l Type Systems and Programming

D. Renault
ENSEIRB-Matmeca
Feb. 5th 2025, v.1.5.1

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

From untyped to typed

Recall our general approach :

General tactics

@ Classify the expressions occurring inside a program into types,

@ Verify that the composition of these types into the program respects a
set of coherence rules.

In order to do this, we shall define a set of types and rules such that :
@ a type acts as an approximation of the evaluation of an expression;

@ a rule is associated to a syntactic construct of the language and
expresses how this construct evaluates with regard to types.

These types and rules shall define a type system.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 2/44

Definition (Types)

The set of types, noted Typ, is defined as :
@ Type variable : an infinite set of abstract type variables T, U, ...

e Function type : if T and U are types, then T— U is also a type.

@ In our setting, we add two constant types : Nat and Bool.
@ A type is concrete iff it contains only constant types as sub-expressions.

Example

(Nat— Nat)— (Bool— Bool

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t,, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

Assumption on t, Assumption on t, Assumption on t;
Assumption on if t; then t, else t;

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 4/44

Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

if t; has type Bool t, has type T t; has the same type as t,
then if t; then t, else t; has type T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 4/44

@ An expression t is said to have type T € Typ, noted t : T.
This yields a typing, an association between an expression and a type.

@ An environment [is a possibly empty sequence of typings.

Definition (Typing deduction)

To deduce a typing from I, noted ' = t : T, consists in building a
derivation tree using ' as a set of axioms and a finite set of typing rules,
whose root asserts that t : T.

@ An expression t is said to be typable if it is possible to deduce a
typing T for t starting from the empty environment.

@ As a consequence, the expression t : T is said to be (well)-typed.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : the if-then-else construct

For the if-then-else construct t; ::= if t; then t, else ts.

Suppose that in an environment I :
@ one can prove that t, : Bool,
@ one can prove that t, : T for a particular T,
@ one can prove that t; : T,

Then we deduce that t;, : T.

I+ t; : Bool MEt,:T MNEt3:T
NFif t; then t, else t3: T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1

6/44

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-t Mt
M (t t2)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
Me(t; t2): U

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
M= (t; t): U

For the abstraction construct t,,, ::= Ax.t; in an environment .

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
M Ax.ty

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
r, X |_ tl
M Ax.ty

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
Mx:TkHFt U

M= Ax.t;: T—=U

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

What about the typed abstraction ?

Consider the typed abstraction construct : t.,, ::= Ax : T.t;
With nearly the same typing rule :

Mx:Tkt:U
FEXx:Tt;: T—>U

Annotating the code with types or not offers different perspectives :
e Explicit types : simpler (or even just decidable) verification.

@ Implicit types : no-hassle programming, principal types.

vector<int> list;
for (auto it = list.begin(); it != list.end(); it++)
cout << xit << endl; // in place of 'vector<int>::iterator’

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1

8/ 44

Example : derivation tree of a typing

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

{f: FE M (F (F x)):
D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

Mo={f: oxo PE(F(Fx):
{f: FE A (F (f x)):
D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

Me=f: e (f x):

Moe={f: oxo FE(F(Fx):
{f: FE M (F (F x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f el

Mef: ME(f x):

Mo={f: oxo FE(F(Fx):
{f: FE A (F (f x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f: el FEf: Ex:
Mef: ME(f x):
ra={f: xR (F(FX):

{f: FE M (F (F x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f er X el
f el FEf: M-x:
Mef: ME(f x):
Ma={f: x:o PE(F(FX):
{f: FE M (F (f x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f el x:Natel
f: el =f: "= x: Nat
Mef: IE(f x) : Nat
Ma={f: ,x : Nat} F (f (f x)) : Nat
{f: FE M (F (f x)):

D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f: Nat—Nat el x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
D= AMA(F(F %)) :

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f: Nat— Nat} F Ax.(f (f x)) : Nat— Nat /

@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t Tgr [VAR]

Jimse U TEx:T TEToU oy
x:Thu:U TR =) b
TR

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t: T e I [VAR]
Jirresl TEx:T TEEToU |y
Mo The:U o FE(fFx):U
N Axu:T—U
Comparison with the rules in propositional logic :
MPEQ kP TFP=Q
prp N Hesg = T Q e

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 10 /44

Typing rules for booleans and naturals

r|_t1

[+ true
[+ false

rl_tz I_I_t3

IF
[if t; then t» else t3 [1e]

[+ zero

M-t
[iszero t

[15z]

M-t
[succ t

[suc]

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Typing rules for booleans and naturals

r|_t1

[+ true : Bool
I - false : Bool

rl_tz I_I_t3

IF
[if t; then t» else t3 [1e]

[+ zero

[t
[iszero t

[15z]

M-t
[succ t

[suc]

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T

e T [1F]

["F if t; then t> else t3: T

[+ zero
[t
[iszero t e
M-t
[succ t 2]

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Typing rules for booleans and naturals

[true : Bool
I - false : Bool
I+t : Bool M-t6:T I'I—t3:T[IF]
MEif t; then tp else t3 : T
[F zero : Nat
Mt
1SZ
[iszero t B
M=t
SUC
[F succ t [su]
D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Typing rules for booleans and naturals

It : Bool

[+ true : Bool
I - false : Bool
FlE6:T rl—t3:T[IF]
["F if t; then t> else t3: T
[+ zero : Nat
- t: Nat
I+ iszero t : Bool i
M-t
[succ t 2]

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T Fl65:T

["F if t; then t> else t3: T
[+ zero : Nat

- t: Nat
I+ iszero t : Bool

[15z]

[t:Nat

[+ succ t : Nat [

[17]

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Properties of the simply typed \-calculus (1)

Theorem (Strong normalization) :

In A_,, every expression reduces to a value in a finite number of steps.

