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From untyped to typed

Recall our general approach :

General tactics

@ Classify the expressions occurring inside a program into types,

@ Verify that the composition of these types into the program respects a
set of coherence rules.

In order to do this, we shall define a set of types and rules such that :
@ a type acts as an approximation of the evaluation of an expression;

@ a rule is associated to a syntactic construct of the language and
expresses how this construct evaluates with regard to types.

These types and rules shall define a type system.
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Definition (Types)

The set of types, noted Typ, is defined as :
@ Type variable : an infinite set of abstract type variables T, U, ...

e Function type : if T and U are types, then T— U is also a type.

@ In our setting, we add two constant types : Nat and Bool.
@ A type is concrete iff it contains only constant types as sub-expressions.

Example

(Nat— Nat)— (Bool— Bool
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Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t,, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

Assumption on t, Assumption on t, Assumption on t;
Assumption on if t; then t, else t;
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Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

if t; has type Bool t, has type T t; has the same type as t,
then if t; then t, else t; has type T
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@ An expression t is said to have type T € Typ, noted t : T.
This yields a typing, an association between an expression and a type.

@ An environment [ is a possibly empty sequence of typings.

Definition (Typing deduction)

To deduce a typing from I, noted ' = t : T, consists in building a
derivation tree using ' as a set of axioms and a finite set of typing rules,
whose root asserts that t : T.

@ An expression t is said to be typable if it is possible to deduce a
typing T for t starting from the empty environment.

@ As a consequence, the expression t : T is said to be (well)-typed.
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Example : the if-then-else construct

For the if-then-else construct t; ::= if t; then t, else ts.

Suppose that in an environment I :
@ one can prove that t, : Bool,
@ one can prove that t, : T for a particular T,
@ one can prove that t; : T,

Then we deduce that t;, : T.

I+ t; : Bool MEt,:T MNEt3:T
NFif t; then t, else t3: T
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-t Mt
M (t t2)
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
Me(t; t2): U
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
M= (t; t): U

For the abstraction construct t,,, ::= Ax.t; in an environment .
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
M Ax.ty
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
r, X |_ tl
M Ax.ty
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
Mx:TkHFt U

M= Ax.t;: T—=U
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What about the typed abstraction ?

Consider the typed abstraction construct : t.,, ::= Ax : T.t;
With nearly the same typing rule :

Mx:Tkt:U
FEXx:Tt;: T—>U

Annotating the code with types or not offers different perspectives :
e Explicit types : simpler (or even just decidable) verification.

@ Implicit types : no-hassle programming, principal types.

vector<int> list;
for (auto it = list.begin(); it != list.end(); it++)
cout << xit << endl; // in place of 'vector<int>::iterator’
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Example : derivation tree of a typing

D= AMA(F(F %)) :
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Example : derivation tree of a typing

{f: FE M (F (F x)):
D= AMA(F(F %)) :
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Example : derivation tree of a typing

Mo={f: oxo PE(F(Fx):
{f: FE A (F (f x)):
D= AMA(F(F %)) :
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Example : derivation tree of a typing

Me=f: e (f x):

Moe={f: oxo FE(F(Fx):
{f: FE M (F (F x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f el

Mef: ME(f x):

Mo={f: oxo FE(F(Fx):
{f: FE A (F (f x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : derivation tree of a typing

f: el FEf: Ex:
Mef: ME(f x):
ra={f: xR (F(FX):

{f: FE M (F (F x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f er X el
f el FEf: M-x:
Mef: ME(f x):
Ma={f: x:o PE(F(FX):
{f: FE M (F (f x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f el x:Natel
f: el =f: "= x: Nat
Mef: IE(f x) : Nat
Ma={f: ,x : Nat} F (f (f x)) : Nat
{f: FE M (F (f x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f: Nat—Nat el x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
D= AMA(F(F %)) :
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Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat
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Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f: Nat— Nat} F Ax.(f (f x)) : Nat— Nat /

@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat
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The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t Tgr [VAR]

Jimse U TEx:T  TEToU oy
x:Thu:U TR =) b
TR
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The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t: T e I [VAR]
Jirresl TEx:T  TEEToU |y
Mo The:U o FE(fFx):U
N Axu:T—U
Comparison with the rules in propositional logic :
MPEQ kP TFP=Q
prp N Hesg = T Q e
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Typing rules for booleans and naturals

r|_t1

[+ true
[+ false

rl_tz I_I_t3

IF
[ if t; then t» else t3 [1e]

