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Abstract

In this paper, the board game Quoridor is analyzed, and thela@ment of a program
able to play Quoridor is described. Since there is no exjdhiody of expert knowledge
on the game of Quoridor, the set of useful features of the daamenot yet been defined.
Therefore, a number of features are proposed in this papgen&tic algorithm was used
to optimize the weights of a linear weighted evaluation tiorcusing these features. The
effectiveness of this genetic algorithm as a learning dlgaris evaluated. The resulting

Quoridor artificial player is able to play adequately, but well enough to beat a human
player.
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Chapter 1

Introduction

The notion that computers might play games has existed sttdsdong as computers. In
the nineteenth century, Charles Babbage considered pnogiray his Analytical Engine
to play chess, and later thought about building a machindatpt-tac-toe [17]. Games
provide a useful domain to study machine learning and ottidical intelligence tech-
niques, while providing a structured problem space in wioigtimization algorithms can

be applied to search for solutions.

While computers are acknowledged to be world champions imegdike chess and
Othello, there are still many complex games for which argéfiplayers have not yet been
able to reach the level of play of human expert players, on¢hat of amateurs. One
such game is Quoridor. Quoridor is a relatively new game 1) 9Bat, to the author’s
knowledge, has not yet been extensively analyzed. One pttendevelop an artificial

player for Quoridor is documented in [15].

Quoridor is a board game of 9 rows and 9 columns for 2 or 4 ptayeach player has
a pawn that begins at one side of the board, and the objedtthe game is to move your
pawn to the opposite side of the board. The twist on this smgphl is that each player has

a certain number of fences that they can place anywhere dootirel to hinder the other
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players progress. This makes the game interesting andullifficcplay, because there are

many possible moves and judging who is winning is not trivial

To develop a computer program to play the game of Quoridosetithe same basic
approach as many game-playing algorithms. My artificiay@tauses a minimax search
algorithm on the game tree and a linear weighted evaluatination on the leaves. Since
the field is lacking expert knowledge on tactics and stratefpr this particular game, |
analyzed the game and proposed some features for use inalo@ten function, most of

which quantify paths from the pawn to the winning side of tbaral.

Instead of statically assigning weights to these featues®t on my limited playing
experience, | decided to employ a learning algorithm to tteeweights. | tried two
different algorithms; the first algorithm, based on siniglger neural network learning,
was quickly discovered to be ineffectual. The second allgari a member of the genetic
algorithm family, was more successful, but does not seene tanboptimal algorithm for
the task either. The resulting Quoridor player is able ty piee game, but does not pose
a challenge for a human player. This project hopefully ldys groundwork for more

advanced research on developing algorithms for playingi@on
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Background

2.1 Quoridor

Quoridor™is a relatively new board game (1997) developed by Gigamit yeas named
“Games Magazine’s Game of the Year” for 1998. Quoridor haseen extensively an-
alyzed, unlike classic artificial-intelligence games sashChess and Go. Quoridor has
deceptively simple rules from which arise surprisingly gex tactics. Over the course

of the game, players create a maze that they must be the fivavigate through to win.

Quoridor has a 29 board, and can be played with two or four players. This gtoje
focuses only on the two-player game. Each player has a pdagk br white, that begins
the game in the middle of opposing edges of the board (seed~iy). A player wins
when his/her pawn has reached any square of the oppositeoétigeboard from which

it started.

A draw determines who is allowed the first move. On a players,tthe player can
either move his/her pawn one square in a cardinal direcboiplace one fence. Each

player begins the game with ten fences. These fences camabedphnywhere on the
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Figure 2.1: Quoridor board.

board, with certain restrictions, to hinder the opponertap yourself. A pawn cannot
move through a fence. Fences must be placed between twd s&tssguares horizontally
or vertically (see Figure 2.4) and cannot intersect an ieggence. Also, a fence cannot

be placed that completely blocks a player’s access to igthed.

If the two pawns are adjacent to each other with no fence lmtwieem, the player
whose turn it is can jump his/her pawn over the opponent’shpalihis jump must be in
a straight line, unless a fence is behind the other pawn, ischwtase the jump must be
diagonal (see Figure 2.2). In the four person game, it isidioldn to jump more than one
pawn. One situation that is not covered by the official rusafiustrated in Figure 2.3 and
concerns whether jumping is allowed when pawns are adjas@hbne pawn is on the
edge of the board. In my implementation of the game, | allosvetige of the board to be

treated similarly to fences for jumping.

For the purposes of describing the play of a Quoridor gamay¢ ldeveloped a move

notation based on chess algebraic notation (deep: / / ww. uschess. or g). In this
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Figure 2.2: Allowed pawn jumps.
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Figure 2.3: The white pawn is on the edge of the board. In myempntation, the black
pawn is allowed diagonal jumps in this situation.

notation, each square on the board is uniquely identified leyter-number combination.
The columns are labeledthroughi from left to right, and the rows are labelédhrough

9 from top to bottom (see Figure 2.1). The black pawn begingaiee9, and the white
pawn begins at squagsl. A pawn move is simply identified by the square that the pawn
is moved to. A fence move is identified by the fence’s “nortetnequare”, which is the
square with the smallest number and letter closest tmt of the four squares that the
fence is adjacent to (see Figure 2.4). This square iderntditaés followed byh or v to
identify whether the fence is placed horizontally or veatiz In addition, a sequence of
moves should be identified by the turn number, where a turndee after both players
have moved, first black then white. For examylee8 e2 2. e7 e3.... The game
begins with turn 1. A single move should also be identified thether it was black’s
move or white’s move, by addinglaor w after the turn number and before the dot, e.qg.,

1b. e8. Using the convention that black always goes first, a gameearbuilt from a
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given sequence of moves.

L] Ill:l
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[

Figure 2.4: Northwest squares of horizontal (left) andigalfences are shaded.

The rest of this section is devoted to the illustration of pheey of a typical Quoridor
game. The game begins with the moles8 e2 2. e7 e3 3. e6 e4, during which
both players charge straight for the goal (Figure 2.5.a).

Now, the black player must make a decision. If either pawrinaes moving forward
at this point, the opponent will jump and be at an advantadee Qlack player decides
to use a combination of several tactics that | have discovesebe useful. One such
tactic is ‘creating a box’, which simply means enclosinghbpawns in the same space
and controlling the exit to be advantageous to you but nab¢oopponent. Also, if you
force both pawns to take the same path, that limits the dathagée opponent can cause
you, since both pawns are affected by any fences placed inaitmenon path. Another
useful tactic involves making the space that your pawn oesugmall, so that the longest
possible path your pawn could take is smaller as well. Al¢ihoagh you cannot cut
the opponent off completely from his/her goal, you can aartine route by which the
opponent travels by fencing off part of the board so that fhy@oent is forced along one
path. There is also often a tradeoff between playing defehgsii.e., placing fences in
your path to limit the damage that the opponent can do to yod,pdaying offensively,
i.e., making the opponent’s path longer. Since fences araitet resource, they should

be used effectively.
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Figure 2.5: Quoridor game: (a) 3w.e4 (b) 4b.e6h (c) 4w.e3BHI5v.

The black player takes the offensive in movese6h e3h 5. f5v e5h 6. c6h
f4 7b. f3v, shown in Figure 2.5.b-d and Figure 2.6.e-h.

The white player realizes what is happening, but it is toe.lafhe black player is
about to create an enclosed area and cut off one side of td boan the white player.
The white player tries to control his/her path by cuttingtb# right side of the board, thus
ensuring that the left side will stay open in mofks. g6h (Figure 2.7.1).

The black player beats this effort by finishing cutting of teft side in moveéb. a6h
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Figure 2.6: Quoridor game: (e) 5w.e5h (f) 6b.c6h (g) 6w.tAAb.f3v.

(Figure 2.7.j). The white player starts moving towards tbalgagain in move8w. e4
(Figure 2.7.k) and the black player continues creating aihaxove 9b. c5v (Figure
2.7.0).

In moves9w. d4h and10b. d2v, the white and black players place fences that hurt
the opponent but not themselves, then both pawns mot@wod4 and11b. d6 (Figure
2.8).

The white player continues moving forward and places amefie fence in moves
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Figure 2.7: Quoridor game: (i) 7w.g6h (j) 8b.a6h (k) 8w.eLf.c5v.

11w. d3 and12w. c3h, while the black player moves forward and places a defensive
fence to prevent the white player from lengthening the $piramoves12b. d5 and
13b. 4h (Figure 2.9).

