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Abstract

In this paper, the board game Quoridor is analyzed, and the development of a program

able to play Quoridor is described. Since there is no existing body of expert knowledge

on the game of Quoridor, the set of useful features of the gamehas not yet been defined.

Therefore, a number of features are proposed in this paper. Agenetic algorithm was used

to optimize the weights of a linear weighted evaluation function using these features. The

effectiveness of this genetic algorithm as a learning algorithm is evaluated. The resulting

Quoridor artificial player is able to play adequately, but not well enough to beat a human

player.
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Chapter 1

Introduction

The notion that computers might play games has existed at least as long as computers. In

the nineteenth century, Charles Babbage considered programming his Analytical Engine

to play chess, and later thought about building a machine to play tic-tac-toe [17]. Games

provide a useful domain to study machine learning and other artificial intelligence tech-

niques, while providing a structured problem space in whichoptimization algorithms can

be applied to search for solutions.

While computers are acknowledged to be world champions in games like chess and

Othello, there are still many complex games for which artificial players have not yet been

able to reach the level of play of human expert players, or even that of amateurs. One

such game is Quoridor. Quoridor is a relatively new game (1997) that, to the author’s

knowledge, has not yet been extensively analyzed. One attempt to develop an artificial

player for Quoridor is documented in [15].

Quoridor is a board game of 9 rows and 9 columns for 2 or 4 players. Each player has

a pawn that begins at one side of the board, and the objective of the game is to move your

pawn to the opposite side of the board. The twist on this simple goal is that each player has

a certain number of fences that they can place anywhere on theboard to hinder the other
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Chapter 1. Introduction

players progress. This makes the game interesting and difficult to play, because there are

many possible moves and judging who is winning is not trivial.

To develop a computer program to play the game of Quoridor, I used the same basic

approach as many game-playing algorithms. My artificial player uses a minimax search

algorithm on the game tree and a linear weighted evaluation function on the leaves. Since

the field is lacking expert knowledge on tactics and strategies for this particular game, I

analyzed the game and proposed some features for use in the evaluation function, most of

which quantify paths from the pawn to the winning side of the board.

Instead of statically assigning weights to these features based on my limited playing

experience, I decided to employ a learning algorithm to tunethe weights. I tried two

different algorithms; the first algorithm, based on single-layer neural network learning,

was quickly discovered to be ineffectual. The second algorithm, a member of the genetic

algorithm family, was more successful, but does not seem to be an optimal algorithm for

the task either. The resulting Quoridor player is able to play the game, but does not pose

a challenge for a human player. This project hopefully lays the groundwork for more

advanced research on developing algorithms for playing Quoridor.
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Chapter 2

Background

2.1 Quoridor

QuoridorTM is a relatively new board game (1997) developed by Gigamic, and was named

“Games Magazine’s Game of the Year” for 1998. Quoridor has not been extensively an-

alyzed, unlike classic artificial-intelligence games suchas Chess and Go. Quoridor has

deceptively simple rules from which arise surprisingly complex tactics. Over the course

of the game, players create a maze that they must be the first tonavigate through to win.

Quoridor has a 9×9 board, and can be played with two or four players. This project

focuses only on the two-player game. Each player has a pawn, black or white, that begins

the game in the middle of opposing edges of the board (see Figure 2.1). A player wins

when his/her pawn has reached any square of the opposite edgeof the board from which

it started.

A draw determines who is allowed the first move. On a player’s turn, the player can

either move his/her pawn one square in a cardinal direction,or place one fence. Each

player begins the game with ten fences. These fences can be placed anywhere on the

3



Chapter 2. Background

Figure 2.1: Quoridor board.

board, with certain restrictions, to hinder the opponent orhelp yourself. A pawn cannot

move through a fence. Fences must be placed between two sets of two squares horizontally

or vertically (see Figure 2.4) and cannot intersect an existing fence. Also, a fence cannot

be placed that completely blocks a player’s access to his/her goal.

If the two pawns are adjacent to each other with no fence between them, the player

whose turn it is can jump his/her pawn over the opponent’s pawn. This jump must be in

a straight line, unless a fence is behind the other pawn, in which case the jump must be

diagonal (see Figure 2.2). In the four person game, it is forbidden to jump more than one

pawn. One situation that is not covered by the official rules is illustrated in Figure 2.3 and

concerns whether jumping is allowed when pawns are adjacentand one pawn is on the

edge of the board. In my implementation of the game, I allow the edge of the board to be

treated similarly to fences for jumping.

For the purposes of describing the play of a Quoridor game, I have developed a move

notation based on chess algebraic notation (seehttp://www.uschess.org). In this

4



Chapter 2. Background

Figure 2.2: Allowed pawn jumps.

Figure 2.3: The white pawn is on the edge of the board. In my implementation, the black
pawn is allowed diagonal jumps in this situation.

notation, each square on the board is uniquely identified by aletter-number combination.

The columns are labeleda throughi from left to right, and the rows are labeled1 through

9 from top to bottom (see Figure 2.1). The black pawn begins at squaree9, and the white

pawn begins at squaree1. A pawn move is simply identified by the square that the pawn

is moved to. A fence move is identified by the fence’s “northwest square”, which is the

square with the smallest number and letter closest toa out of the four squares that the

fence is adjacent to (see Figure 2.4). This square identification is followed byh or v to

identify whether the fence is placed horizontally or vertically. In addition, a sequence of

moves should be identified by the turn number, where a turn is ended after both players

have moved, first black then white. For example,1.e8 e2 2.e7 e3.... The game

begins with turn 1. A single move should also be identified by whether it was black’s

move or white’s move, by adding ab or w after the turn number and before the dot, e.g.,

1b.e8. Using the convention that black always goes first, a game canbe rebuilt from a
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Chapter 2. Background

given sequence of moves.

Figure 2.4: Northwest squares of horizontal (left) and vertical fences are shaded.

The rest of this section is devoted to the illustration of theplay of a typical Quoridor

game. The game begins with the moves1.e8 e2 2.e7 e3 3.e6 e4, during which

both players charge straight for the goal (Figure 2.5.a).

Now, the black player must make a decision. If either pawn continues moving forward

at this point, the opponent will jump and be at an advantage. The black player decides

to use a combination of several tactics that I have discovered to be useful. One such

tactic is ‘creating a box’, which simply means enclosing both pawns in the same space

and controlling the exit to be advantageous to you but not to the opponent. Also, if you

force both pawns to take the same path, that limits the damagethat the opponent can cause

you, since both pawns are affected by any fences placed in thecommon path. Another

useful tactic involves making the space that your pawn occupies small, so that the longest

possible path your pawn could take is smaller as well. Also, although you cannot cut

the opponent off completely from his/her goal, you can control the route by which the

opponent travels by fencing off part of the board so that the opponent is forced along one

path. There is also often a tradeoff between playing defensively, i.e., placing fences in

your path to limit the damage that the opponent can do to you, and playing offensively,

i.e., making the opponent’s path longer. Since fences are a limited resource, they should

be used effectively.

6



Chapter 2. Background

Figure 2.5: Quoridor game: (a) 3w.e4 (b) 4b.e6h (c) 4w.e3h (d) 5b.f5v.

The black player takes the offensive in moves4.e6h e3h 5.f5v e5h 6.c6h

f4 7b.f3v, shown in Figure 2.5.b-d and Figure 2.6.e-h.

The white player realizes what is happening, but it is too late. The black player is

about to create an enclosed area and cut off one side of the board from the white player.

The white player tries to control his/her path by cutting offthe right side of the board, thus

ensuring that the left side will stay open in move7w.g6h (Figure 2.7.i).

The black player beats this effort by finishing cutting off the left side in move8b.a6h

7



Chapter 2. Background

Figure 2.6: Quoridor game: (e) 5w.e5h (f) 6b.c6h (g) 6w.f4 (h) 7b.f3v.

(Figure 2.7.j). The white player starts moving towards the goal again in move8w.e4

(Figure 2.7.k) and the black player continues creating a boxin move9b.c5v (Figure

2.7.l).

In moves9w.d4h and10b.d2v, the white and black players place fences that hurt

the opponent but not themselves, then both pawns move, to10w.d4 and11b.d6 (Figure

2.8).

The white player continues moving forward and places an offensive fence in moves

8



Chapter 2. Background

Figure 2.7: Quoridor game: (i) 7w.g6h (j) 8b.a6h (k) 8w.e4 (l) 9b.c5v.

11w.d3 and12w.c3h, while the black player moves forward and places a defensive

fence to prevent the white player from lengthening the spiral in moves12b.d5 and

13b.4h (Figure 2.9).