[+ zero

M-t
[ iszero t

[15z]

M-t
[ succ t

[suc]
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Typing rules for booleans and naturals

r|_t1

[+ true : Bool
I - false : Bool

rl_tz I_I_t3

IF
[ if t; then t» else t3 [1e]

[+ zero

[t
[ iszero t

[15z]

M-t
[ succ t

[suc]
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Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T

e T [1F]

["F if t; then t> else t3: T

[+ zero
[t
[ iszero t e
M-t
[ succ t 2]
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Typing rules for booleans and naturals

[ true : Bool
I - false : Bool
I+t : Bool M-t6:T I'I—t3:T[IF]
MEif t; then tp else t3 : T
[ F zero : Nat
Mt
1SZ
[ iszero t B
M=t
SUC
[F succ t [su]
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Typing rules for booleans and naturals

It : Bool

[+ true : Bool
I - false : Bool
FlE6:T rl—t3:T[IF]
["F if t; then t> else t3: T
[+ zero : Nat
- t: Nat
I+ iszero t : Bool i
M-t
[ succ t 2]
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Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T Fl65:T

["F if t; then t> else t3: T
[+ zero : Nat

- t: Nat
I+ iszero t : Bool

[15z]

[ t:Nat

[+ succ t : Nat [

[17]

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _




Properties of the simply typed \-calculus (1)

Theorem (Strong normalization) :

In A\_,, every expression reduces to a value in a finite number of steps.

@ It is an example of programming language / model of computation
where termination is decidable.

@ Hence it is incomplete, and cannot express some computable functions.
(restricted to the Church naturals, it can only compute extended polynomials)

@ PCF defined as \_, extended with recursion and a type for naturals is
a Turing-complete language.
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Properties of the simply typed \-calculus (2)

The type system of \_, is coherent with regard to 3-reduction :

Theorem (Type preservation) :

If t : T is typable, and t =5 u, then u: T is typable.

Theorem (Progress) :

| G

If t : T is typable, then either t is a value or it can be 3-reduced further.

\

Definition (Type safety)

A programming language possessing a type system with the preservation
and progress properties is said to be type-safe.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



What is the manifestation of type-safety in classic programming languages?

char x = 12345; // Char int a = INT_MIN;

void xpx = &x; // v int b = -1;

int xpy = px; // v return a/b;

int y = xpy; //Int // — Runtime failure
Non-preservation Non-progress
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Types as approximations

Values of a given type are composable and interchangeable.

Substitution lemma

Given an expression t : T containing a sub-expression x : S, then x can be
substituted to any expression s of type S without affecting the type of t.

Mx:SkEt:T M=s:S
Mex—=sle: T
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Not every expression is typable

Limits of type systems : Incompleteness

There exist \-expressions that are not typable in A_,.

Example

The expression nt ::= Ax.(x x) is not typable in A_;.

Sketch of proof :
@ If nt were typable, x would have a type T.
@ Since x appears on the left of an application, T = U— V.
@ But x also appears on the right of the same application, hence T = U.
@ There is no type in Typ such that U=U—V.
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Conservativeness of typing

Limits of type systems : Conservativeness

A type system is in general conservative : there exist expressions in \_,
that are not typable even though they evaluate safely.

@ Simple programs mixing different types of values :

let pi = fun b — if b then 3.14 else "Pie";;
if (pi true > 3.) then print_string (pi false);;

@ The fixed-point combinator (also called the Y-combinator) :
Y= )\f.(/\x.f,(x,x)),()\x.f’,(x,x))

... that can be used to encode recursion into the language.
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Partial functions

Limits of type systems : Liberalness

A type system is in general liberal : it cannot discriminate all the stuck
expressions of a programming language with simple arithmetic.

Consider the addition of a predecessor function to A_, :

pred succ t =g t

- t: Nat
[+ pred t : Nat

t—pgt’ [PRE]

pred t -8 pred t’

The expression pred zero is well-typed and yet stuck. Possible solutions :
@ either consider that the evaluation can progress (on floats, return inf)

@ or add a mechanism that redirects the evaluation (e.g exceptions).
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Designing a language with types

1. Define a programming language as the set of expressions of a grammar.
2. Define an operational semantics that performs a computation.

