write ?

2Taken from http://www.cs.cornell.edu/~ross/publications/tamewild

5

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://msdn.microsoft.com/en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx
http://www.cs.cornell.edu/~ross/publications/tamewild

	Constrained polymorphism in OCaml
	Subtyping polymorphism in Java and C#
	Type variance