The white player moves to13w.d2 and the black player takes the opportunity to

further frustrate the white player in move14b.c1h. The white player retaliates by placing

another offensive fence in move14w.a2h. At this point, the black player has one fence

left, and realizes that there is no way the white player can doany more damage, so the

black player plays his/her last fence offensively in move15b.h7h (Figure 2.10). At this

9
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Figure 2.8: Quoridor game: (m) 9w.d4h (n) 10b.d2v (o) 10w.d4(p) 11b.d6.

point, the game is effectively over. The white player still has four fences remaining, but

there is no available placement on the board that would lengthen the black player’s path.

There is also no point in placing defensive fences since the black player is out of fences.

At this point in a Quoridor game, it is a matter of counting theturns until each pawn

reaches its goal. The white player surrenders – the black player is twelve squares away

from winning, while the white player is twenty squares away from winning. The complete

list of moves is given in Table 2.1.

10
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Figure 2.9: Quoridor game: (q) 11w.d3 (r) 12b.d5 (s) 12w.c3h(t) 13b.b4h.

Table 2.1: Move sequence for example Quoridor game.

1.e8 e2 6.c6h f4 11.d6 d3
2.e7 e3 7.f3v g6h 12.d5 c3h
3.e6 e4 8.a6h e4 13.4h d2
4.e6h e3h 9.c5v d4h 14.c1h a2h
5.f5v e5h 10.d2v d4 15b.h7h

11



Chapter 2. Background

Figure 2.10: Quoridor game: (u) 13w.d2 (v) 14b.c1h (w) 14w.a2h (x) 15b.h7h.
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Chapter 2. Background

2.2 Computers and Games

Our fascination with games has ancient roots in human history. For example, the game

of Go was developed three to four millenia ago in China [20]. Another game, Awari, is

believed to have originated from Ethiopia about 3500 years ago [5]. Some of the ancient

strategic board games that we know today are believed to havemilitary roots. Instead of

having armies go to war, some of the planning and other strategic elements essential for

conducting a battle could be practiced on a board [2].

Game playing was one of the first tasks undertaken in artificial intelligence. Indeed, the

game of chess has sometimes been referred to as theDrosophilaof artificial intelligence

and cognitive science research – an ideal controllable environment that serves as a test

bed for ideas about the nature of intelligence and computational schemes for intelligent

systems. Since the beginning of the twentieth century, mathematicians have tried to model

classical games to create expert artificial players, but only recently have computers been

able to best humans in certain games. Many decades of research focusing on the creation

of grandmaster standard computer chess programs culminated in the defeat of Garry Kas-

parov, the World Chess Champion, by IBM’s purpose-built chess computer, Deep Blue, in

1997. Deep Blue, and, since, Deeper Blue, still mainly rely on specialized hardware and

brute force methods to gain an advantage over the opponent byexamining further into the

game tree [13]. Deep Blue managed to search 126 million positions per second on aver-

age. Chinook, developed by Jonathan Schaeffer and colleagues, was declared the world

champion in checkers in 1994. In 1997, the Logistello program defeated the human world

champion in Othello [18].

Traditional artificial intelligence techniques for games rely on exhaustive search of

the game tree, evaluation functions based on expert knowledge, large “opening book”

and endgame databases, and massive computing power. There are limits, however, to

how far this brute-force approach will take artificial players, and researchers are running
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into these walls in more complex games, such as those that involve chance and imperfect

information. Research in games in artificial intelligence has begun to focus on alternative

methods, including adaptive learning techniques.

Adaptive learning was being used for checkers as far back as the 1950’s, with Samuel’s

seminal work in checkers. Gary Tesauro combined Samuel’s reinforcement learning method

with neural network techniques to develop TD-GAMMON, whichis ranked among the

top three backgammon players in the world [18]. Another modern example is Anaconda,

a checkers player developed by Chellapilla and Fogel. Anaconda uses an artificial neural

network (ANN), with 5046 weights, which are evolved via an evolutionary strategy. The

inputs to the ANN are the current board state, presented in a variety of spatial forms. The

output from the ANN is a value which is used in a mini-max search. During the train-

ing period the program is given no information other than a value which indicates how it

performed in the last five games. It does not know which of those games it won or lost,

nor does it know if it is better to achieve a higher or a lower score. Co-evolution (playing

games against itself) was used to develop Anaconda, which has achieved expert levels of

play [6].

Evolutionary algorithms (see Section 3.2), such as the co-evolution used to develop

Anaconda, are also an area of research in games. Davis et al. [6] used an evolutionary

strategy to optimize the weights of a simple evaluation function for Awari, and achieved

what they considered a “reasonable level of play.” A later Awari player, called Ayo, was

developed by Daoud et al. [5]. They used a more sophisticatedevaluation function than

Davis et al., while also employing a genetic algorithm to evolve the weights. Ayo outper-

formed the previous player with a shallower game-tree search, showing the advantage in

this case of a more accurate evaluation function over a deeper search. Kendall et al. [13]

propose an approach for the tuning of evaluation function parameters based on evolution-

ary algorithms and applies it to chess. In a different application of genetic algorithms,

Hong et. al. [21] propose a genetic-algorithm based approach to enhancing the speed and

14
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accuracy of game tree searches.

2.3 Representations of Games

Mathematical game theory views any multiagent environmentas a game provided that

the impact of each agent on the others is “significant”, regardless of whether the agents

are cooperative or competitive. In game theory, Quoridor, like chess and checkers, can be

described as a deterministic, sequential, two-player, zero-sum game of perfect information

with a restricted outcome (win, lose, and draw) – also known as acombinatorial game[6].

Deterministicgames have no element of chance. Backgammon is an example of a

game ofchance, because play involves rolling dice.

In sequentialgames, players take turns instead of making a move simultaneously. The

Prisoner’s Dilemma is an example of asimultaneousgame. In the classical Prisoner’s

Dilemma, two suspects are arrested and interrogated in separate rooms. Both suspects are

offered the chance of walking free if they confess and incriminate the other suspect. Each

suspect has two options: cooperate (stay silent) or defect (confess to the crime), and both

suspects make their decisions simultaneously, i.e., without knowing the other suspect’s

decision. If both suspects cooperate, they are punished minimally. If one suspect defects

and the other cooperates, the suspect who cooperates gets a maximum sentence while

the suspect who defects is not punished. If both suspects defect, they are both punished

moderately.

In zero-sumgames, the utility values at the end of the game are always equal in mag-

nitude and opposite in sign. For example, if one player wins agame of chess(+1), the

other player necessarily loses(−1). In non-zero-sumgames, the players’ goals are not

necessarily conflicting. The Prisoner’s Dilemma is a non-zero-sum game. An example of

a corresponding payoff matrix for the Prisoner’s Dilemma isillustrated in Table 2.2, where
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a higher payoff is a better outcome. Notice that the possibleoutcomes do not add up to

zero.

Table 2.2: The possible payoffs in each outcome of the Prisoner’s Dilemma are shown in
italics for P1 and in bold for P2.

P1 Cooperates P1Defects
P2 Cooperates -2, -2 -5, 0

P2 Defects 0, -5 -4, -4

In games ofperfect information, the current state of the game is fully accessible to

both players. Poker is an example of a game ofimperfect information, because some

information about the state of the game, i.e., the hands of other players, is hidden from the

players.

In combinatorial game theory, which is the branch of game theory concerned with

combinatorial games, Quoridor can be characterized aspartizan, in contrast to animpartial

game, in which the allowable moves depend only on the position and not on which of the

two players is currently moving, and where the payoffs are symmetric. Nim is an example

of an impartial game. In Nim, players take turns removing objects (counters, pebbles,

coins, pieces of paper) from heaps (piles, rows, boxes), butonly from one heap at a time.

In the normal convention, the player who removes the last object wins; in the misere

convention the player to move last loses [12].

A combinatorial game has a precise definition in combinatorial game theory. The

two players are usually called Left (L) and Right (R). Every game has some number of

positions, each of which is described by the set of allowedmovesfor each player. Each

move (of Left or Right) leads to a new position, which is called a (left or right)optionof

the previous position. Each of these options can be thought of as another game in its own

right, described by the sets of allowed moves for both players [19].

From a mathematical point of view, all that matters are the sets of left and right options
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that can be reached from any given position – we can imagine the game represented by

a rooted tree with vertices representing positions and withoriented edges labeled L or R

according to the player whose moves they reflect. The root represents the initial position,

and the edges from any position lead to another subtree, the root of which represents the

position just reached [19].