The white player moves t@3w. d2 and the black player takes the opportunity to
further frustrate the white player in motdb. c1h. The white player retaliates by placing
another offensive fence in movdgtw. a2h. At this point, the black player has one fence
left, and realizes that there is no way the white player caamomore damage, so the

black player plays his/her last fence offensively in m@&b. h7h (Figure 2.10). At this
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Figure 2.8: Quoridor game: (m) 9w.d4h (n) 10b.d2v (0) 10wm4l1b.d6.

point, the game is effectively over. The white player stdsHour fences remaining, but
there is no available placement on the board that would llemgthe black player’s path.
There is also no point in placing defensive fences since lgekiplayer is out of fences.
At this point in a Quoridor game, it is a matter of counting thens until each pawn
reaches its goal. The white player surrenders — the blaglepla twelve squares away
from winning, while the white player is twenty squares awayi winning. The complete

list of moves is given in Table 2.1.

10
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Figure 2.9: Quoridor game: (q) 11w.d3 (r) 12b.d5 (s) 12w.¢Bh3b.b4h.

Table 2.1: Move sequence for example Quoridor game.

.e8 e2

6.c6h f4

11.d6 d3

.e7 e3

7.f3v g6h

12.d5 c3h

.e6 e4d

8. abh e4

13. 4h d2

.e6h e3h

gl bW N

9. c5v d4h

14. c1lh a2h

.f5v ebh

10.d2v d4

15b. h7h

11
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2.2 Computers and Games

Our fascination with games has ancient roots in human lyisteor example, the game
of Go was developed three to four millenia ago in China [20hother game, Awari, is
believed to have originated from Ethiopia about 3500 yegos[8]. Some of the ancient
strategic board games that we know today are believed torhditary roots. Instead of
having armies go to war, some of the planning and other giagtements essential for

conducting a battle could be practiced on a board [2].

Game playing was one of the first tasks undertaken in arlifii@lligence. Indeed, the
game of chess has sometimes been referred to d3rds®philaof artificial intelligence
and cognitive science research — an ideal controllabler@mvient that serves as a test
bed for ideas about the nature of intelligence and compmurtakischemes for intelligent
systems. Since the beginning of the twentieth century, emagticians have tried to model
classical games to create expert artificial players, but mdently have computers been
able to best humans in certain games. Many decades of redeatrsing on the creation
of grandmaster standard computer chess programs culmiimetiee defeat of Garry Kas-
parov, the World Chess Champion, by IBM’s purpose-builtssh@aomputer, Deep Blue, in
1997. Deep Blue, and, since, Deeper Blue, still mainly relyspecialized hardware and
brute force methods to gain an advantage over the opponemagining further into the
game tree [13]. Deep Blue managed to search 126 millionipasiper second on aver-
age. Chinook, developed by Jonathan Schaeffer and cobsaguas declared the world
champion in checkers in 1994. In 1997, the Logistello progdefeated the human world
champion in Othello [18].

Traditional artificial intelligence techniques for game$yron exhaustive search of
the game tree, evaluation functions based on expert knge|eldrge “opening book”
and endgame databases, and massive computing power. Theimigs, however, to

how far this brute-force approach will take artificial playeand researchers are running

13
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into these walls in more complex games, such as those thalvenehance and imperfect
information. Research in games in artificial intelligenes begun to focus on alternative

methods, including adaptive learning techniques.

Adaptive learning was being used for checkers as far badtess350’s, with Samuel’s
seminal work in checkers. Gary Tesauro combined Samuéi®reement learning method
with neural network techniques to develop TD-GAMMON, whishranked among the
top three backgammon players in the world [18]. Another mo@xample is Anaconda,
a checkers player developed by Chellapilla and Fogel. Amdaases an artificial neural
network (ANN), with 5046 weights, which are evolved via amleNionary strategy. The
inputs to the ANN are the current board state, presented amiaty of spatial forms. The
output from the ANN is a value which is used in a mini-max skarDuring the train-
ing period the program is given no information other than laeavhich indicates how it
performed in the last five games. It does not know which ofehgemes it won or lost,
nor does it know if it is better to achieve a higher or a lowersc Co-evolution (playing

games against itself) was used to develop Anaconda, whladtaeved expert levels of

play [6].

Evolutionary algorithms (see Section 3.2), such as thevotigon used to develop
Anaconda, are also an area of research in games. Davis é]alsdd an evolutionary
strategy to optimize the weights of a simple evaluation fiomcfor Awari, and achieved
what they considered a “reasonable level of play.” A late@Avplayer, called Ayo, was
developed by Daoud et al. [5]. They used a more sophistia@taldiation function than
Dauvis et al., while also employing a genetic algorithm tolegdhe weights. Ayo outper-
formed the previous player with a shallower game-tree $eatwowing the advantage in
this case of a more accurate evaluation function over a desgech. Kendall et al. [13]
propose an approach for the tuning of evaluation functioamaters based on evolution-
ary algorithms and applies it to chess. In a different ajpilon of genetic algorithms,

Hong et. al. [21] propose a genetic-algorithm based apprt@enhancing the speed and
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accuracy of game tree searches.

2.3 Representations of Games

Mathematical game theory views any multiagent environnaasna game provided that
the impact of each agent on the others is “significant”, ré¢igas of whether the agents
are cooperative or competitive. In game theory, Quoridke, ¢hess and checkers, can be
described as a deterministic, sequential, two-playeo-gam game of perfect information

with a restricted outcome (win, lose, and draw) — also knosvacGmbinatorial gam¢6].

Deterministicgames have no element of chance. Backgammon is an example of a

game ofchance because play involves rolling dice.

In sequentiagames, players take turns instead of making a move simuiteshe The
Prisoner’s Dilemma is an example ofsamultaneougame. In the classical Prisoner’s
Dilemma, two suspects are arrested and interrogated imatepaoms. Both suspects are
offered the chance of walking free if they confess and inorate the other suspect. Each
suspect has two options: cooperate (stay silent) or deteaféss to the crime), and both
suspects make their decisions simultaneously, i.e., witkoowing the other suspect’s
decision. If both suspects cooperate, they are punisheimalily. If one suspect defects
and the other cooperates, the suspect who cooperates geagimum sentence while
the suspect who defects is not punished. If both suspecteti¢fiey are both punished

moderately.

In zero-sungames, the utility values at the end of the game are alwayal @gmag-
nitude and opposite in sign. For example, if one player wigame of ches$+1), the
other player necessarily losés1). In non-zero-sungames, the players’ goals are not
necessarily conflicting. The Prisoner’s Dilemma is a norozam game. An example of

a corresponding payoff matrix for the Prisoner’s Dilemmidlusstrated in Table 2.2, where

15



Chapter 2. Background

a higher payoff is a better outcome. Notice that the possibteomes do not add up to

Zero.

Table 2.2: The possible payoffs in each outcome of the PeisoDilemma are shown in
italics for P1 and in bold for P2.

P1 Cooperates P1 Defects
P2 Cooperates -2, -2 -5,0
P2 Defects 0,-5 -4, -4

In games ofperfect informationthe current state of the game is fully accessible to
both players. Poker is an example of a gamengberfect informationbecause some
information about the state of the game, i.e., the handshafrgilayers, is hidden from the

players.

In combinatorial game theory, which is the branch of gametheoncerned with
combinatorial games, Quoridor can be characterizgaggzan in contrast to ammpartial
game, in which the allowable moves depend only on the poséra not on which of the
two players is currently moving, and where the payoffs areragtric. Nim is an example
of an impartial game. In Nim, players take turns removingeoty (counters, pebbles,
coins, pieces of paper) from heaps (piles, rows, boxespilytfrom one heap at a time.
In the normal convention, the player who removes the last object winshenisere

convention the player to move last loses [12].

A combinatorial game has a precise definition in combinatagame theory. The
two players are usually called Left (L) and Right (R). Eveante has some number of
positions each of which is described by the set of allowadvesfor each player. Each
move (of Left or Right) leads to a new position, which is cdl&e(left or right)option of
the previous position. Each of these options can be thougd another game in its own

right, described by the sets of allowed moves for both pajEd].

From a mathematical point of view, all that matters are thg sHeft and right options
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that can be reached from any given position — we can imagegame represented by
a rooted tree with vertices representing positions and wrigtnted edges labeled L or R
according to the player whose moves they reflect. The rooesepts the initial position,

and the edges from any position lead to another subtreepttef which represents the

position just reached [19].

A game can be identified by its initial position and comphetiscribed by the sets of
left and right options, each of which is another game. Thadsgo the following recursive
definition of a game: Let andR be two sets of games. Then the ordered @ai= (L, R)

is a game. Note that the sét@ndR of options may well be infinite or empty [19].