@ It is an example of programming language / model of computation
where termination is decidable.

@ Hence it is incomplete, and cannot express some computable functions.
(restricted to the Church naturals, it can only compute extended polynomials)

@ PCF defined as _, extended with recursion and a type for naturals is
a Turing-complete language.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Properties of the simply typed \-calculus (2)

The type system of _, is coherent with regard to 3-reduction :

Theorem (Type preservation) :

If t : T is typable, and t =5 u, then u: T is typable.

Theorem (Progress) :

| G

If t : T is typable, then either t is a value or it can be 3-reduced further.

\

Definition (Type safety)

A programming language possessing a type system with the preservation
and progress properties is said to be type-safe.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

What is the manifestation of type-safety in classic programming languages?

char x = 12345; // Char int a = INT_MIN;

void xpx = &x; // v int b = -1;

int xpy = px; // v return a/b;

int y = xpy; //Int // — Runtime failure
Non-preservation Non-progress

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 14 / 44

Types as approximations

Values of a given type are composable and interchangeable.

Substitution lemma

Given an expression t : T containing a sub-expression x : S, then x can be
substituted to any expression s of type S without affecting the type of t.

Mx:SkEt:T M=s:S
Mex—=sle: T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Not every expression is typable

Limits of type systems : Incompleteness

There exist \-expressions that are not typable in A_,.

Example

The expression nt ::= Ax.(x x) is not typable in A_;.

Sketch of proof :
@ If nt were typable, x would have a type T.
@ Since x appears on the left of an application, T = U— V.
@ But x also appears on the right of the same application, hence T = U.
@ There is no type in Typ such that U=U—V.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Conservativeness of typing

Limits of type systems : Conservativeness

A type system is in general conservative : there exist expressions in _,
that are not typable even though they evaluate safely.

@ Simple programs mixing different types of values :

let pi = fun b — if b then 3.14 else "Pie";;
if (pi true > 3.) then print_string (pi false);;

@ The fixed-point combinator (also called the Y-combinator) :
Y=)\f.(/\x.f,(x,x)),()\x.f’,(x,x))

... that can be used to encode recursion into the language.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

https://en.wikipedia.org/wiki/Fixed-point_combinator#Y_combinator

Partial functions

Limits of type systems : Liberalness

A type system is in general liberal : it cannot discriminate all the stuck
expressions of a programming language with simple arithmetic.

Consider the addition of a predecessor function to A_, :

pred succ t =g t

- t: Nat
[+ pred t : Nat

t—pgt’ [PRE]

pred t -8 pred t’

The expression pred zero is well-typed and yet stuck. Possible solutions :
@ either consider that the evaluation can progress (on floats, return inf)

@ or add a mechanism that redirects the evaluation (e.g exceptions).

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Designing a language with types

1. Define a programming language as the set of expressions of a grammar.
2. Define an operational semantics that performs a computation.

3. Select a set of values that are the results of the evaluation.

Usually, the evaluation function cannot be meaningful on the complete
language : some expressions remain stuck.

4. Set typing rules and restrict the language to well-typed expressions.

Type-safety ensures every computation to be either infinite or yield a value.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 19 /44

Example : handling state

Syntax and Types

t = - expressions
() unit
ref t reference Vv Ii= . values
It dereference O unit
g location E location
t :=t assignment
t 5 t sequence

@ The locations are the internal representations of references, i.e the
result of the computation of an expression ref t.

@ The associations between locations and values are saved into a store.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

@ A store p is a dictionary mapping locations to values :
=Ly = vy, =,

@ The store acts as a context and is modified during the evaluation.

Evaluation rules

¢ & dom(p) p [t=v]u
7 =V L:i=v—=g O
ref v—p 14
u W w !
/J/(ﬁ) =y ty —>[-} Vi to —>/3 V,
T W
W —g v ti;ta =g v,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
T:= ... MEref t
unit type
reference type r |_ r
E1r
Mer Mt
Mlr:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
TE= oo [reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
-t
TE= oo [reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
M=¢:T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

[+ s:Unit M=t T
MNes;t: T

M=t:T
Tu= ... [F ref t : Ref[T]
Unit unit type
Ref[T] reference type [r: Ref[T]

Mr Mt
Mlr:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : handling state

Types Typing rules

[+ s:Unit M=t T

MN-s;e: T
M=t T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type Ner: Ref[T]
M=t T

I'F r: Ref[T] M=t T
M=r:=t:Unit

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : algebraic datatypes

Definition (Algebraic Datatype)

An algebraic datatype is a type associated to a set of values defined by
a regular tree grammar.