A game can be identified by its initial position and completely described by the sets of

left and right options, each of which is another game. This leads to the following recursive

definition of a game: LetL andR be two sets of games. Then the ordered pairG := (L,R)

is a game. Note that the setsL andRof options may well be infinite or empty [19].

Traditional combinatorial game theory also assumes that the player that makes the

last move wins, and that no position may be repeated. Aloopygame, however, does not

impose the no-repetition assumption, and thus requires a more complex theory. Quoridor

is an example of a loopy game. A loopy game is played on a directed pseudograph (a

directed graph that is allowed to have multiple edges from one vertex to another, or edges

from a vertex to itself). Each vertex of this graph corresponds to a position of the game.

The edges are partitioned into two sets, Left’s and Right’s.Each player plays along his

own edges only, changing the position from the vertex at the start of the edge to that at

the end. Left and Right play alternately; if either is ever left without a move, he loses. To

specify a loopy game completely, one needs to specify a start-vertex as well as the graph

and its edge-partition. One also needs to specify for each legal infinite sequence of moves

whether it is won by Left, won by Right, or is drawn [16].
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2.4 Game-Playing Approach

2.4.1 Game Trees

In artificial intelligence, games like Quoridor are often treated asadversarial search prob-

lems. To define this problem, we will consider a game with two players, calledMAX and

MIN, who take turns moving until the game is over. At the end of thegame, points are

awarded to the winner and penalties are given to the loser. Such a game can be formally

defined as a kind of search problem with the following components [18]:

• Theinitial state, which includes the board position and identifies the playerto move.

• A successor function, which returns a list of(move, state) pairs, each indicating a

legal move and the resulting state.

• A terminal test, which determines when the game is over. States where the game

has ended are calledterminal states.

• A utility function(also called an objective function or payoff function), which gives

a numeric value for the terminal states. In zero-sum games, these values are equal

in magnitude but opposite in sign.

The initial state and the legal moves for each side define thegame treefor the game.

Figure 2.11 shows part of the game tree for tic-tac-toe. The optimal solution to this search

problem is a sequence of moves leading to agoal state– a terminal state that is a win.

MAX must find a contingentstrategy, which specifiesMAX’s move in the initial state,

thenMAX’s moves in the states resulting from every possible response by MIN, and so

on. Roughly speaking, an optimal strategy leads to outcomesat least as good as any other

strategy when one is playing an infallible opponent [18].
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Figure 2.11: A partial search tree for the game of tic-tac-toe. The top node is the initial
state, from whichMAX has nine possible moves. Play alternates betweenMAX andMIN
until eventually we reach terminal states, which can be assigned utilities forMAX [18].

To describe this optimal strategy, we will consider the trivial game shown in Figure

2.12. The possible moves forMAX at the root are labeledA1, A2, andA3. The possible

replies toA1 for MIN areA11, A12, andA13, and so on. This particular game ends after

one move each byMAX andMIN. This tree is therefore onemovedeep, consisting of two

half-moves, each of which is called aply [18].

Given a game tree, the optimal strategy can be determined by examining theminimax

valueof each node, which is the utility (forMAX) of being in the corresponding state,

assuming that both players play optimally from there until the end of the game. The

minimax value of a terminal state is just its utility. Furthermore, given a choice,MAX
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will prefer to move to a state of maximum value, whereasMIN prefers a state of minimum

value. We can therefore define the minimax value of a noden, MINIMAX-VALUE(n), as

follows:



















UTILITY(n) if n is a terminal state

maxs∈Successors(n) MINIMAX-VALUE(s) if n is aMAX node

mins∈Successors(n) MINIMAX-VALUE(s) if n is aMIN node

This definition has been applied to the game tree in Figure 2.12. In this game tree, we can

now identify theminimax decisionat the root: moveA1 is optimal forMAX. The definition

of optimal play forMAX assumes thatMIN will also play optimally, thereby maximizing

theworst-caseoutcome forMAX. If MIN does not play optimally, thenMAX will do even

better [18].

Figure 2.12: A two-ply game tree. The△ nodes areMAX nodes (meaning it isMAX’s
turn to move), and the▽ nodes areMIN nodes. The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values.MAX’s best move at the
root isA1, andMIN’s best reply isA11 [18].

Theminimax algorithm(Figure 2.13) computes the minimax decision from the current

state. It uses a simple recursive computation of each successor state which proceeds all

the way down to the leaves of the tree, and then the minimax values arebacked upthrough

the tree as the recursion unwinds. The minimax algorithm performs a complete depth-first
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exploration of the game tree. If the maximum depth of the treeis m, and there areb legal

moves at each point, then the time complexity of the minimax algorithm is O(bm). The

space complexity isO(bm) for an algorithm that generates all successors at once, orO(m)

for an algorithm that generates successors one at a time [18].

function MINIMAX-DECISION(state) returns a move
v← MAX-VALUE(state)
return themovein SUCCESSORS(state) with valuev

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v←−∞
for a, s in SUCCESSORS(state) do

v← MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v← ∞
for a, s in SUCCESSORS(state) do

v← MIN(v, MAX-VALUE(s))
return v

Figure 2.13: Minimax algorithm.

2.4.2 Minimax Enhancements

For simplicity, we can modify the game tree values slightly and use only maximization

operations. The trick is negate the returned values from therecursion. In order to do this,

the utility value of a state is determined from the viewpointof the player whose turn it is at

that state, not, as is done in the minimax algorithm, always from MAX’s viewpoint. This

is called theNegamax algorithm[14] (Figure 2.14).
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function NEGAMAX-DECISION(state) returns a move
v← NEGAMAX-VALUE(state)
return themovein SUCCESSORS(state) with valuev

function NEGAMAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v←−∞
for a, s in SUCCESSORS(state) do

v← MAX(v, −NEGAMAX-VALUE(s))
return v

Figure 2.14: Negamax algorithm.

The problem with minimax search is that the number of states it has to examine is

exponential in the number of moves. By realizing that it is possible to compute the correct

minimax decision without looking at every node in the game tree, we can effectively cut

the exponent in half. This technique is calledalpha-beta pruning. When applied to a

standard minimax tree, it returns the same decision as minimax would, but prunes away

branches that cannot influence the final decision. Alpha-beta pruning can be applied to

trees of any depth, and it is often possible to prune entire subtrees rather than just leaves.

The general principle is this: consider a nodev somewhere in the tree such thatMAX has

a choice of moving to that node. IfMAX has a better choiceα either at the parent node

of v or at any choice point further up, thenv will never be reached in actual play (Figure

2.15) [18].

Alpha-beta pruning gets its name from two parameters that describe bounds on the

backed-up values that appear anywhere along the depth-firstpath in the tree.α is the

value of the best (highest-value) choice we have found so farat any choice point along the

path forMAX. β is the value of the best (lowest-value) choice we have found so far at any

choice point along the path forMIN. Alpha-beta search (Figure 2.16) updates the values of
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Figure 2.15: The general principle of alpha-beta pruning: If α is better thanv for MAX, v
will never be reached in play [18].

α andβ as it goes along and prunes the remaining brances at a node as soon as the value

of the current node is known to be worse than the currentα or β value forMAX or MIN,

respectively [18].

The effectiveness of alpha-beta pruning is highly dependent on the order in which the

successors are examined. If the successors that are likely to be best are examined first,

then alpha-beta needs to examine onlyO(bm/2) nodes, instead ofO(bm) for minimax. If

successors are examined in random order, the total number ofnodes examined will be

roughlyO(b3m/4) for moderateb [18].

Even with alpha-beta pruning, for any complex game, the gametree is orders of mag-

nitude too large to be examined fully in a practical amount oftime. One solution is to

examine the tree to a fixed depth, and then apply a heuristicevaluation function, EVAL,

to the leaves of this search. These values can then be backed up the tree as utility values

are [18]. Since game-playing programs are often given a certain time limit in which to

make a decision as to which move to make, one method of maximizing the depth of the

search within a fixed time limit isiterative deepening. The idea of iterative deepening
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function ALPHA-BETA-NEGAMAX(state) returns a move
v← NEGAMAX-VALUE(state,−∞, ∞)
return themovein SUCCESSORS(state) with valuev

function NEGAMAX-VALUE(state, α, β ) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v←−∞
for a, s in SUCCESSORS(state) do

child←−NEGAMAX-VALUE(s, −β ,−α)
if (child > v) then v← child
if (v > α) then α ← v
if (α >= β ) then return α

return v

Figure 2.16: Alpha-beta negamax algorithm.