Traditional combinatorial game theory also assumes thafpthyer that makes the
last move wins, and that no position may be repeatetbofdty game, however, does not
impose the no-repetition assumption, and thus requiresra nwnplex theory. Quoridor
is an example of a loopy game. A loopy game is played on a @idepseudograph (a
directed graph that is allowed to have multiple edges from\@rtex to another, or edges
from a vertex to itself). Each vertex of this graph corresfmto a position of the game.
The edges are patrtitioned into two sets, Left's and RighEach player plays along his
own edges only, changing the position from the vertex at the sf the edge to that at
the end. Left and Right play alternately; if either is evét W@thout a move, he loses. To
specify a loopy game completely, one needs to specify aataiex as well as the graph
and its edge-partition. One also needs to specify for eayl iefinite sequence of moves

whether it is won by Left, won by Right, or is drawn [16].
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2.4 Game-Playing Approach

2.4.1 Game Trees

In artificial intelligence, games like Quoridor are ofteedted asdversarial search prob-
lems To define this problem, we will consider a game with two playealledMAX and

MIN, who take turns moving until the game is over. At the end ofghme, points are
awarded to the winner and penalties are given to the loseh &game can be formally

defined as a kind of search problem with the following compmis1EL8]:

Theinitial state, which includes the board position and identifies the playenove.

A successor functigrwhich returns a list of move state pairs, each indicating a

legal move and the resulting state.

A terminal test which determines when the game is over. States where the gam

has ended are callddrminal states

A utility function(also called an objective function or payoff function), winigives
a numeric value for the terminal states. In zero-sum garhesegtvalues are equal

in magnitude but opposite in sign.

The initial state and the legal moves for each side defing#mee tredor the game.
Figure 2.11 shows part of the game tree for tic-tac-toe. ienal solution to this search
problem is a sequence of moves leading tpoal state— a terminal state that is a win.
MAX must find a contingenstrategy which specifiedMAX’s move in the initial state,
thenMAX’s moves in the states resulting from every possible respbygsviIN, and so
on. Roughly speaking, an optimal strategy leads to outc@hlesist as good as any other

strategy when one is playing an infallible opponent [18].
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MAX {X)
x ‘ l |
MIN (0) | | |X x| | X | | !
i . | X x| x|
e
X0 x| o] |x
MAX (X) o
S
| T iy Ve S
X olx |X0 X0
MIN (O) X X
\\:f:—__:—_::__: _______-_-_
xlolx| xlolx| [xle]|x
TERMINAL lo|x| 00X X
o x/x|o| |x|ofo
Utility -1 i} +1

Figure 2.11: A partial search tree for the game of tic-tae-tdhe top node is the initial
state, from whichMAX has nine possible moves. Play alternates betw&&K andMIN
until eventually we reach terminal states, which can begassi utilities forMAX [18].

To describe this optimal strategy, we will consider theiadigame shown in Figure
2.12. The possible moves fMAX at the root are labeled;, A, andAs. The possible
replies toA; for MIN areA;1, A12, andAq3, and so on. This particular game ends after
one move each byIAX andMIN. This tree is therefore omaovedeep, consisting of two

half-moveseach of which is called ply [18].

Given a game tree, the optimal strategy can be determinegayiaing theminimax
value of each node, which is the utility (fdlAX) of being in the corresponding state,
assuming that both players play optimally from there urté £nd of the game. The

minimax value of a terminal state is just its utility. Funthere, given a choiceylAX
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will prefer to move to a state of maximum value, wherbHBI prefers a state of minimum
value. We can therefore define the minimax value of a mgdéINIMAX-VALUE(N), as

follows:

UTILITY(n) if nis a terminal state
MaXsesuccessors) MINIMAX-VALUE(s) if nis aMAX node
MiNgcsyccessors) MINIMAX-VALUE(s)  if nis aMIN node

This definition has been applied to the game tree in Figur2. 2rilthis game tree, we can
now identify theminimax decisiomt the root: mové\; is optimal forMAX. The definition
of optimal play forMAX assumes thaIN will also play optimally, thereby maximizing
theworst-caseutcome foiMAX. If MIN does not play optimally, theMAX will do even
better [18].

MAX

MIN

Figure 2.12: A two-ply game tree. Th& nodes ardMAX nodes (meaning it iMAX’s
turn to move), and they nodes aré/IN nodes. The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax valld8X's best move at the
root isA1, andMIN’s best reply isA11 [18].

Theminimax algorithnm(Figure 2.13) computes the minimax decision from the curren
state. It uses a simple recursive computation of each sswmcetate which proceeds all
the way down to the leaves of the tree, and then the minimaresarebacked ughrough

the tree as the recursion unwinds. The minimax algorithrfopeis a complete depth-first

20



Chapter 2. Background

exploration of the game tree. If the maximum depth of the isem and there aré legal
moves at each point, then the time complexity of the minimgrrithm isO(b™). The
space complexity i©(bm) for an algorithm that generates all successors at onca(ray

for an algorithm that generates successors one at a time [18]

function MINIMAX-DECISION(staté returns a move
v «— MAX-VALUE(statg
return themovein SUCCESSORS(statg with valuev

function MAX-VALUE(statg returns a utility value
if TERMINAL-TEST(statg then return UTILITY(state
V¢ —00
for a, sin SUCCESSORS(statg do
vV «— MAX(v, MIN-VALUE(9))
return v

function MIN-VALUE(state returns a utility value
if TERMINAL-TEST(statg then return UTILITY(state
V < 00
for a, sin SUCCESSORS(statg do
vV < MIN(v, MAX-VALUE(S))
return v

Figure 2.13: Minimax algorithm.

2.4.2 Minimax Enhancements

For simplicity, we can modify the game tree values slightig aise only maximization
operations. The trick is negate the returned values frometbgrsion. In order to do this,
the utility value of a state is determined from the viewpaitihe player whose turnitis at
that state, not, as is done in the minimax algorithm, always1MMAX’s viewpoint. This

is called theNegamax algorithnil4] (Figure 2.14).
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function NEGAMAX-DECISION(statg returns a move
v +— NEGAMAX-VALUE(statg
return themovein SUCCESSORS(statg with valuev

function NEGAMAX-VALUE(stat@ returns a utility value
if TERMINAL-TEST(statg then return UTILITY(state
V — —00
for a, sin SUCCESSORS(statg do
v — MAX(v, -NEGAMAX-VALUE(s))
return v

Figure 2.14: Negamax algorithm.

The problem with minimax search is that the number of statbas to examine is
exponential in the number of moves. By realizing that it isgble to compute the correct
minimax decision without looking at every node in the ganeetiwe can effectively cut
the exponent in half. This technique is callahha-beta pruning When applied to a
standard minimax tree, it returns the same decision as raminould, but prunes away
branches that cannot influence the final decision. Alpha-paining can be applied to
trees of any depth, and it is often possible to prune entipérees rather than just leaves.
The general principle is this: consider a nadgomewhere in the tree such thdAX has
a choice of moving to that node. MAX has a better choice either at the parent node
of v or at any choice point further up, therwill never be reached in actual play (Figure
2.15) [18].

Alpha-beta pruning gets its name from two parameters thst¢rde bounds on the
backed-up values that appear anywhere along the deptlpétistin the tree.a is the
value of the best (highest-value) choice we have found satfany choice point along the
path forMAX. B is the value of the best (lowest-value) choice we have foorfdrsat any

choice point along the path fdfIN. Alpha-beta search (Figure 2.16) updates the values of
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MAX

MIN

MaAX

MIN v

Figure 2.15: The general principle of alpha-beta prunihg is better tharv for MAX, v
will never be reached in play [18].

o andf as it goes along and prunes the remaining brances at a noderaasthe value
of the current node is known to be worse than the cureeat 3 value forMAX or MIN,

respectively [18].

The effectiveness of alpha-beta pruning is highly dependerhe order in which the
successors are examined. If the successors that are k&g best are examined first,
then alpha-beta needs to examine d@ly™?) nodes, instead dd(b™) for minimax. If
successors are examined in random order, the total numbesdes examined will be
roughly O(b®™4) for moderateb [18].

Even with alpha-beta pruning, for any complex game, the gaeeeis orders of mag-
nitude too large to be examined fully in a practical amountimie. One solution is to
examine the tree to a fixed depth, and then apply a heuestituation functionEVAL,
to the leaves of this search. These values can then be bapkbé tree as utility values
are [18]. Since game-playing programs are often given aicetime limit in which to
make a decision as to which move to make, one method of maxignine depth of the

search within a fixed time limit igterative deepening The idea of iterative deepening
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function ALPHA-BETA-NEGAMAX(statg returns a move
v — NEGAMAX-VALUE(state —oo, o)
return themovein SUCCESSORS(statg with valuev

function NEGAMAX-VALUE(state a, ) returns a utility value
if TERMINAL-TEST(statg then return UTILITY(state
V— —00
for a, sin SUCCESSORS(statg do
child — —NEGAMAX-VALUE(s, —, —a)
if (child > v) thenv < child
if (v>a)thena «—v
if (a >= ) then return a
return v

Figure 2.16: Alpha-beta negamax algorithm.