3. Select a set of values that are the results of the evaluation.

Usually, the evaluation function cannot be meaningful on the complete
language : some expressions remain stuck.

4. Set typing rules and restrict the language to well-typed expressions.

Type-safety ensures every computation to be either infinite or yield a value.
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Example : handling state

Syntax and Types

t = - expressions
() unit
ref t reference Vv Ii= . values
It dereference O unit
g location E location
t :=t assignment
t 5 t sequence

@ The locations are the internal representations of references, i.e the
result of the computation of an expression ref t.

@ The associations between locations and values are saved into a store.
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Example : handling state

@ A store p is a dictionary mapping locations to values :
=Ly = vy, =,

@ The store acts as a context and is modified during the evaluation.

Evaluation rules

¢ & dom(p) p [t=v]u
7 =V L:i=v—=g O
ref v—p 14
u W w !
/J/(ﬁ) =y ty —>[-} Vi to —>/3 V,
T W
W —g v ti;ta =g v,
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Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
T:= ... MEref t
unit type
reference type r |_ r
E1r
Mer Mt
Mlr:=t
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Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
TE= oo [ reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t
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Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
-t
TE= oo [ reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t
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Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
M=¢:T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t
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Example : handling state

Types Typing rules

[+ s:Unit M=t T
MNes;t: T

M=t:T
Tu= ... [ F ref t : Ref[T]
Unit  unit type
Ref[T] reference type [ r: Ref[T]

Mr Mt
Mlr:=t
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Example : handling state

Types Typing rules

[+ s:Unit M=t T

MN-s;e: T
M=t T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type Ner: Ref[T]
M=t T

I'F r: Ref[T] M=t T
M=r:=t:Unit
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Example : algebraic datatypes

Definition (Algebraic Datatype)

An algebraic datatype is a type associated to a set of values defined by
a regular tree grammar.

Example : lists containing only integers
NatList — Nil | Cons(Nat,NatList)

Nil is a terminal of arity 0, Cons is a terminal of arity 2.

In order to introduce such a datatype into the language, it is necessary to :
@ add a way to construct the values,

@ and another to deconstruct them.
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Example : algebraic datatypes

@ Construction : associate to each terminal a keyword acting as a
function with the same arity :

Nil (+ Nil is a constant )
Cons(2, Nil) (* Cons takes 2 arguments x)
Cons(1, Cons(2, Cons(3, Nil))) (* their composition yields complex lists x)

@ Deconstruction / Pattern-matching : associate to each non-terminal a
mechanism to select its associated production rules :

let length 1 = case 1 of (* selection depending on 1 being )
| Nil — 0 (* either Nil x)
| Cons(x, xs) — 1 + length xs (% or a Cons with two arguments *)
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Example : algebraic datatypes

Syntax and Types

t =
Nil
Cons(t,t)
Nil —t
case t of
Cons(x,y)—t

expressions
nil

cons

case

Note that x and y in the case-expression are special
variable names that cannot be modified in this example.

= .. values

Nil nil

Cons(v,V) cons

NatList list type
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Example : algebraic datatypes

Evaluation Rules

Cons(ty,t,) —B Cons(ti,ts)

Cons(v,ty) —8 Cons(v,t})

case Cons(vy,Vs) of [

case t; of —rp case tj of
Cons(x,y)—ts Cons(x,y)—t3

) Nil — —ty
case Nil of —B t

Cons(x,y)—t,

Nil  —t,
Cons(x,y)—t,

] -3 [x = Vi,y vz]tz
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Example : algebraic datatypes

Typing Rules

rl—casetof[

Cons(x,y)—t,

[ Nil
M-t Mt
[ F Cons(ty,ty)
M=t M=t I, x ,Y I~ &
Nil  —t,

|
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Example : algebraic datatypes

Typing Rules

M=t

" = Nil : NatList

M=ty MEt,
[ Cons(ty,ts)
M-t I, x

)

y Ft,

rl—casetof[

Nil

—t;

Cons(x,y)—t,

|
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Example : algebraic datatypes

Typing Rules

" = Nil : NatList
M t; : Nat MEt,

: NatList

M-t

"+ cons(ty,t,) : NatList

Mt I, x

)Y |_t2

Nil
rl—casetof[ !