(Figure 2.17) is to search the game tree to a fixed depthd of one ply, then repeatedly ex-

tend the search by one ply until time runs out. Only the minimax decision from the most

recent completed iteration is used. Although iterative deepening seems to waste time by

re-examining the upper levels of the tree repeatedly on eachiteration, due to the expo-

nential nature of game tree search, the overhead cost of the preliminary d−1 iterations

is only a constant fraction of thed-ply search. Iterative deepening can also improve the

effectiveness of alpha-beta pruning by using the results ofprevious iterations to improve

the move ordering of the next iteration [14].

2.4.3 Evaluation Functions

An evaluation function returns an estimate of the expected utility of the game from a given

position. How is a “good” evaluation function defined? First, the evaluation function

should not take too long to calculate. Second, for non-terminal states, the evaluation func-
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function ITERATIVE-ALPHA-BETA-NEGAMAX(state) returns a move
d← 1
while time is not updo

m← ALPHA-BETA-NEGAMAX(state, d)
d = d+1

return m

function ALPHA-BETA-NEGAMAX(state, d) returns a move
v← NEGAMAX-VALUE(state, d,−∞, ∞)
return themovein SUCCESSORS(state) with valuev

function NEGAMAX-VALUE(state, d, α, β ) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
if (d == 0) then return EVAL(state)
v←−∞
for a, s in SUCCESSORS(state) do

child←−NEGAMAX-VALUE(s, d−1,−β ,−α)
if (child > v) then v← child
if (v > α) then α ← v
if (α >= β ) then return α

return v

Figure 2.17: Iterative-deepening alpha-beta negamax algorithm.

tion should be strongly correlated with the actual chances of winning [18]. When there

is a time limit for the search, a tradeoff has often been foundbetween the accuracy, i.e.,

computational time, of the evaluation function and the depth examined by the search. In

other words, if the algorithm can quickly evaluate a single node, then the algorithm will

be able to examine many nodes, but if the algorithm takes a long time to evaluate a single

node, not as many nodes can be examined.

Most evaluation functions work by calculating variousfeaturesof the state – for exam-

ple, the number of pawns possessed by each side in a game of chess. The features, taken

together, define variouscategoriesor equivalence classesof states: the states in each cate-
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gory have the same values for all the features. Most evaluation functions compute separate

numerical contributions from each feature and then combinethem to find the total value.

For example, introductory chess books give an approximatematerial valuefor each piece.

Other features in chess are “good pawn structure” and “king safety”, which are assigned

a numerical value. These feature values can then be individually weighted and summed;

this kind of evaluation function is called aweighted linear functionand can be expressed

as

EVAL(s) = w1 f1(s)+w2 f2(s)+ . . .+wn fn(s) =
n

∑
i=1

wi fi(s)

where eachwi is a weight and eachfi is a feature of the state [18]. If the weights are

viewed as a row vectorw and the features as a column vectorf, then we can equivalently

defineEVAL as

EVAL(s) = w · f

Weighted linear functions assume that the contribution of each feature is independent

of the values of the other features. To avoid this assumption, current programs for chess

and other games usenonlinearcombinations of features [18].

The features and weights used in chess-playing programs come from centuries of hu-

man chess-playing experience. In games where this kind of experience is not available,

the weights of the evaluation function can be estimated by machine learning techniques.
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Method

3.1 Learning

Inductive learningtakes place as the agent observes its interactions with the world and

its own decision-making process. A learning agent can be thought of as containing a

performance elementthat decides what actions to take and alearning elementthat modifies

the performance element so that it makes better decisions [18].

For the application of learning weights for an evaluation function (see Section 2.4),

the performance element is the algorithm that, given a state, decides which move to make.

But what should the learning element be?

We would expect the learning process to produce the following results: If a feature is

not found to be a useful evaluator of the board state, one would expect that, over a long

enough period of learning, the weight of that feature would tend to zero. One would also

predict that the weights of the features that positively correlated with winning the game

would become positive, while the weights of the features that turned out to be an indicator

of losing the game would become negative. One would also predict that the weights of
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the features that are the most important and reliable indicators will have a larger weight

relative to the weights of the features that are less important.

Dr. Terran Lane proposed that for feature weight learning I should use an algorithm

based on asingle-layer neural network, or perceptron networkwith a single output unit

(Figure 3.1). The output unity is a weighted sum of the input unitsx:

y =
n

∑
j=0

Wjx j

There is a simple learning algorithm that will fit a thresholdperceptron to any linearly

separable traning set. The idea behind the perceptron-learning algorithm is to adjust the

weights of the network to minimize some measure of the error on the training set. Thus,

learning is formulated as an optimization search inweight space[18].

Figure 3.1: A single-layer neural network (perceptron network) with three inputs and one
output.

The proposed learning algorithm based on perceptron-learning works as follows: First,

create a population of agents with randomly generated weights. Also, create a population

of agents that will be kept static for the purpose of evaluating the learning progression.

Have the agents play each other in a round robin fashion, and perform a learning operation

on each agent at the end of a game. To perform the learning operation, the agent stores the

feature vectorsfor each state encountered during the course of the game. A feature vector

contains the values of the features for a particular state before theweight vectoris applied
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to obtain a heuristic value for the expected utility value ofthe state. When the game is

over, we can calculate the following valuefε :

fε =
n

∑
j=1

γ j fn− j

wheren is the number of feature vectors,f i is theith feature vector of the game, andγ is

the learning rate, and is in the range[0,1]. We then modify the weight vectorw of the

agent in the following way:

w =







w+ fε if the agent won the game

w− fε if the agent lost the game

The idea of this algorithm is to modify the weight of a featureto reflect the distribution

of that feature throughout the game, where the values of thatfeature at the end of the game

are weighted more heavily (by the learning rate) to reflect the idea that the states near the

end of the game more directly influence whether the game is wonor lost. If a feature has a

high value near the end of a game that is won, the weight for that feature will be moved in

the positive direction. Similarly, if a feature has a high value near the end of a game that

is lost, the weight for that feature will be moved in the negative direction.

When I experimented with this algorithm, I discovered that it did not work well for

this particular application. I implemented an agent that used two features in its evaluation

function, SPP and SPO (see Section 3.4). Common sense dictates that the weight of SPP

should be positive, and the weight of SPO negative. After a few rounds of learning, how-

ever, I discovered that both weights were strongly tending negative, leading to an agent

that was completely ineffective at moving. The reason for this was that the value of SPP

was always between 0 and 1, so whenever the agent lost (which was often) the weight

would always be pushed in the negative direction. It was not possible for the weight to

be pushed in the correct (positive) direction when the agentlost. This algorithm might be

effective with features that range from -1 to 1, but I decidedto abandon this approach and
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explore using a genetic algorithm as a weight learning function. I chose to use a genetic

algorithm because the function of a genetic algorithm is to optimize numeric values.

3.2 Genetic Algorithms

Evolutionary algorithmsare a family of computational models inspired by the biological

processes of evolution and natural selection. For an in-depth discussion of how evolution

has produced problem-solving adaptations in nature see [7]. Genetic algorithms(GAs)

are a subset of evolutionary algorithms. A GA is any population-based model that uses

selection and recombination operators to generate new sample points in a search space

[22]. These algorithms can be described as function optimizers, but this does not mean

that they yield globally optimal solutions [23]. GAs have been successfully applied to

the fields of optimization, machine learning, neural networks, and fuzzy logic controllers,

among others [21].

An implementation of a genetic algorithm begins with apopulationof typically ran-

domchromosomes, which can be thought of as candidate solutions for some problem of

interest. Each chromosome is then evaluated to obtain its individual fitnessin solving a

particular problem. Thenselection, recombination, andmutationare applied to the pop-

ulation to create thenext population. These operations are similar to, but not identical

to, their biological counterparts. The process of going from the current population to the

next population constitutes one generation in the process of a genetic algorithm [23]. An

overview of a sample genetic algorithm is shown in Figure 3.2.

Given that variation exists within a species, individuals within a population will differ

in their ability to cope with a given environment and successfully reproduce. This varying

reproductive success of individuals based on their different genetic constitutions isnatural

selection. The concept of natural selection is often simplified to “survival of the fittest.”
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Figure 3.2: Sample genetic algorithm overview [11]. A population of four chromosomes
is shown at timen. During differential reproduction, in which chromsomes are chosen
to reproduce based on their individual fitness, the first chromsome is selected once, the
second is selected twice, the third is selected once, and thefourth is selected zero times.
After selection, the mutation operator is applied to the first chromsome, and the crossover
operator is applied to the third and fourth chromsomes. The resulting population is shown
in the box labeledTn+1.