(Figure 2.17) is to search the game tree to a fixed ddmthone ply, then repeatedly ex-
tend the search by one ply until time runs out. Only the miximecision from the most
recent completed iteration is used. Although iterativepgeéng seems to waste time by
re-examining the upper levels of the tree repeatedly on é@acdtion, due to the expo-
nential nature of game tree search, the overhead cost ofr¢ienmaryd — 1 iterations

is only a constant fraction of theé-ply search. Iterative deepening can also improve the
effectiveness of alpha-beta pruning by using the resulfg®fious iterations to improve

the move ordering of the next iteration [14].

2.4.3 Evaluation Functions
An evaluation function returns an estimate of the expectiditiof the game from a given

position. How is a “good” evaluation function defined? Firdte evaluation function

should not take too long to calculate. Second, for non-teaihstates, the evaluation func-
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function ITERATIVE-ALPHA-BETA-NEGAMAX(statg returns a move
d—1
while time is not updo
m+«— ALPHA-BETA-NEGAMAX(state d)
d=d+1
return m

function ALPHA-BETA-NEGAMAX(state d) returns a move
v «— NEGAMAX-VALUE(state d, —oo, o)
return themovein SUCCESSORS(statg with valuev

function NEGAMAX-VALUE(state d, a, ) returns a utility value
if TERMINAL-TEST(statg then return UTILITY(state
if (d == 0) then return EVAL(statg
V — —0o0
for a, sin SUCCESSORS(state do
child — —NEGAMAX-VALUE(s, d -1, -3, —qa)
if (child > v) thenv < child
if (v>a)thena «—v
if (a >= ) then return o
return v

Figure 2.17: Iterative-deepening alpha-beta negamaxidigo

tion should be strongly correlated with the actual chandesiioning [18]. When there
is a time limit for the search, a tradeoff has often been fooetiveen the accuracy, i.e.,
computational time, of the evaluation function and the deptamined by the search. In
other words, if the algorithm can quickly evaluate a singddeay then the algorithm will
be able to examine many nodes, but if the algorithm takesatiaome to evaluate a single

node, not as many nodes can be examined.

Most evaluation functions work by calculating varideaturesof the state — for exam-
ple, the number of pawns possessed by each side in a gamesst drtee features, taken

together, define variousategorieor equivalence classes states: the states in each cate-
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gory have the same values for all the features. Most evaluéinctions compute separate
numerical contributions from each feature and then comtiiam to find the total value.
For example, introductory chess books give an approximaiterial valuefor each piece.
Other features in chess are “good pawn structure” and “kaigtg’, which are assigned
a numerical value. These feature values can then be indilydweighted and summed;
this kind of evaluation function is calledvaeighted linear functiomnd can be expressed

as
EVAL(S) = wy f1(S) +Wafa(S) +... +Wnfr(s) = _iwi fi(s)

where eachw; is a weight and eaclf; is a feature of the state [18]. If the weights are
viewed as a row vectar and the features as a column vedtathen we can equivalently
defineEVAL as

EVAL(S) = w - f

Weighted linear functions assume that the contributionaghefeature is independent
of the values of the other features. To avoid this assumptionment programs for chess

and other games us®nlinearcombinations of features [18].

The features and weights used in chess-playing programe &mm centuries of hu-
man chess-playing experience. In games where this kind pdreence is not available,

the weights of the evaluation function can be estimated bghina learning techniques.
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Method

3.1 Learning

Inductive learningtakes place as the agent observes its interactions with dinlel and
its own decision-making process. A learning agent can baghbof as containing a
performance elemetitat decides what actions to take arldarning elementhat modifies

the performance element so that it makes better decisi@js [1

For the application of learning weights for an evaluationdtion (see Section 2.4),
the performance element is the algorithm that, given a,sfat@des which move to make.

But what should the learning element be?

We would expect the learning process to produce the follgwasults: If a feature is
not found to be a useful evaluator of the board state, onedwexpect that, over a long
enough period of learning, the weight of that feature woaltttto zero. One would also
predict that the weights of the features that positively@ated with winning the game
would become positive, while the weights of the featurestilvmed out to be an indicator

of losing the game would become negative. One would alsoigirttht the weights of
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the features that are the most important and reliable itatisavill have a larger weight

relative to the weights of the features that are less imptrta

Dr. Terran Lane proposed that for feature weight learninigolusd use an algorithm
based on &ingle-layer neural netwotkor perceptron networkvith a single output unit

(Figure 3.1). The output unytis a weighted sum of the input units

n
y= %vv,-x,-
j:

There is a simple learning algorithm that will fit a threshplerceptron to any linearly
separable traning set. The idea behind the perceptronitgpalgorithm is to adjust the
weights of the network to minimize some measure of the emathe training set. Thus,

learning is formulated as an optimization searciwvaight spac¢18].

[] ~,
H—@
|:| {‘ Output

unit
Input

units

Figure 3.1: A single-layer neural network (perceptron reeklywith three inputs and one
output.

The proposed learning algorithm based on perceptronitegworks as follows: First,
create a population of agents with randomly generated wuigtiso, create a population
of agents that will be kept static for the purpose of evahgthe learning progression.
Have the agents play each other in a round robin fashion, aridrm a learning operation
on each agent at the end of a game. To perform the learningtopegrthe agent stores the
feature vectorgor each state encountered during the course of the gameatédréevector

contains the values of the features for a particular stetad®éheweight vectoiis applied
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to obtain a heuristic value for the expected utility valuelw state. When the game is

over, we can calculate the following valte

n .
fe = Z Yt
=1
wheren is the number of feature vectoffs,is theith feature vector of the game, apds
the learning rate and is in the rang¢0,1]. We then modify the weight vectav of the

agent in the following way:

{ w+fe if the agent won the game
W =

w —f¢ if the agent lost the game

The idea of this algorithm is to modify the weight of a feattoeeflect the distribution
of that feature throughout the game, where the values ofd¢htire at the end of the game
are weighted more heavily (by the learning rate) to refleetidea that the states near the
end of the game more directly influence whether the game isowvtost. If a feature has a
high value near the end of a game that is won, the weight faféladéure will be moved in
the positive direction. Similarly, if a feature has a higtueanear the end of a game that

is lost, the weight for that feature will be moved in the negadirection.

When | experimented with this algorithm, | discovered thatid not work well for
this particular application. | implemented an agent thadusvo features in its evaluation
function, SPP and SPO (see Section 3.4). Common sensecdithat the weight of SPP
should be positive, and the weight of SPO negative. Aftemarteinds of learning, how-
ever, | discovered that both weights were strongly tendiegative, leading to an agent
that was completely ineffective at moving. The reason fag Was that the value of SPP
was always between 0 and 1, so whenever the agent lost (wlashoften) the weight
would always be pushed in the negative direction. It was ossible for the weight to
be pushed in the correct (positive) direction when the algsnt This algorithm might be

effective with features that range from -1 to 1, but | decitiedbandon this approach and
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explore using a genetic algorithm as a weight learning fonctl chose to use a genetic

algorithm because the function of a genetic algorithm igtinoize numeric values.

3.2 Genetic Algorithms

Evolutionary algorithmsare a family of computational models inspired by the biotadi
processes of evolution and natural selection. For an inkddigcussion of how evolution
has produced problem-solving adaptations in nature seeGéhetic algorithmgGAs)
are a subset of evolutionary algorithms. A GA is any popaflatbased model that uses
selection and recombination operators to generate newlsgmpts in a search space
[22]. These algorithms can be described as function opéimjzbut this does not mean
that they yield globally optimal solutions [23]. GAs haveebesuccessfully applied to
the fields of optimization, machine learning, neural negpand fuzzy logic controllers,

among others [21].

An implementation of a genetic algorithm begins witp@pulationof typically ran-
dom chromosomeswhich can be thought of as candidate solutions for somel@molof
interest. Each chromosome is then evaluated to obtaindigidual fithessin solving a
particular problem. Theselection recombination andmutationare applied to the pop-
ulation to create th@ext population These operations are similar to, but not identical
to, their biological counterparts. The process of goingrfitbe current population to the
next population constitutes one generation in the proceagienetic algorithm [23]. An

overview of a sample genetic algorithm is shown in Figure 3.2

Given that variation exists within a species, individualtwm a population will differ
in their ability to cope with a given environment and suctégsreproduce. This varying
reproductive success of individuals based on their diffegenetic constitutions isatural

selection The concept of natural selection is often simplified to Vseal of the fittest.”
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Population at Ty, Population at Tp4+1
Mutation
0000001101 opoooollol | ———| 1000001101
0101010010 0101010010
0101010010 )20 )20 )20
1111111000 |Differential 0101010010 “-: g 0101111000
1[]1[]1[][]111 REpdeuctiDn 1111111000 - Crossovaer M 1111010010

Figure 3.2: Sample genetic algorithm overview [11]. A p@pian of four chromosomes
is shown at timen. During differential reproduction, in which chromsomes ahosen
to reproduce based on their individual fitness, the first mis@me is selected once, the
second is selected twice, the third is selected once, anfbtinth is selected zero times.
After selection, the mutation operator is applied to the ilsomsome, and the crossover
operator is applied to the third and fourth chromsomes. €kalting population is shown
in the box labeled,. 1.