—t,
Cons(x,y)—t,
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Example : algebraic datatypes

Typing Rules

" = Nil : NatList

M t; : Nat I t, : NatList
"+ cons(ty,t,) : NatList

[+t : NatList Mt T I,x: Nat,y: NatList - t, : T
Nil =ty |
Cons(x,y)—t,

rl—casetof[
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Summary on the simply-typed lambda-calculus

We showed how to endow a language with a type system and how to
perform verifications at a syntactic level.
@ Type systems and languages are modular and can be extended easily;

@ Type safety is a key property for a typed language, ensuring stability
properties of programs respecting well-defined bounds ;

@ Nevertheless, type systems are by essence both conservative and
liberal in their verifications.

Next, we consider the different decision problems for typed expressions.
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Type checking and inference

Generally the main problems with regard to typing are :
@ Typability : for an expression t, is there a type T and a derivation
tree proving that t : T 7

@ Type checking : given an expression t, a type T and an environment
typing the variables of t (free or bounded), build a derivation tree
which proves t : T or find an inconsistency;

@ Type inference : for a typable expression t, compute a type T such
that there exists a derivation tree which proves t : T.

In order to solve these problems, we shall :
@ derive a system of equations called constraints from the expression ;

@ compute a solution to this system if any, or prove that there is none.
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Definition (Substitution)

A substitution o is an application from type variables to types.
It can be extended as a function from types to types.

Example

Consider the substitution o ::= {X < (Y—Y),Y < Nat}. Then :
e o(X)=Y—=Y, o(Y) = Nat
@ o(Y— Bool) = Nat— Bool
@ 0o 0(X) = Nat— Nat

@ Not very different from the substitutions defined for expressions.

@ Cycles in substutions should be handled carefully.
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Definition (Type constraints)

A constraint is an equation of the form S = T where S, T € Typ.
A constraint set C is a finite set of constraints.

Definition (Unification)

The substitution o is said to unify C iff for all equation S = T in C, oS
and oT are syntactically equal.
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Example : type checking (1)

[ if b then (f zero) else (f true) ]
b : B
: F
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Example : type checking (1)

if b then (f zero) else (f true)

b : B
f :F
B = Bool
F=U=>V

Type Systems and Programming IR E TR R
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Example : type checking (1)

if b then (f zero) else (f true)

b : B

f :F

B = Bool
F=U=V
U = Bool
U = Nat

Type Systems and Programming  IREETEE R R
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Example : type checking (1)

[ if b then (f zero) else (f true) ]
b : B
f:F
B = Bool
F=U=>V
U = Bool
U = Nat

= Type error : Bool used where Nat expected.
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Example : type checking (2)

[ if b then (f,zero) else (f,succ zero) ]
b : B
- F
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f:F
B = Bool
F=U=V
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained

Type checks : the following substitution unifies the constraints :

{B — Bool, F — (U—V),U — Nat}
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Definition (Constrained typing)

To deduce a constrained typing '+t : T | C means that t has type T
under the assumptions in [, whenever the constraints in C are satisfied.

t: Terl
M=+ T {}

[vaRr]

T17T2 fl’eSh r,X 5 T1 l_ u T2 | C Cf::: CU {U = T1_> Tz}
M Xxu:U | Cr

[aBs]

Mo T, |G NEu:T, | Co Cri=CruCou {T, =T,— U}
rl—(t,u):U|Cf

[aPP]
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Example : deduction of a typing

GEMM(F(FXx):T
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Example : deduction of a typing

{f: T} EA(F (F x)): T,
GEMM(F(Fx):T
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Example : deduction of a typing

Fo={f:Ty,x: Tt E(F(Fx)): T,
{f: T} EA(F (F x): T,
GEMMF(Fx):T
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Example : deduction of a typing