In genetic algorithms, the fitness of individuals is determined by applying afitness eval-

uation functionto the chromosomes. The fitness evaluation function provides a measure

of performance with respect to a particular set of parameters. The fitness level of an indi-

vidual is then used to determine the probability that it willproduce offspring for the next

generation.

There are a number of ways to do selection. One method involves mapping the popu-

lation onto a roulette wheel, where each individual is represented by a space that propor-

tionally corresponds to its fitness (Figure 3.3). By repeatedly spinning the roulette wheel,

individuals are chosen usingstochastic sampling with replacementto choose the pool of

chromosomes that will combine to form the next population. This method increases the

probability that the chromosomes of the current populationwith the highest fitness will

contribute to the next population [22].

A pair of chromosomes is selected from the eligible pool withsome probability cor-

responding to their fitness, and then recombination is applied to the pair to produce one
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Figure 3.3: Mapping a population onto a roulette wheel basedon fitness.

or more offspring chromosomes. A chromosome can be thought of simply as encoded

information. A classic chromosome is a string of bits, for example<10101110010>.

Chromosomes are not limited to bits, however. Another example of a chromosome is

<"I’m a gene", 80, xyxxxyy>. Mimicking the structure of biological chromo-

somes, digital chromosomes can be arbitrarily divided intoblocks of information called

loci. In the first example, each bit can be viewed as a locus, and in the second example

the loci are separated by commas. Continuing with the biological analogy, each atomic

subunit of a locus is abase.

Recombination involves combining the parent chromosomes in some way. One method

of recombination involvescrossover points(Figure 3.4), at which parent chromsomes

swap loci.

After recombination, a mutation operator can be applied to the offspring chromosomes.

With classic chromosomes, this means that each bit has a certain low probability of being
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Figure 3.4: Recombination of two parent chromosomes with two crossover points to pro-
duce two offspring.

flipped. More generally, this means that each locus has some probability of being modified

in some random way. Typically, the mutation rate is less than1% [23]. Higher mutation

rates make the genetic search less directed and more random.

A number of theories have been proposed that attempt to rigorously analyze the per-

formance of evolutionary algorithms [10]. The general argument about genetic algorithm

performance has three components [11]:

• Independent sampling is provided by large populations thatare initialized randomly.

• High-fitness individuals are preserved through selection,and this biases the sam-

pling process towards regions of high fitness.

• Crossover combines partial solutions, called “building blocks,” from different chro-

mosomes onto the same chromosome, thus exploiting the parallelism provided by

maintaining a population of candidate solutions.

In an analysis of GAs in comparison with other algorithms, Baum et al. find that a variation

of a GA is the strongest known approach to solving theAdditive Search Problem(ASP),
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which can be described as follows: LetX ≡ {1,2, . . . ,L}N. There is an oracle that returns

the number of components common to a queryx ∈ X and a target vectort ∈ X. The

objective is to findt with as few queries as possible. For simplicity, it is assumed that

N > L [1].

Perhaps the most common application of GAs is multiparameter function optimiza-

tion. Many problems can be formulated as a search for an optimal value, where the

value is a complicated function of some input parameters. For problems that don’t re-

quire the exact optimum, GAs are often an appropriate methodfor finding “good” values,

where “good” can be near optimal or even a slight improvementover the previously best

known value. The strength of the GA lies in its ability to manipulate many parameters

simultaneously[11]. Deb et al. demonstrate the power of a GAvariant in tackling real-

parameter optimization problems. The performance of this GA is investigated on three

commonly used test problems and is compared with a number of evolutionary and opti-

mization algorithms [8].

3.3 Features of Quoridor

In order to use a heuristic evaluation function,featuresof the game must be identified (see

Section 2.4). Since Quoridor is a virtually unknown game in the game-playing literature,

there was no reservoir of expert knowledge to draw upon, as was done in other game-

playing programs. Therefore, I proposed a number of features from observation of play.

3.3.1 Path-finding Algorithms

One obvious feature of Quoridor is related to the goal of the game – moving your pawn

to the other side of the board. One indicator of how well a player is doing is how many

squares away that player’s pawn is from that player’s goal. Aplayer’sgoal is defined as
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the row or column of squares on the opposite side of the board from where that player’s

pawn began the game. The black player’s goal is the squaresa1, b1, c1, d1, e1,

f1, g1, h1, i1, and the white player’s goal is the squaresa9, b9, c9, d9,

e9, f9, g9, h9, i9. Because optimal path-finding algorithms can be expensive,I

considered a variety of pathfinding-related features that vary in accuracy and performance.

As discussed in Section 2.4, there is often a tradeoff between the accuracy of the evaluation

function and the depth of the search.

The simplest path-related feature I used was a boolean valuerepresenting whether the

pawn is on thegoal sideof the board (see Figure 3.5). This value is a 1 if the player’s

pawn is on a square in the goal side, otherwise it is a 0.

Figure 3.5: Thegoal of the the black pawn is shaded black, and the black player’sgoal
sideof the board is shaded gray.

The next-simplest feature I used was theManhattan Distance, which is the distance

between two points measured along axes at right angles. In Quoridor, the Manhattan

Distance can also be thought of as the shortest path from the pawn to the goal ignoring all

obstacles (see Figure 3.6).
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At this point I ran into a problem with using path lengths in the evaluation function. To

facilitate the learning of the weights (see Section 3.1), I decided to follow the convention

that a positive feature is “good” for the player who is doing the evaluation, while a negative

feature is “bad”. With path lengths, however, the smaller the number, the shorter the

path, and the better the feature for the player. For the Manhattan Distance, I addressed

this problem by subtracting the actual Manhattan Distance from the maximum possible

Manhattan Distance value. This turns the feature into a measure of progression along

a path instead of a measure of the distance remaining until the end of the path. I also

decided to make my features similar and bounded in their ranges by normalizing them to

the range[0,1]. For the Manhattan Distance, I simply divided the progression value by the

maximum Manhattan Distance. In the situation shown in Figure 3.6, the final Manhattan

Distance feature value would be9−5
9 = 0.556.

Figure 3.6: The squares that are part of the Manhattan distance for the black player are
shaded gray. The Manhattan distance for the black player is 5.

Obviously, the Manhattan Distance, while a very speedy measurement, is not a very

accurate measurement of the length of the shortest path froma pawn to its goal. The next
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algorithm I used wasDijkstra’s algorithm, a single-source shortest path graph algorithm.

Dijkstra’s algorithm maintains a setS of vertices whose final shortest-path weights from

the sources have already been determined. The algorithm repeatedly selects the vertex

u ∈ V −S with the minimum shortest-path estimate, addsu to S, and relaxes all edges

leavingu. For a detailed description of Dijkstra’s algorithm, see [4].

Wait, Quoridor is a board game, not a graph! Well, actually, aQuoridor board can

easily be represented by a graph. A Quoridor graph is built from a Quoridor board state

from the perspective of one of the players by the algorithm inFigure 3.7. An example of

a Quoridor graph is shown in Figure 3.8.

1 Create a vertex for each square

2 Create an undirected edge between each square
and each of the square’s cardinal neighbors

3 For each fence, remove the edges that the fence
intersects

4 Remove the vertex that the opponent pawn
occupies and the edges of that vertex, and
create edges in the neighborhood of that
vertex representing all of the possible legal
jumps

Figure 3.7: Algorithm for turning a Quoridor board state into a Quoridor graph.

Thecardinal neighborsof a square are those squares+ or− a letter or number. For

example, the cardinal neighbors of squaree5 ared5, f5, e4, e6. If a square is on

an edge, it will have less than four cardinal neighbors. The only complicated part of the

algorithm is the last step, which takes jumps into account for path creation.

Notice in Figure 3.8 that a Quoridor graph is not necessarilya completely connected

graph.

The problem of finding the shortest path from the pawn to the goal is now transformed
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Figure 3.8: Sample Quoridor board state and corresponding Quoridor graph from the per-
spective of the black player. The vertex occupied by the black pawn is shaded a medium
gray, and the goal is shaded black. Notice that the vertices shaded a light gray are not
connected to the rest of the graph. Also notice that the vertex containing the white pawn
is not present, and that the edges in that neighborhood reflect the possible jumps.

into the problem of finding the shortest path from the vertex representing the square occu-

pied from the pawn to one of the vertices representing the goal.