In genetic algorithms, the fitness of individuals is deteradi by applying ditness eval-
uation functionto the chromosomes. The fitness evaluation function prgvédseasure
of performance with respect to a particular set of pararaeféne fitness level of an indi-
vidual is then used to determine the probability that it wibduce offspring for the next

generation.

There are a number of ways to do selection. One method invohagping the popu-
lation onto a roulette wheel, where each individual is repreed by a space that propor-
tionally corresponds to its fitness (Figure 3.3). By repaigtepinning the roulette wheel,
individuals are chosen usirgjochastic sampling with replacementchoose the pool of
chromosomes that will combine to form the next populatiohisTmethod increases the
probability that the chromosomes of the current populatiith the highest fithess will

contribute to the next population [22].

A pair of chromosomes is selected from the eligible pool witime probability cor-

responding to their fitness, and then recombination is e@b the pair to produce one
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Chromosome Fitness Roulette Wheel

3

B Chromosome 1
@ Chromosome 2
O Chromosome 3
0O Chromosome 4

Figure 3.3: Mapping a population onto a roulette wheel basefitness.

or more offspring chromosomes. A chromosome can be thougsitrply as encoded
information. A classic chromosome is a string of bits, foaeyle<10101110010>.

Chromosomes are not limited to bits, however. Another exampa chromosome is
<"I"ma gene", 80, xyxxxyy>.Mimicking the structure of biological chromo-
somes, digital chromosomes can be arbitrarily divided biteks of information called
loci. In the first example, each bit can be viewed as a locus, antkeigsécond example
the loci are separated by commas. Continuing with the bicdd@nalogy, each atomic

subunit of a locus is hase

Recombination involves combining the parent chromosomssine way. One method
of recombination involvegrossover pointgFigure 3.4), at which parent chromsomes

swap loci.

After recombination, a mutation operator can be appliedeamffspring chromosomes.

With classic chromosomes, this means that each bit hasaircértv probability of being
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Figure 3.4: Recombination of two parent chromosomes withdvessover points to pro-
duce two offspring.

flipped. More generally, this means that each locus has soobability of being modified
in some random way. Typically, the mutation rate is less th#n[23]. Higher mutation

rates make the genetic search less directed and more random.

A number of theories have been proposed that attempt toaugty analyze the per-
formance of evolutionary algorithms [10]. The general angat about genetic algorithm

performance has three components [11]:

¢ Independent sampling is provided by large populationsaheainitialized randomly.

¢ High-fitness individuals are preserved through selectaong this biases the sam-

pling process towards regions of high fitness.

e Crossover combines partial solutions, called “buildingdsis,” from different chro-
mosomes onto the same chromosome, thus exploiting thegderal provided by

maintaining a population of candidate solutions.

In an analysis of GAs in comparison with other algorithmsyiBaet al. find that a variation

of a GA is the strongest known approach to solvingAlakelitive Search ProblertASP),
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which can be described as follows: ét= {1,2,...,LIN. There is an oracle that returns
the number of components common to a query X and a target vectar € X. The
objective is to findt with as few queries as possible. For simplicity, it is assdirfieat
N> L [1].

Perhaps the most common application of GAs is multiparanfatection optimiza-
tion. Many problems can be formulated as a search for an aptalue, where the
value is a complicated function of some input parameters. piFablems that don't re-
quire the exact optimum, GAs are often an appropriate mefibrothding “good” values,
where “good” can be near optimal or even a slight improvenogat the previously best
known value. The strength of the GA lies in its ability to maudate many parameters
simultaneously[11]. Deb et al. demonstrate the power of av@dant in tackling real-
parameter optimization problems. The performance of thsisinvestigated on three
commonly used test problems and is compared with a numberohiiteonary and opti-

mization algorithms [8].

3.3 Features of Quoridor

In order to use a heuristic evaluation functiéeaturesof the game must be identified (see
Section 2.4). Since Quoridor is a virtually unknown gameh@ game-playing literature,
there was no reservoir of expert knowledge to draw upon, asdeae in other game-

playing programs. Therefore, | proposed a number of featinoen observation of play.

3.3.1 Path-finding Algorithms

One obvious feature of Quoridor is related to the goal of theg — moving your pawn
to the other side of the board. One indicator of how well a ptag doing is how many

squares away that player’'s pawn is from that player’s gogblarer'sgoal is defined as
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the row or column of squares on the opposite side of the baard Where that player’s
pawn began the game. The black player’s goal is the sqadresb1l, c1, di1, el,

f1, gl, hl, i1, and the white player’s goal is the squae®, b9, c9, d9,

e9, f9, g9, h9, i9. Because optimal path-finding algorithms can be expenkive,
considered a variety of pathfinding-related features that mn accuracy and performance.
As discussed in Section 2.4, there is often a tradeoff betwhezaccuracy of the evaluation

function and the depth of the search.

The simplest path-related feature | used was a boolean guesenting whether the
pawn is on thegoal sideof the board (see Figure 3.5). This value is a 1 if the player's

pawn is on a square in the goal side, otherwise itis a 0.
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Figure 3.5: Thegoal of the the black pawn is shaded black, and the black plagerd
sideof the board is shaded gray.
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The next-simplest feature | used was tManhattan Distancewhich is the distance
between two points measured along axes at right angles. onid@u, the Manhattan
Distance can also be thought of as the shortest path fronetia to the goal ignoring all

obstacles (see Figure 3.6).
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At this point | ran into a problem with using path lengths ie #tvaluation function. To
facilitate the learning of the weights (see Section 3.1gdided to follow the convention
that a positive feature is “good” for the player who is doihg evaluation, while a negative
feature is “bad”. With path lengths, however, the smaller tumber, the shorter the
path, and the better the feature for the player. For the M#ahd®istance, | addressed
this problem by subtracting the actual Manhattan Distanoe fthe maximum possible
Manhattan Distance value. This turns the feature into a ureasf progression along
a path instead of a measure of the distance remaining ustiétiad of the path. | also
decided to make my features similar and bounded in theiregibg normalizing them to
the rangd0, 1]. For the Manhattan Distance, | simply divided the prog@ssalue by the
maximum Manhattan Distance. In the situation shown in Fedi6, the final Manhattan
Distance feature value would 5> = 0.556.
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Figure 3.6: The squares that are part of the Manhattan distion the black player are
shaded gray. The Manhattan distance for the black player is 5

Obviously, the Manhattan Distance, while a very speedy nreasent, is not a very

accurate measurement of the length of the shortest pathanoawn to its goal. The next
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algorithm | used wa®ijkstra’s algorithm a single-source shortest path graph algorithm.
Dijkstra’s algorithm maintains a s&of vertices whose final shortest-path weights from
the sources have already been determined. The algorithm repeateddgtsethe vertex
u € V — Swith the minimum shortest-path estimate, add® S, and relaxes all edges

leavingu. For a detailed description of Dijkstra’s algorithm, seg [4

Wait, Quoridor is a board game, not a graph! Well, actuallQuoridor board can
easily be represented by a graph. A Quoridor graph is bwithfa Quoridor board state
from the perspective of one of the players by the algorithrdRigure 3.7. An example of

a Quoridor graph is shown in Figure 3.8.

1 Create a vertex for each square

2 Create an undirected edge between each square
and each of the square’s cardinal neighbors

3  For each fence, remove the edges that the fence
intersects

4  Remove the vertex that the opponent pawn
occupies and the edges of that vertex, and
create edges in the neighborhood of that
vertex representing all of the possible legal
jumps

Figure 3.7: Algorithm for turning a Quoridor board stateoiatQuoridor graph.

The cardinal neighborof a square are those square®r — a letter or number. For
example, the cardinal neighbors of squakeared5, f5, e4, e6. If asquareison
an edge, it will have less than four cardinal neighbors. Tilg complicated part of the

algorithm is the last step, which takes jumps into accounp&th creation.

Notice in Figure 3.8 that a Quoridor graph is not necessaritpmpletely connected

graph.

