
University of Bordeaux
Year 2015-2016

Master ESSV
MtoCPL

TD n°6 - Existential woes

. Java and C# propose two different ways to define constraints on the variables :

• Java/ Use-site variance : the variance indication on the type variable appears
in the method using the variable

class Collections<T> { .. };
public void copy(List <? super T> dst , List <? extends T> src) {
.. };

• C#/ Definition-site variance : the variance indication on the type variable
appears at the definition of the class

interface Collections<in T> {
T getElem ()

.. };

In both cases, the code must satisfy the get-put principle for a generic class C<T> :

• if the type variable T is in a covariant position, one can call every method in
C<T> except the generic methods having an argument of type T.

• if the type variable T is in a contravariant position, one can call every method
in C<T> except the generic methods having a result of type T.

Exercice 1: Type variance
In languages with generics, the Collections and their containers provide nice examples of
parameterized types.

1. What is in general (that is to say without taking a specific language into account)
the rule of variance for a parameterized type such as Container<Parameter> ?

2. Verify your proposition by writing examples in Java and C#. What is the error
message, if any, and when does it occur ?

1



According to the previous questions, if ever an Orange inherits from a class Fruit, then it
implies that there is no relation whatsoever between List<Orange> and List<Fruit>, which
is very restrictive.

3. Give an example that shows how restrictive this choice is.

Now there is a possibility to alleviate this behavior with variance indications. Type com-
patibility is explicitly stated, either at the definition of the variables (definition-site va-
riance, for example in C# and Scala) or at the place they are used, usually the arguments
of functions (use-site variance, for example in Java via the use of wildcards).

4. Consult the Java 1.7 documentation page for the Collections class (http://docs.oracle.
com/javase/7/docs/api/java/util/Collections.html), and discuss the types of the functions
fill, copy and max.

5. Consult the C# documentation for the IEnumerable interface http://msdn.microsoft.com/

en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx and discuss the differences with the Java
case, in particular for the max functions.

For these specific types, there is a general principle explaining what kind of methods can
or cannot be applied to a wildcard type. For each of the following citations1, construct a
Java example that does not type-check, and explain why it doesn’t.

6. About covariance :

. For example the type List<? extends Number> is often used to indicate read-only
lists of Numbers. This is because one can get elements of the list and statically
know they are Numbers, but one cannot add Numbers to the list since the list may
actually represent a List<Integer> which does not accept arbitrary Numbers.

7. About contravariance :

. Similarly, List<? super Number> is often used to indicate write-only lists. This
time, one cannot get Numbers from the list since it may actually be a
List<Object>, but one can add Numbers to the list.

Let us write a generic function in to sort elements of a list.

8. Write the prototype of a generic sorting function in C# that takes a list and a
comparison function, that is covariant in the list parameter and contravariant in the
other.

1Taken from http://www.cs.cornell.edu/~ross/publications/tamewild

2

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://msdn.microsoft.com/en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/vstudio/9eekhta0%28v=vs.100%29.aspx
http://www.cs.cornell.edu/~ross/publications/tamewild


9. Write the prototype of a sorting algorithm in Java that is equivalent to the previous
one. The functional comparison can be replaced by the Comparator interface.

What is the difference with the C# solution ?

10. Suppose that we only require that the type T implements the Comparable interface.
What is the most generic prototype you can write ?

3


	Type variance