Dijkstra’s algorithm is ideal for use on a Quoridor graph, because it has optimal per-

formance on sparse graphs (graphs with a small number of edges relative to the number

of vertices) [4]. A Quoridor graph is indeed very sparse, considering that there are 81

vertices (9 rows of squares× 9 columns of squares) and that each vertex is connected to

at most 5 other vertices (4 possible cardinal neighbors, 5 possible jump neighbors as seen

in Figure 3.8).

Now to find the shortest path to the goal, simply run Dijkstra’s algorithm using the

vertex representing the square occupied by the pawn as the source, and choose the short-

est of the resulting paths to each reachable vertex representing a goal square. Like the
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Manhattan Distance, this value must be manipulated. This feature is trickier, as there is no

obvious “maximum” value. I chose the maximum value to be 81, which is the number of

squares on the board and thus the longest possible path. A better value, however, would

be 73, since a pawn will never traverse more than one goal square, so the longest possible

path should only include one of the goal squares. The value oftheshortest pathfeature is
81−length of the shortest path to goal

81 . Since most of the time the shortest path to the goal

will be a lot smaller than 81, there will not be a lot of variance in this feature. There is

probably a better way to represent the shortest path feature.

Another useful model to apply to a Quoridor board state is to view it as aDirichlet

problem, which can be defined as follows: LetS= D∪B be a finite set of lattice points

such thatD is the set ofinterior pointsandB is the set ofboundary points. A function f

defined onS is harmonicif, for points(a,b) in D, it has the averaging property

f (a,b) =
f (a+1,b)+ f (a−1,b)+ f (a,b+1)+ f (a,b−1)

4

The problem of finding a harmonic function given its boundaryvalues is called the Dirich-

let problem [9].

By viewing each goal square as a boundary point with the value1, and adding an

invisible set of boundary points with the value 0 “behind” the row or column where the

pawn starts the game, a Quoridor board state can be turned into a potential field. The pawn

wants to move through the potential field towards the highestvalued points (the goal). The

problem is finding the values of the interior points (the board) so that the pawn knows

which path to take. This can be done by finding a harmonic function. The value of this

feature is then the value of the harmonic function at the point occupied by the pawn. This

feature is already normalized, and a higher value means thatthe pawn is closer to the goal.

Finding the exact solution to a Dirichlet problem in two dimensions is not always a

simple matter. One method for generating approximate solutions is themethod of relax-

ations(Figure 3.9). The idea of this method is to iteratively average the interior points.
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While the resulting function will not be perfectly harmonic, it will be more nearly har-

monic than the previous iteration. For an example of applying the method of relaxations,

see Figure 3.10 [9].

1 For each pointd ∈ D, set the value ofd to be
the average of its neighbors.

2 Repeat step 1 until satisfied.

Figure 3.9: Method of relaxations.

Figure 3.10: (a) All interior points are set to 0 and the boundary points are fixed to 1 and
0. (b) After one iteration of relaxation, moving from left toright and down to up replacing
each value by the average of its neighbors.

An exact solution to a Dirichlet problem can be found by the method ofMarkov chains.

A finite Markov chainis a special type of chance process that may be described informally

as follows: we have a setS= {s1,s2, . . . ,sr} of statesand a chance process that moves

around through these states. When the process is in statesi , it moves with probability

Pi j to the statesj . The transition probabilitiesPi j are represented by anr × r matrix P

called thetransition matrix. To specify the chance process completely we must give, in

addition to the transition matrix, a method for starting theprocess, i.e., the state in which

the process starts [9].
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After nsteps, the probability that the process is in each of the possible states is provided

by the matrixP raised to thenth power, orPn, in which entriesPn
i j represent the probability

that the chain, started in statesi , will, after n steps, be in statesj . After a large number of

steps, the probability of being in a state is independent of the starting state [9].

States that, once entered, cannot be left, are calledtrapsor absorbing states. A Markov

chain is calledabsorbingif it has at least one absorbing state and if, from any state, it is

possible to reach at least one absorbing state. The states ofan absorbing chain that are

not traps are callednon-absorbing. When an absorbing Markov chain is started in a non-

absorbing state, it will eventually end up in an absorbing state. For non-absorbing statesi

and absorbing statesj , we denote byBi j the probability that the chain starting insi will

end up insj . We denote byB the matrix with entriesBi j [9].

Assume now thatP is an absorbing Markov chain and that there areu absorbing states

andv non-absorbing states. We reorder the states so that the absorbing states come first

and the non-absorbing states come last. Then our transitionmatrix has the canonical form:

P =





I 0

R Q





HereI is au×u identity matrix, and0 is au×v matrix with all entries 0 [9].

The matrixN = (I −Q)−1 is called thefundamental matrixfor the absorbing chain

P. The entryNi j is the expected number of times that the chain will be in statesj before

absorption when it is started insi. B = NR is the absorption probabilities matrix. For an

absorbing chainP, Pn will approach a matrixP∞ of the form [9]:

P∞ =





I 0

B Q





Now, going back to the original definition of a Dirichlet problem, let f be a function
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with domain the state space of a Markov chainP such that fori in D

f (i) = ∑
j

Pi j f ( j)

Then f is a harmonic function forP. If we representf as a column vectorf, f is harmonic

if and only if

Pf = f.

This implies that

Pnf = f.

The vectorf can be written as

f =





fB

fD



 ,

wherefB represents the values off of the boundary points andfD the values of the interior

points. Then we have





fB

fD



 =





I 0

B Q









fB

fD





andfD = BfB = (I −Q)−1RfB [9].

To apply the method of Markov chains to a Quoridor board state, first consider the

subset of squares that is reachable by the player. In other words, we are only going to

use the connected component of the graph that includes the vertex the pawn is currently

occupying. The goal squares become absorbing states, and the rest of the squares be-

come non-absorbing states. We also need a set of absorbing states which are conceptually
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“behind” the row or column that the pawn begins that game on. The absorbing states rep-

resenting the goal have the value 1 infB, and the other absorbing states have the value 0.

The probability of moving from non-absorbing statesi to any statesj is 0 if the two states

are not neighbors, otherwise it is 1
degree(si)

. The actual feature value is the value offD at

the state representing the square occupied by the pawn. An example Quoridor board state

and correspondingf values are shown in Figure 3.11.

Figure 3.11: (a) Sample Quoridor board state. (b) Corresponding harmonic function from
the perspective of the black player with fences added for ease of comparison. Notice that
only the connected component is assigned values, and also notice the added absorbing
states with value 0. The value of this feature for the black player would be 0.01.

3.3.2 Other Features

Another feature I proposed was the distance between the pawns. This feature arose from

the “creating a box” strategy, in which it is essential that both pawns be close together so
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that they can be enclosed in the same labyrinth. Another situation where it is advantageous

for the pawns to be close together is when one pawn is very close to its goal and the other

pawn has not managed to advance very far. Of course, it is alsoeasy to envision situations

where a board state is bad for you if the pawns are close together. So it is not very likely

that thepawn distancefeature is a universal indicator of whether a player is winning or

losing. This feature was also normalized by the formula81−pawn distance
81 .

The number of fences a player still has in reserve is another obvious feature of Quori-

dor. Like the pawn distance, however, there are winning situations where the player has a

lot of fences remaining, and there are winning situations where the player doesn’t have any

fences remaining. So this is also not necessarily a useful feature. Thenumber of fences

feature can be normalized by dividing by 10, the number of fences each player begins the

game with.

The chess playing machine Deep Blue uses over 8000 features in its evaluation func-

tion, many of them describing highly specific patterns of pieces [18]. The level of expert

knowledge in the game of Quoridor today is not nearly as advanced. The set of features

that I came up with are the fairly obvious ones. No doubt, manymore features could be

proposed, for example, features that describe how strategically placed the fences are.

3.4 Implementation

To develop a Quoridor artificial player, I had to develop a search algorithm, evaluation

function, and learning algorithm. For the search algorithm, I relied upon a standard

iterative-deepening alpha-beta negamax search algorithm(see Section 2.4) with a few

modifications. The first modification was to short-circuit the search if a 1-ply search re-

vealed a winning terminal state, because there is no point insearching further in the tree if

the agent is one move away from winning.
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Another modification was the use of aprincipal variation, which is a list of (state,

move, value) triplets representing one path through the tree. The function NEGAMAX-

VALUE was modified to return a principal variation instead of just the value. The principal

variation returned represents the optimal path fromstateto the leaf node of the search.

Using a principal variation served several functions. The first was to prevent loops in the

game tree, e.g., returning to a previous state. With a principal variation, a state can check

to see if any of its child states are identical to any of its parent states. If so, the state can

prune those children. The second function was for move ordering. On iterationi of the

iterative-deepening algorithm, if a given state is in the principal variation of iterationi−1,

the first move we examine is the one in that triplet. By examining the move previously

found to be the optimal move for this state first, then the alpha-beta pruning is more likely

to be effective.