M- T, [ (Fx): T

Fo={f:Ty,x:TstE(F (Fx): T,

{f: T} EA(F (F x): T,

GEMM(F(Fx):T
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Example : deduction of a typing

f:T,el
MEf:Ts F=(fx):Te
Fo={f:Ty,x:TsrE(F (Fx)): T,
{fF T} EAx(F (fx): T,
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,erl F=f:7T, Ex:Tg
MEf:Ts F=(fx):Te
Fo={f:Ty,x: Tt E(F (Fx): T,
{f T} EAx(f (fx)): T,
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,erl x: 1€l
f:T,eTl Fr=f:T, MNEx: T
M=f:Ts FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T, el x: T3l
f:T,erl FE=f:T, MNEx:Tg
rl—f:Tsf{TI:Ts} rl—(f,x):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} MNEx:Tg
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T
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Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{F:TiEA(F(Fx)):T,
FEMM(F(Fx):T
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Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} H )\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FTE(FX):Te| { . Tr=TemTe}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} F )\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMME(FX):T|{. T=TinT2}

List of constraints :

Tl = T57T1 = T77T3 = T87
T7 == T3_> T67T5 = T6_> T47
T2 — T3_> T4,T - T1_> T2
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Example : resolution of a list of constraints

Tl = T57T1 = T77T3 = T87
T7 - T8_> T67T5 == T6_> T47
T2 — T3_> T4,T - T1_> T2

Deduction of the constraints :
e T, =T;,=T,
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Example : resolution of a list of constraints

T1 = T5,T1 = T77T3 = T87
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,
0 Tg—=Teg=Te—T,
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Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,
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Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Too Te, Ts = Tes Ta,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,
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Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

0o T;=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,

)\f.)\x.(f (f X)) (T4_> T4)_> T4_> T4
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Definition (Unification algorithm)

unify(C) takes a list of constraints and returns a substitution :
@ unify({}) = id the identity on Typ;
e if C::={S=T}UC then:
e if S =T syntactically, return unify(C’)

o if Sis a variable T is a type expression,
if S €T, fail, otherwise return unify([S — T]C') o [S — T],

@ proceed symetrically if S is a type expression and T is a variable

e ifS= 51—) Sg and T = T1—>T2,
then return unif‘y(C’ U {Sl = T]_, 52 = T2})

@ otherwise fail.
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Principal types

Theorem (Principal types) :

Given a constraint set C for an expression e : T, the unification algorithm
returns a substitution o that unifies all the constraints.

Moreover, o is the most general solution in the following sense : every
unifier 7 of C can be decomposed as 7 = v o 0.

@ o is called the most general unifier (or mgu) of the set C.

@ o(T) yields a type for e that is called the principal type of e.
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Summary on type checking and inference

In this context, both problems of type checking and type inference are
reduced to a single constraint solving problem.

@ The description of languages and type systems by sequents is
modular and extensible;

@ The algorithms for checking and inference are effective (quadratic
complexity in general) for \_, ;

@ The sequent description and the algorithms are tightly linked,
involving the same inductive approach.

Other algorithms may prevail for different type systems, in particular for
languages with explicit type annotations.
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There is a strong relation between type systems and logics :

Curry-Howard correspondence

Given a derivation tree proving I = P in the propositional calculus, one
can construct a well-typed expression e and a derivation tree [ - e : P in
the simply-typed A-calculus, and conversely.

types < theorems
expressions <  proofs
From this seminal idea stemmed numerous developments in proof theory :
@ de Bruijn's Automath (1967),
@ Martin-L6f's intuitionistic type theory (1972),
@ Milner's LCF (1972) = HOL (1988) and Isabelle (1986),
@ and Huet and Coquand's calculus of constructions (1988) = Coq
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General tactics

Associate a typed A-calculus and a logic system.

Constructs in logic are associated to constructs in the calculus :

@ The proposition A = B is associated to the function type A— B.
“Given an expression/proof of A, | can derive an expression/proof of B"

@ The proposition AV B is associated to a sum type A®B.
“I contain either an expression/proof of A, or an expression/proof of B”

@ The proposition A A B is associated to a pair type A®B.
“I contain both an expression/proof of A, and an expression/proof of B

And the expressivity of the logic and of the calculus are intertwined.

This is called the Brouwer-Heyting-Kolmogorov interpretation for intui-
tionistic logic (introduced between 1908 and the 1930’s).
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Summary on the simply-typed \-calculus

Up until now, the framework we developed around \_, contains :

@ A language containing functions, integers and booleans, that can be
easily extended (cf. references and algebraic data types),

@ A family of types Typ sufficiently rich to accomodate for all these
constructs,

@ A framework for type checking and inference within the language.

More importantly, this framework boasts type-safety : a type is always an
approximation of an expression and remains invariant through evaluation.
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