The problem of finding the shortest path from the pawn to tred ganow transformed
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Figure 3.8: Sample Quoridor board state and correspondingi@or graph from the per-
spective of the black player. The vertex occupied by thekopesvn is shaded a medium
gray, and the goal is shaded black. Notice that the verticaded a light gray are not
connected to the rest of the graph. Also notice that the xexataining the white pawn
is not present, and that the edges in that neighborhoodtréflepossible jumps.
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into the problem of finding the shortest path from the veregpesenting the square occu-

pied from the pawn to one of the vertices representing thé goa

Dijkstra’s algorithm is ideal for use on a Quoridor graphcédngse it has optimal per-
formance on sparse graphs (graphs with a small number oedtgive to the number
of vertices) [4]. A Quoridor graph is indeed very sparse,sidering that there are 81
vertices (9 rows of squares 9 columns of squares) and that each vertex is connected to
at most 5 other vertices (4 possible cardinal neighbors sSipte jump neighbors as seen

in Figure 3.8).

Now to find the shortest path to the goal, simply run Dijkstralgorithm using the
vertex representing the square occupied by the pawn as tinees@nd choose the short-

est of the resulting paths to each reachable vertex regmegem goal square. Like the
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Manhattan Distance, this value must be manipulated. Thisife is trickier, as there is no
obvious “maximum” value. | chose the maximum value to be 8dictvis the number of
squares on the board and thus the longest possible path.te& katue, however, would
be 73, since a pawn will never traverse more than one goatsgs@the longest possible
path should only include one of the goal squares. The valtieseshortest pateature is

a1-length of the Sslhortest path to g(?egince most of the time the shortest path to the goal

will be a lot smaller than 81, there will not be a lot of variana this feature. There is

probably a better way to represent the shortest path feature

Another useful model to apply to a Quoridor board state isi¢ait as aDirichlet
problem which can be defined as follows: L8t= D UB be a finite set of lattice points
such thaD is the set ofnterior pointsandB is the set oboundary pointsA function f
defined orSis harmonicif, for points (a, b) in D, it has the averaging property

f(a+1,b)+ f(a—1,b)+ f(ab+1)+ f(ab—1)
4

f(a,b) =

The problem of finding a harmonic function given its boundaalues is called the Dirich-

let problem [9].

By viewing each goal square as a boundary point with the vaJuand adding an
invisible set of boundary points with the value 0 “behindé ttow or column where the
pawn starts the game, a Quoridor board state can be turrcea patential field. The pawn
wants to move through the potential field towards the highasted points (the goal). The
problem is finding the values of the interior points (the loipaso that the pawn knows
which path to take. This can be done by finding a harmonic fanctThe value of this
feature is then the value of the harmonic function at thetomioupied by the pawn. This

feature is already normalized, and a higher value meangitbgiawn is closer to the goal.

Finding the exact solution to a Dirichlet problem in two dims@ns is not always a
simple matter. One method for generating approximate isolsiis themethod of relax-

ations(Figure 3.9). The idea of this method is to iteratively agerghe interior points.
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While the resulting function will not be perfectly harmonitwill be more nearly har-
monic than the previous iteration. For an example of apglyime method of relaxations,

see Figure 3.10 [9].

1 For each pointl € D, set the value ofl to be
the average of its neighbors.

2 Repeat step 1 until satisfied.

Figure 3.9: Method of relaxations.

11 1 1
1001 1 .55 B85 1
1 0000 1 .75 .19 .05 0O
1 00 1 o0 0

(a) (b)

Figure 3.10: (a) All interior points are set to 0 and the barmggoints are fixed to 1 and
0. (b) After one iteration of relaxation, moving from leftlight and down to up replacing
each value by the average of its neighbors.

An exact solution to a Dirichlet problem can be found by théhnd ofMarkov chains
A finite Markov chains a special type of chance process that may be describadially
as follows: we have a s&= {s1,%,...,5} of statesand a chance process that moves
around through these states. When the process is instatenoves with probability
Rj to the statesj. The transition probabilitie§; are represented by anx r matrix P
called thetransition matrix To specify the chance process completely we must give, in
addition to the transition matrix, a method for starting pinecess, i.e., the state in which

the process starts [9].
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After nsteps, the probability that the process is in each of thalplestates is provided
by the matrixP raised to theth power, oP", in which entriesPir} represent the probability
that the chain, started in stedg will, after n steps, be in statg. After a large number of

steps, the probability of being in a state is independertt@ttarting state [9].

States that, once entered, cannot be left, are calipdor absorbing statesA Markov
chain is calledabsorbingif it has at least one absorbing state and if, from any stats, i
possible to reach at least one absorbing state. The states afsorbing chain that are
not traps are calledon-absorbing When an absorbing Markov chain is started in a non-
absorbing state, it will eventually end up in an absorbimgestFor non-absorbing stage
and absorbing statg, we denote byBj; the probability that the chain starting gwill

end up insj. We denote by the matrix with entries;; [9].

Assume now thalP is an absorbing Markov chain and that therewwadsorbing states
andv non-absorbing states. We reorder the states so that thebaizsstates come first

and the non-absorbing states come last. Then our trangitabrix has the canonical form:

| 0
R Q

P—

Herel is au x u identity matrix, and is au x v matrix with all entries 0 [9].

The matrixN = (1 — Q)1 is called thefundamental matrixor the absorbing chain
P. The entryN;; is the expected number of times that the chain will be in stateefore
absorption when it is started 81 B = NR is the absorption probabilities matrix. For an

absorbing chai, P" will approach a matri¥P* of the form [9]:

| 0
B Q

P® —

Now, going back to the original definition of a Dirichlet pteln, let f be a function

41



Chapter 3. Method

with domain the state space of a Markov chBisuch that fot in D
f(i)= Y Rif()
J

Thenf is a harmonic function foP. If we represent as a column vectdt, f is harmonic

if and only if
Pf=f.

This implies that
P =f.

The vectoirf can be written as

f
f=| ® |,
fp

wherefg represents the values bof the boundary points arfg the values of the interior

points. Then we have

fg B I O fs
) \BQ)\fh
andfp = Bfg = (| - Q)flRfB [9].

To apply the method of Markov chains to a Quoridor board stat& consider the
subset of squares that is reachable by the player. In othetsyave are only going to
use the connected component of the graph that includes thexwbe pawn is currently
occupying. The goal squares become absorbing states, angghof the squares be-

come non-absorbing states. We also need a set of absorhateg sthich are conceptually
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“behind” the row or column that the pawn begins that game dme dbsorbing states rep-
resenting the goal have the value 1If and the other absorbing states have the value 0.
The probability of moving from non-absorbing staf¢o any states; is 0 if the two states

are not neighbors, otherwise 'tﬁgre—és)' The actual feature value is the valuefpfat
the state representing the square occupied by the pawn. énp& Quoridor board state

and corresponding values are shown in Figure 3.11.
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Figure 3.11: (a) Sample Quoridor board state. (b) Corredipgrharmonic function from
the perspective of the black player with fences added for easomparison. Notice that
only the connected component is assigned values, and atae lbe added absorbing
states with value 0. The value of this feature for the blaeky@t would be 0.01.

3.3.2 Other Features

Another feature | proposed was the distance between thegaltnis feature arose from

the “creating a box” strategy, in which it is essential thathbpawns be close together so
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that they can be enclosed in the same labyrinth. Anotheatsituwhere it is advantageous
for the pawns to be close together is when one pawn is verg ¢togs goal and the other
pawn has not managed to advance very far. Of course, it iakspto envision situations
where a board state is bad for you if the pawns are close tege$io it is not very likely
that thepawn distancdeature is a universal indicator of whether a player is wagnor

losing. This feature was also normalized by the formﬁjﬂaoawgld'StanC?

The number of fences a player still has in reserve is anotivioas feature of Quori-
dor. Like the pawn distance, however, there are winningsitns where the player has a
lot of fences remaining, and there are winning situationsnelthe player doesn’'t have any
fences remaining. So this is also not necessarily a usedtiife. Thenumber of fences
feature can be normalized by dividing by 10, the number ofésreach player begins the

game with.

The chess playing machine Deep Blue uses over 8000 featuitssavaluation func-
tion, many of them describing highly specific patterns otpge[18]. The level of expert
knowledge in the game of Quoridor today is not nearly as atk@nThe set of features
that | came up with are the fairly obvious ones. No doubt, nraoye features could be

proposed, for example, features that describe how stcatiygplaced the fences are.

3.4 Implementation

To develop a Quoridor artificial player, | had to develop arsealgorithm, evaluation
function, and learning algorithm. For the search algoritimelied upon a standard
iterative-deepening alpha-beta negamax search algolgles Section 2.4) with a few
modifications. The first modification was to short-circui¢ thearch if a 1-ply search re-
vealed a winning terminal state, because there is no posganching further in the tree if

the agent is one move away from winning.
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Another modification was the use ofpaincipal variation, which is a list of §tate
move valueé triplets representing one path through the tree. The fonddEGAMAX-
VALUE was modified to return a principal variation instead of jhstvalue. The principal
variation returned represents the optimal path fisiateto the leaf node of the search.
Using a principal variation served several functions. That fwas to prevent loops in the
game tree, e.g., returning to a previous state. With a grateariation, a state can check
to see if any of its child states are identical to any of itsepaistates. If so, the state can
prune those children. The second function was for move orgeiOn iterationi of the
iterative-deepening algorithm, if a given state is in thegpal variation of iteration— 1,
the first move we examine is the one in that triplet. By exangrthe move previously
found to be the optimal move for this state first, then the @alpta pruning is more likely

to be effective.