The last modification was the ability to define a cutoff point for the search if it was

determined that the search would be unable to complete the next iterative deepening itera-

tion in a reasonable amount of time. For example, for the timelimits I imposed during the

learning process, I found that the search could not possiblycomplete the iteration at 3-ply

if the branching factor was near its maximum. Since the result of the last (uncompleted)

iteration is disregarded, any time spent past the 2-ply iteration was effectively wasted.

Therefore, to save time, I imposed a cutoff when the last iteration had examined a certain

number of leaf nodes (approximately the number of leaf nodesof a 2-ply tree, 1332).

For the evaluation function, I chose 10 features. Table 3.1 lists the features, their

descriptions, and whether I hypothesized that the weights would turn out to be positive,

negative, or zero.

I chose to use all of the features discussed in Section 3.1, except for the method of re-

laxation. The reason for excluding the method of relaxationis that I found that calculating

the feature value took significantly longer than calculating the Markov chain feature, and

since the method of relaxation is an approximation to the Markov chain method, it would
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Table 3.1: Features chosen for the Quoridor agent.

Feature Feature Feature Weight
Number Name Description Hypothesis

1 Shortest Path length of Dijktra’s shortest +
Player (SPP) path for the player

2 Shortest Path length of Dijktra’s shortest −
Opponent (SPO) path for the opponent

3 Markov Chain Markov chain value +
Player (MCP) for the player

4 Markov Chain Markov chain value −
Opponent (MCO) for the opponent

5 Manhattan Distance Manhattan distance +
Player (MDP) for the player

6 Manhattan Distance Manhattan distance −
Opponent (MDO) for the opponent

7 Pawn Distance pawn distance 0
(PD)

8 Goal Side goal side +
Player (GSP) for the player

9 Goal Side goal side −
Opponent (GSO) for the opponent

10 Number Fences number of fences 0
Player (NFP) of the player

only be useful if it was faster to calculate. Of course, it maybe possible to implement

the method of relaxations more efficiently. All of the chosenfeatures can be calculated

for both the player doing the evaluation and from the perspective of the opponent, except

for pawn distance, which is independent of which player is doing the evaluation. I chose

not to include the number of fences held by the opponent as a feature, because no move

by the player can influence that value. The reason that I hypothesized that NFP would

tend to a weight of zero is that fences can be viewed as potential energy. Having a lot of

potential energy is good, but it can also be translated into kinetic energy without losing

much value. In Quoridor terms, holding fences in reserve is good because then you have a

lot of flexibility later in the game, but if you use your fenceswisely then they do not lose
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their value simply because they have been played.

For the learning algorithm, I chose a variant of a genetic algorithm (see Section 3.2).

Usually there are only two main components of most genetic algorithms that are problem-

dependent: the problem encoding and the fitness evaluation function [22]. For the problem

of learning weights, a weight vector is considered to be a chromosome, so that each locus

is a float value. The fitness evaluation function is the numberof games that a chromosome

wins against the other chromosomes of the population.

In my genetic algorithm, a population was created with the algorithm shown in Figure

3.12. The functionRANDOM(a, b) returns a randomly generated float in the range[a,b].

POPSIZE is a constant describing the number of chromosomes to be created for the pop-

ulation.Ci is theith chromosome of the population, andCi [ j] is the jth locus (weight for

feature j) of that chromosome.HASFEAT is the probability that the chromosome has a

non-zero weight for each feature. I setHASFEAT to 0.3 for all of my populations. If a

chromosome has a zero weight for a feature, then it does not waste time calculating the

value of that feature.

function CREATE-POPULATION()
for i = 1. . . POPSIZE do

for j = 0. . .9 do
if (RANDOM(0, 1)<= HASFEAT)
then Ci [ j]← RANDOM(-1, 1)
elseCi [ j]← 0

Figure 3.12: Population creation algorithm.

To determine the fitness of each chromosome, each chromosomeplays aroundagainst

every other chromosome. A round consists of two games, with the chromosomes alternat-

ing being the black player. This was done to avoid any bias forwhich chromosome moves

first. The fitness of a chromosome is then simply the number of games it wins. During
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a game, each player getsTIMELIMIT seconds to decide on a move. I quickly discovered

during this process that, if left to their own devices, agents could make a game last indefi-

nitely by, for example, repeatedly moving back and forth between two squares. Therefore

it was necessary to impose a limit,MOVECAP, on the maximum number of moves a

game could last. I hypothesized that 164 would be a reasonable value forMOVECAP, as

this allows each player 10 moves to place its fences and 74 moves to get its pawn to the

goal. If a game reachedMOVECAP moves before ending, the game was declared a draw,

and neither player won. So, to increase its fitness, a chromosome would have to not only

win a game, but do so in a limited number of moves.

Once alln(n−1) games were finished, wheren is the number of chromosomes in the

population, the chromosomes were ranked by their fitness. One danger of using recombi-

nation and mutation is that the best solution (chromosome) found so far could be modified

irrevocably and lost. Therefore, I directly copied a few of the top-ranked chromosomes

into the next population. The percentage of the top-ranked chromosomes that were copied

was determined by theELITISM variable. To fill the remaining slots of the next popu-

lation, I used theSPAWN algorithm (Figure 3.13). The argumentCp is the population

of generationp, and the argumentf is an array of corresponding fitness values. The ar-

gumentn is the number of offspring required.SELECT(Cp, f ) returns a chromosome

selected fromCp using the roulette wheel method.MUTATION is the probability that a

weight will be mutated.LOSEFEAT is the probability that if a weight is non-zero it will

be changed to zero.MUTFEAT is the maximum amount that a weight can be mutated by.

For example, ifPOPSIZE was 10 andELITISM was 0.2, then the first and second

top-ranked chromosomes were each copied once into the next generation. TheSPAWN

algorithm would then be used to create the remaining 8 chromosomes required.

For each learning population that was created, I also created a companiontest popula-

tion, which would never change. Every few generations of the genetic algorithm learning

process, each chromosome of the learning population playeda round against each chro-
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function SPAWN(Cp, f , n) returns a population
for i = 0. . .n−1 do

mother← SELECT(Cp, f )
f ather← SELECT(Cp, f )
for j = 0. . .9 do

if (RANDOM(0, 1)≥ 0.5)
then Cp+1,i [ j]←mother[ j]
elseCp+1,i [ j]← f ather[ j]

if (RANDOM(0, 1)≥MUTATION) then
if (Cp+1,i [ j] is zero)
then Cp+1,i [ j]← RANDOM(-1, 1)
else if(RANDOM(0, 1)≥ LOSEFEAT)
then Cp+1,i [ j]← 0
elseCp+1,i [ j]← RANDOM(-1, 1)×MUTFEAT

return Cp+1

Figure 3.13: Algorithm to create offspring for the next generation.

mosome of the test population. The total number of games won by the learning population

against the test population was thepopulation fitness. If the population fitness increased

over time, that would be an indicator that the population wasimproving.

There were still a number of variables to be specified, so I ran11 separate populations

with different values for the variables shown in Table 3.2. Each population ran on a differ-

ent CPU and was named for the machine and processor number it used. Time was a limit-

ing factor, so I tried to make the relevant variables (POPSIZE, MOVECAP, TIMELIMIT)

as small as possible. For example, if a population setPOPSIZE to 20, MOVECAP to

164, andTIMELIMIT to 15, then a single generation of the learning algorithm could take

up to 10.8 days ((20×19) games× 164 moves/game× 15 seconds/move).
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Table 3.2: Variable values for the different populations.

Population Population POPSIZE MOVECAP TIMELIMIT MUTATION
Number Name (seconds)

1 digamma1 20 150 12 0.01
2 digamma2 10 150 12 0.05
3 heta1 20 182 10 0.01
4 heta2 15 100 8 0.05
5 omega1 10 100 8 0.01
6 omicron1 10 120 10 0.05
7 psi1 25 120 8 0.01
8 psi2 10 80 7 0.1
9 rho1 15 100 20 0.01
10 rho2 15 100 20 0.1
11 xi1 20 120 15 0.01

Population Population LOSEFEAT MUTFEAT ELITISM
Number Name

1 digamma1 0.1 0.1 0.2
2 digamma2 0.1 0.3 0.1
3 heta1 0.1 0.1 0.2
4 heta2 0.2 0.3 0.1
5 omega1 0.1 0.1 0.2
6 omicron1 0.1 0.3 0.1
7 psi1 0.1 0.1 0.2
8 psi2 0.2 0.4 0.1
9 rho1 0.1 0.1 0.2
10 rho2 0.2 0.5 0.1
11 xi1 0.1 0.1 0.2
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Results

The learning process ran for a few weeks until a deadline was reached. During this time,

some populations got more CPU time (due to machine downtime,human error, etc.) than

others, and so the work spent learning was not equal for each population. Also, the pop-

ulations ran on different machines with varying speeds. Figure 4.1 shows the change in

population fitness (see Section 3.4) over the learning process. The X-axis is the generation

number of the genetic algorithm on a logarithmic scale, and the Y-axis is the percentage of

games won against the test population. The population fitness of most populations seems

to have reached an early peak and then dropped or leveled off.

I next took a look at the individual fitness for each chromosome in every population.

I chose a chromosome to represent each population, picking the chromosome with the

highest fitness in its population. These chromosomes formeda new champion population.

The weights for each feature of these chosen chromosomes, named for the population they

represent, are shown in Table 4.1 and are plotted in Figure 4.2. The description of each

feature abbreviation and number can be found in Section 3.4.Figure 4.2 also shows the

average value of each weight across the champion population.

I wanted to determine which chromosome of the champion population had the highest

51



Chapter 4. Results

Table 4.1: Champion population weights.

# Chromosome SPP SPO MCP MCO MDP
1 digamma1 0.250 0.000 0.290 0.000 0.378
2 digamma2 0.000 0.331 0.606 -0.480 1.165
3 heta1 0.945 0.000 0.000 0.000 0.000
4 heta2 0.421 0.386 0.000 0.000 0.095
5 omega1 -0.452 -0.462 -0.711 0.393 0.627
6 omicron1 -0.396 -0.713 0.551 0.000 0.504
7 psi1 0.747 0.096 0.000 0.000 0.000
8 psi2 1.299 -0.258 1.303 0.000 0.000
9 rho1 0.993 0.083 0.000 0.000 0.000
10 rho2 1.187 -0.451 0.278 0.000 0.000
11 xi1 0.131 0.362 0.000 0.000 0.000
# Chromosome MDO PD GSP GSO NFP
1 digamma1 0.034 -0.974 0.071 0.000 0.000
2 digamma2 -0.300 0.903 0.522 -0.504 -0.265
3 heta1 0.000 -0.846 0.245 0.000 0.792
4 heta2 0.097 -0.201 0.757 -0.448 0.534
5 omega1 -0.908 0.000 0.000 0.000 -0.078
6 omicron1 0.000 0.392 0.000 -0.322 0.000
7 psi1 -0.792 0.000 0.000 0.000 0.327
8 psi2 0.497 -0.699 0.487 -0.346 0.555
9 rho1 0.000 -0.460 0.000 0.000 0.000
10 rho2 0.000 0.000 1.061 0.000 0.592
11 xi1 0.000 0.000 0.000 0.000 1.000

fitness, but, since each population was developed using differentMOVECAP andTIME-

LIMIT parameters, the method for determining comparative fitnesswas not straightfor-

ward. I ended up doing two different competitions, a “fast” competition and a “slow”

competition. In both competitions, theMOVECAP was set to 182, which was the largest

value used in any of the populations. In the fast competition, theTIMELIMIT was rela-

tively short (8 seconds), and in the slow competition, theTIMELIMIT was relatively long

(15 seconds). The results of the fast competition are shown in Figure 4.3, where the X-axis

is the chromosome number (see Table 4.1) of the champion population, and the Y-axis is
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the fitness of each chromosome (number of games won against the other chromosomes).

The results of the slow competition are shown in Figure 4.4. In both competitions, chro-

mosome 7 (psi1) had the highest fitness and was declared the champion chromosome of

all populations.

During the fast and slow competition, a total of 220 games, I tracked some statistics.

The average game length was 91.1 turns, the average branching factor was 60.4, and the

average depth reached by the search was 4.1. The average depth was the same for both

the fast and slow competitions, suggesting that the difference in the time limits was not

significant enough to allow for a deeper search.

While these results tell us the relative progress of the populations and which chromo-

some is the most fit, they do not tell us how “well” the Quoridoragent plays. For a more

qualitative analysis of the agent, Joseph Farfel and I each played the champion chromo-

some, number 7 (psi1). We both easily beat it using both a 15 and 20 second turn time

limit, and both concluded that it is unlikely that any human player would have trouble

winning against it. While chromosome 7 is able to effectively place fences to lengthen

the opponent’s path, it is not very effective at moving towards the goal, especially near

the end of the game, and does not play fences defensively. I also played the “average”

chromosome of the champion population (see Figure 4.2), andeasily beat it as well.
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Figure 4.1: Population fitness.
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Figure 4.2: Champion population weights, and the average weights of the champion pop-
ulation.

55



Chapter 4. Results

Figure 4.3: Fast competition results.
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Figure 4.4: Slow competition results.
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Conclusions

The goals of this research project were to analyze the characteristics of the game of Quori-

dor, propose features for use in an evaluation function, usea learning algorithm to optimize

the weights of a linear evaluation function, and evaluate the artificial player produced by

this method.

As a game, Quoridor can be characterized as a deterministic,sequential, partizan,

loopy, two-player, zero-sum game of perfect information with a restricted outcome. The

game tree of Quoridor has a maximum branching factor of 133 (128 possible fence loca-

tions and 5 possible pawn move locations), and a minimum branching factor of 1. Over

the course of 220 agent-agent games, I calculated the average branching factor to be 60.

This is still significantly higher than the average branching factor of chess (35), but signif-

icantly lower than the average branching factor of Go (200) [3], or that of Amazons (500)

[14]. Also, the average game length of these agent-agent games was 91 turns.

I proposed 10 features of Quoridor: Shortest Path Player, Shortest Path Opponent,

Markov Chain Player, Markov Chain Opponent, Manhattan Distance Player, Manhattan

Distance Opponent, Pawn Distance, Goal Side Player, Goal Side Opponent, and Number

Fences Player. These features are discussed in Section 3.3.
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How effective was the genetic algorithm I chose as a weight learning function? Based

on my results, my algorithm is probably not the optimal algorithm for this problem. While

the population fitnesses did immediately increase, they then peaked and tapered off. It

is possible that more generations were needed for the genetic algorithm to be effective.

There was a huge spread in the values of weights between the different populations, so the

learning algorithm did not converge on a single optimum solution.

Something strange happened with population 5: after generation 5, the population

fitness dropped to 0.3 and thereafter didn’t change at all. Also, the champion of population

5 won zero games against the other champions. This may reveala flaw in the learning

algorithm: population 5 became nearly homogeneous, meaning that there was very little

variation in the population. Without variation in the population or a high mutation rate, a

genetic algorithm cannot generate new solutions. One drawback of genetic algorithms is

possible early convergence on a solution.

We theorized that having differentTIMELIMIT andMOVECAP parameters might pro-

duce populations that were better suited for “fast” or “slow” games. There was a difference

in the performance of the champion chromosomes in the two competitions, for example,

chromosomes 1, 8 and 10 won more games in the slow competition; however, chromosome

7 performed consistently well for both time limits.

The champion chromosome’s population (7) had relatively low mutation rates com-

pared to the other populations. Population 7 also had a shorttime limit, but was on one

of the faster machines. Population 7 had aPOPSIZE of 25 , while the worst population

(5) had aPOPSIZE of 10. Populations 3 and 4, which did well in the competitions, had

POPSIZEs of 20 and 15, respectively. Perhaps large population sizes(≥ 25) would make

this algorithm more effective.

Finally, a major drawback of the learning approach I used in this project is the sheer

amount of time it needs. Another learning algorithm might require fewer games to be
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played, and thus be more efficient.

The resulting artificial player (champion chromosome 7), given the turn time limit and

machines used, is not able to beat human players. The goal of future research in this area

should be to produce a Quoridor artificial player that can play competitively with humans.

Although the branching factor is quite large, it may still bepossible to use the brute

force search approach to develop an effective playing program. Further research in this

area might investigate a more efficient search algorithm andpruning heuristics. Features

that focus on the strategic placement of fences could be proposed. Improving the accu-

racy of the evaluation function could also dramatically increase the ability of the artificial

player. A different weight learning algorithm could be used, perhaps with a nonlinear

evaluation function. The server-client architecture of mycode could be utilized to allow

the artificial player to learn from playing humans over the internet. Without a deadline,

much longer time limits for both learning and playing would improve the artificial player.
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