The last modification was the ability to define a cutoff poiot the search if it was
determined that the search would be unable to complete ttiétemative deepening itera-
tion in a reasonable amount of time. For example, for the timigs | imposed during the
learning process, | found that the search could not possdtyplete the iteration at 3-ply
if the branching factor was near its maximum. Since the tedithe last (uncompleted)
iteration is disregarded, any time spent past the 2-phati@n was effectively wasted.
Therefore, to save time, | imposed a cutoff when the lastiken had examined a certain

number of leaf nodes (approximately the number of leaf nofles2-ply tree, 133).

For the evaluation function, | chose 10 features. Table 3t% the features, their
descriptions, and whether | hypothesized that the weigltsdvturn out to be positive,

negative, or zero.

| chose to use all of the features discussed in Section 3cgépexor the method of re-
laxation. The reason for excluding the method of relaxaidhat | found that calculating
the feature value took significantly longer than calculgtime Markov chain feature, and

since the method of relaxation is an approximation to thekig\achain method, it would
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Table 3.1: Features chosen for the Quoridor agent.

Feature Feature Feature Weight
Number Name Description Hypothesis
1 Shortest Path | length of Dijktra’s shortest +
Player (SPP) path for the player
2 Shortest Path | length of Dijktra’s shortest —
Opponent (SPO) path for the opponent
3 Markov Chain Markov chain value +
Player (MCP) for the player
4 Markov Chain Markov chain value —
Opponent (MCO) for the opponent
5 Manhattan Distance =~ Manhattan distance +
Player (MDP) for the player
6 Manhattan Distance =~ Manhattan distance —
Opponent (MDO) for the opponent
7 Pawn Distance pawn distance 0
(PD)
8 Goal Side goal side +
Player (GSP) for the player
9 Goal Side goal side —
Opponent (GSO) for the opponent
10 Number Fences number of fences 0
Player (NFP) of the player

only be useful if it was faster to calculate. Of course, it nii@ypossible to implement
the method of relaxations more efficiently. All of the chogeatures can be calculated
for both the player doing the evaluation and from the perspeof the opponent, except
for pawn distance, which is independent of which player imgahe evaluation. | chose
not to include the number of fences held by the opponent aatare because no move
by the player can influence that value. The reason that | ingsited that NFP would
tend to a weight of zero is that fences can be viewed as pat@mergy. Having a lot of
potential energy is good, but it can also be translated imetic energy without losing
much value. In Quoridor terms, holding fences in reserve@igiecause then you have a

lot of flexibility later in the game, but if you use your fenogisely then they do not lose
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their value simply because they have been played.

For the learning algorithm, | chose a variant of a genetiomtlgm (see Section 3.2).
Usually there are only two main components of most genegiordhms that are problem-
dependent: the problem encoding and the fitness evaluatn@tién [22]. For the problem
of learning weights, a weight vector is considered to be ammsome, so that each locus
is a float value. The fitness evaluation function is the nunobgames that a chromosome

wins against the other chromosomes of the population.

In my genetic algorithm, a population was created with tigpathm shown in Figure
3.12. The functioRANDOM(a, b) returns a randomly generated float in the rajagg).
POPSIZE is a constant describing the number of chromosomes to beedréa the pop-
ulation. C; is theith chromosome of the population, a@dj] is the jth locus (weight for
featurej) of that chromosomeHASFEAT is the probability that the chromosome has a
non-zero weight for each feature. |1 $éASFEAT to 0.3 for all of my populations. If a
chromosome has a zero weight for a feature, then it does n&iewiane calculating the

value of that feature.

function CREATE-POPULATION()
for i =1... POPSIZE do
for j=0...9do
if (RANDOM(O, 1) <= HASFEAT)
then C[j] — RANDOM(-1, 1)
elseCi[j] — O

Figure 3.12: Population creation algorithm.

To determine the fitness of each chromosome, each chromgdaysearoundagainst
every other chromosome. A round consists of two games, Wélthromosomes alternat-
ing being the black player. This was done to avoid any bias/fach chromosome moves

first. The fitness of a chromosome is then simply the numberofeas it wins. During
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a game, each player gelMELIMIT seconds to decide on a move. | quickly discovered
during this process that, if left to their own devices, ageruld make a game last indefi-
nitely by, for example, repeatedly moving back and forthwsetn two squares. Therefore

it was necessary to impose a limNJOVECAP, on the maximum number of moves a
game could last. | hypothesized that 164 would be a reasenable forMOVECAP, as

this allows each player 10 moves to place its fences and 74&stovget its pawn to the
goal. If a game reachddOVECAP moves before ending, the game was declared a draw,
and neither player won. So, to increase its fithess, a chromesvould have to not only

win a game, but do so in a limited number of moves.

Once alln(n— 1) games were finished, whends the number of chromosomes in the
population, the chromosomes were ranked by their fithess.danger of using recombi-
nation and mutation is that the best solution (chromosom&)d so far could be modified
irrevocably and lost. Therefore, | directly copied a few loé top-ranked chromosomes
into the next population. The percentage of the top-rankedmosomes that were copied
was determined by thELITISM variable. To fill the remaining slots of the next popu-
lation, | used theSsPAWN algorithm (Figure 3.13). The argume@} is the population
of generationp, and the argumentt is an array of corresponding fitness values. The ar-
gumentn is the number of offspring requiredSELECT(C,, f) returns a chromosome
selected fronC, using the roulette wheel methoJUTATION is the probability that a
weight will be mutated LOSEFEAT is the probability that if a weight is non-zero it will

be changed to zerdAUTFEAT is the maximum amount that a weight can be mutated by.

For example, ifPOPSIZE was 10 ancELITISM was 0.2, then the first and second
top-ranked chromosomes were each copied once into the aagtafion. The&SPAWN

algorithm would then be used to create the remaining 8 chsomes required.

For each learning population that was created, | also a@eat®mpaniotest popula-
tion, which would never change. Every few generations of the tiga&gorithm learning

process, each chromosome of the learning population playednd against each chro-
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function SPAWN(C,, f, n) returns a population
fori=0...n—1do

mother«— SELECT(Cy, f)

father— SELECT(C,, f)

for j=0...9do
if (RANDOM(O, 1)> 0.5)
thenCp.1[j] — mothetj]
elseCpr1[j] < fatherj]

if (RANDOM(O, 1) > MUTATION) then
if (Cptili] is zero)
then Cpr1[j] — RANDOM(-1, 1)
else if(RANDOM(0, 1) > LOSEFEAT)
thenCpr1i[j] — 0O
elseCpr1i[j] < RANDOM(-1, 1) x MUTFEAT
return Cpy1

Figure 3.13: Algorithm to create offspring for the next gexten.

mosome of the test population. The total number of games wahnedearning population
against the test population was thepulation fithesslf the population fitness increased

over time, that would be an indicator that the population ingsoving.

There were still a number of variables to be specified, so Liaseparate populations
with different values for the variables shown in Table 3.ackpopulation ran on a differ-
ent CPU and was named for the machine and processor numisedit Time was a limit-
ing factor, so | tried to make the relevant variable®PSIZE, MOVECARP, TIMELIMIT)
as small as possible. For example, if a populationP$@PSIZE to 20, MOVECAP to
164, andTIMELIMIT to 15, then a single generation of the learning algorithrmdtake

up to 10.8 days(R0 x 19) gamesx 164 moves/game 15 seconds/move).
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Table 3.2: Variable values for the different populations.

Population | Population | POPSIZE | MOVECAP | TIMELIMIT MUTATION
Number Name (seconds)
1 digammal 20 150 12 0.01
2 digammaz2 10 150 12 0.05
3 hetal 20 182 10 0.01
4 heta2 15 100 8 0.05
5 omegal 10 100 8 0.01
6 omicronl 10 120 10 0.05
7 psil 25 120 8 0.01
8 psi2 10 80 7 0.1
9 rhol 15 100 20 0.01
10 rho2 15 100 20 0.1
11 xil 20 120 15 0.01
Population | Population | LOSEFEAT | MUTFEAT ELITISM
Number Name
1 digammal 0.1 0.1 0.2
2 digamma?2 0.1 0.3 0.1
3 hetal 0.1 0.1 0.2
4 heta2 0.2 0.3 0.1
5 omegal 0.1 0.1 0.2
6 omicronl 0.1 0.3 0.1
7 psil 0.1 0.1 0.2
8 psi2 0.2 0.4 0.1
9 rhol 0.1 0.1 0.2
10 rho2 0.2 0.5 0.1
11 Xil 0.1 0.1 0.2
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Results

The learning process ran for a few weeks until a deadline eashed. During this time,
some populations got more CPU time (due to machine downtiom@an error, etc.) than
others, and so the work spent learning was not equal for egghlation. Also, the pop-
ulations ran on different machines with varying speeds.ufegt.1 shows the change in
population fitness (see Section 3.4) over the learning ggoCEhe X-axis is the generation
number of the genetic algorithm on a logarithmic scale, aedtaxis is the percentage of
games won against the test population. The population §tobsiost populations seems

to have reached an early peak and then dropped or leveled off.

| next took a look at the individual fithess for each chromosaomevery population.
| chose a chromosome to represent each population, pickmghromosome with the
highest fitness in its population. These chromosomes foarmesiv champion population.
The weights for each feature of these chosen chromosontagdiar the population they
represent, are shown in Table 4.1 and are plotted in Fig@re Phe description of each
feature abbreviation and number can be found in Section”gure 4.2 also shows the

average value of each weight across the champion population

| wanted to determine which chromosome of the champion @bjoul had the highest
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Table 4.1: Champion population weights.

# | Chromosome| SPP | SPO | MCP | MCO | MDP
1 digammal | 0.250| 0.000 | 0.290 | 0.000 | 0.378
2 digamma2 | 0.000| 0.331| 0.606 | -0.480| 1.165
3 hetal 0.945| 0.000 | 0.000 | 0.000 | 0.000
4 heta2 0.421| 0.386 | 0.000 | 0.000| 0.095
5 omegal -0.452| -0.462| -0.711| 0.393 | 0.627
6 omicronl |-0.396| -0.713| 0.551 | 0.000 | 0.504
7 psil 0.747 | 0.096 | 0.000 | 0.000| 0.000
8 psi2 1.299 | -0.258| 1.303| 0.000 | 0.000
9 rhol 0.993| 0.083 | 0.000| 0.000| 0.000
10 rho2 1.187 | -0.451| 0.278 | 0.000 | 0.000
11 xil 0.131| 0.362 | 0.000| 0.000 | 0.000
# | Chromosome| MDO PD GSP | GSO | NFP
1 digammal | 0.034 | -0.974| 0.071 | 0.000 | 0.000
2 digamma2 | -0.300| 0.903 | 0.522 | -0.504| -0.265
3 hetal 0.000 | -0.846| 0.245| 0.000| 0.792
4 heta2 0.097 | -0.201| 0.757 | -0.448| 0.534
5 omegal -0.908| 0.000 | 0.000 | 0.000 | -0.078
6 omicronl 0.000| 0.392 | 0.000 | -0.322| 0.000
7 psil -0.792| 0.000 | 0.000| 0.000 | 0.327
8 psi2 0.497 | -0.699| 0.487 | -0.346| 0.555
9 rhol 0.000 | -0.460| 0.000 | 0.000 | 0.000
10 rho2 0.000| 0.000| 1.061 | 0.000| 0.592
11 xil 0.000| 0.000 | 0.000| 0.000| 1.000

fitness, but, since each population was developed usingreiffMOVECAP and TIME-
LIMIT parameters, the method for determining comparative fitaessnot straightfor-
ward. | ended up doing two different competitions, a “fasbimpetition and a “slow”
competition. In both competitions, tMOVECAP was set to 182, which was the largest
value used in any of the populations. In the fast competitibea TIMELIMIT was rela-
tively short (8 seconds), and in the slow competition, TRIELIMIT was relatively long
(15 seconds). The results of the fast competition are showigure 4.3, where the X-axis

is the chromosome number (see Table 4.1) of the championgtapy and the Y-axis is
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the fitness of each chromosome (humber of games won agaiethibr chromosomes).
The results of the slow competition are shown in Figure 4Mbdth competitions, chro-
mosome 7 (psil) had the highest fithess and was declared éingpatn chromosome of

all populations.

During the fast and slow competition, a total of 220 gamersdked some statistics.
The average game length was 91.1 turns, the average brgrfelsior was 60.4, and the
average depth reached by the search was 4.1. The averagewepthe same for both
the fast and slow competitions, suggesting that the diffezan the time limits was not

significant enough to allow for a deeper search.

While these results tell us the relative progress of the [adjmns and which chromo-
some is the most fit, they do not tell us how “well” the Quoridgent plays. For a more
gualitative analysis of the agent, Joseph Farfel and | etgfed the champion chromo-
some, number 7 (psil). We both easily beat it using both a #Iis2@nsecond turn time
limit, and both concluded that it is unlikely that any humdayer would have trouble
winning against it. While chromosome 7 is able to effecyvelace fences to lengthen
the opponent’s path, it is not very effective at moving tadgathe goal, especially near
the end of the game, and does not play fences defensivelygolpddyed the “average”

chromosome of the champion population (see Figure 4.2)easily beat it as well.
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Champion Population Weights
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Fast Competition Results
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Figure 4.3: Fast competition results.
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Chapter 5

Conclusions

The goals of this research project were to analyze the cteaistics of the game of Quori-
dor, propose features for use in an evaluation functionausarning algorithm to optimize
the weights of a linear evaluation function, and evaluagedttificial player produced by
this method.

As a game, Quoridor can be characterized as a determinsgtigjential, partizan,
loopy, two-player, zero-sum game of perfect informatiothvé restricted outcome. The
game tree of Quoridor has a maximum branching factor of 138 (fossible fence loca-
tions and 5 possible pawn move locations), and a minimumdbiag factor of 1. Over
the course of 220 agent-agent games, | calculated the a&bragching factor to be 60.
This is still significantly higher than the average brangherctor of chess (35), but signif-
icantly lower than the average branching factor of Go (28D)dr that of Amazons (500)

[14]. Also, the average game length of these agent-agenégamas 91 turns.

| proposed 10 features of Quoridor: Shortest Path Playeort&t Path Opponent,
Markov Chain Player, Markov Chain Opponent, Manhattanddisé Player, Manhattan
Distance Opponent, Pawn Distance, Goal Side Player, Gdal@pponent, and Number

Fences Player. These features are discussed in Section 3.3.
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How effective was the genetic algorithm | chose as a weigirhieg function? Based
on my results, my algorithm is probably not the optimal aiton for this problem. While
the population fitnesses did immediately increase, they gremked and tapered off. It
is possible that more generations were needed for the gealgbrithm to be effective.
There was a huge spread in the values of weights betweenftleedt populations, so the

learning algorithm did not converge on a single optimum sofu

Something strange happened with population 5: after géoer&, the population
fithess dropped to 0.3 and thereafter didn’t change at adlo Ahe champion of population
5 won zero games against the other champions. This may raviéal in the learning
algorithm: population 5 became nearly homogeneous, mgdhat there was very little
variation in the population. Without variation in the pogtibn or a high mutation rate, a
genetic algorithm cannot generate new solutions. One drekvbf genetic algorithms is

possible early convergence on a solution.

We theorized that having differemtMELIMIT andMOVECAP parameters might pro-
duce populations that were better suited for “fast” or “slgames. There was a difference
in the performance of the champion chromosomes in the twgetitirons, for example,
chromosomes 1, 8 and 10 won more games in the slow competitiarever, chromosome

7 performed consistently well for both time limits.

The champion chromosome’s population (7) had relatively toutation rates com-
pared to the other populations. Population 7 also had a sheetlimit, but was on one
of the faster machines. Population 7 haB@PSIZE of 25 , while the worst population
(5) had aPOPSIZE of 10. Populations 3 and 4, which did well in the competitidmead
POPSIZEs of 20 and 15, respectively. Perhaps large population §iz€8) would make

this algorithm more effective.

Finally, a major drawback of the learning approach | usedis project is the sheer

amount of time it needs. Another learning algorithm migtguiee fewer games to be
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played, and thus be more efficient.

The resulting artificial player (champion chromosome Aegithe turn time limit and
machines used, is not able to beat human players. The goaluséfresearch in this area

should be to produce a Quoridor artificial player that cay pampetitively with humans.

Although the branching factor is quite large, it may still ip@ssible to use the brute
force search approach to develop an effective playing pragrFurther research in this
area might investigate a more efficient search algorithmpainding heuristics. Features
that focus on the strategic placement of fences could beogetp Improving the accu-
racy of the evaluation function could also dramaticallyrease the ability of the artificial
player. A different weight learning algorithm could be useérhaps with a nonlinear
evaluation function. The server-client architecture of cogle could be utilized to allow
the artificial player to learn from playing humans over thieinet. Without a deadline,

much longer time limits for both learning and playing wouldhirove the artificial player.
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