Example : lists containing only integers
NatList — Nil | Cons(Nat,NatList)

Nil is a terminal of arity 0, Cons is a terminal of arity 2.

In order to introduce such a datatype into the language, it is necessary to :
@ add a way to construct the values,

@ and another to deconstruct them.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : algebraic datatypes

@ Construction : associate to each terminal a keyword acting as a
function with the same arity :

Nil (+ Nil is a constant)
Cons(2, Nil) (* Cons takes 2 arguments x)
Cons(1, Cons(2, Cons(3, Nil))) (* their composition yields complex lists x)

@ Deconstruction / Pattern-matching : associate to each non-terminal a
mechanism to select its associated production rules :

let length 1 = case 1 of (* selection depending on 1 being)
| Nil — 0 (* either Nil x)
| Cons(x, xs) — 1 + length xs (% or a Cons with two arguments *)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 24 /44

Example : algebraic datatypes

Syntax and Types

t =
Nil
Cons(t,t)
Nil —t
case t of
Cons(x,y)—t

expressions
nil

cons

case

Note that x and y in the case-expression are special
variable names that cannot be modified in this example.

= .. values

Nil nil

Cons(v,V) cons

NatList list type

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : algebraic datatypes

Evaluation Rules

Cons(ty,t,) —B Cons(ti,ts)

Cons(v,ty) —8 Cons(v,t})

case Cons(vy,Vs) of [

case t; of —rp case tj of
Cons(x,y)—ts Cons(x,y)—t3

) Nil — —ty
case Nil of —B t

Cons(x,y)—t,

Nil —t,
Cons(x,y)—t,

] -3 [x = Vi,y vz]tz

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Example : algebraic datatypes

Typing Rules

rl—casetof[

Cons(x,y)—t,

[Nil
M-t Mt
[F Cons(ty,ty)
M=t M=t I, x ,Y I~ &
Nil —t,

|

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Example : algebraic datatypes

Typing Rules

M=t

" = Nil : NatList

M=ty MEt,
[Cons(ty,ts)
M-t I, x

)

y Ft,

rl—casetof[

Nil

—t;

Cons(x,y)—t,

|

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Example : algebraic datatypes

Typing Rules

" = Nil : NatList
M t; : Nat MEt,

: NatList

M-t

"+ cons(ty,t,) : NatList

Mt I, x

)Y |_t2

Nil
rl—casetof[!

—t,
Cons(x,y)—t,

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming IR E TR

Example : algebraic datatypes

Typing Rules

" = Nil : NatList

M t; : Nat I t, : NatList
"+ cons(ty,t,) : NatList

[+t : NatList Mt T I,x: Nat,y: NatList - t, : T
Nil =ty |
Cons(x,y)—t,

rl—casetof[

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Summary on the simply-typed lambda-calculus

We showed how to endow a language with a type system and how to
perform verifications at a syntactic level.
@ Type systems and languages are modular and can be extended easily;

@ Type safety is a key property for a typed language, ensuring stability
properties of programs respecting well-defined bounds ;

@ Nevertheless, type systems are by essence both conservative and
liberal in their verifications.

Next, we consider the different decision problems for typed expressions.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 28 /44

Type checking and inference

Generally the main problems with regard to typing are :
@ Typability : for an expression t, is there a type T and a derivation
tree proving that t : T 7

@ Type checking : given an expression t, a type T and an environment
typing the variables of t (free or bounded), build a derivation tree
which proves t : T or find an inconsistency;

@ Type inference : for a typable expression t, compute a type T such
that there exists a derivation tree which proves t : T.

In order to solve these problems, we shall :
@ derive a system of equations called constraints from the expression ;

@ compute a solution to this system if any, or prove that there is none.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 20 /44

Definition (Substitution)

A substitution o is an application from type variables to types.
It can be extended as a function from types to types.

Example

Consider the substitution o ::= {X < (Y—Y),Y < Nat}. Then :
e o(X)=Y—=Y, o(Y) = Nat
@ o(Y— Bool) = Nat— Bool
@ 0o 0(X) = Nat— Nat

@ Not very different from the substitutions defined for expressions.

@ Cycles in substutions should be handled carefully.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Definition (Type constraints)

A constraint is an equation of the form S = T where S, T € Typ.
A constraint set C is a finite set of constraints.

Definition (Unification)

The substitution o is said to unify C iff for all equation S = T in C, oS
and oT are syntactically equal.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : type checking (1)

[if b then (f zero) else (f true)]
b : B
: F

D. Renault (ENSEIRB-Matmeca) Ve Syeeremnapreanmre B

Example : type checking (1)

if b then (f zero) else (f true)

b : B
f :F
B = Bool
F=U=>V

Type Systems and Programming IR E TR R

D. Renault (ENSEIRB-Matmeca)

Example : type checking (1)

if b then (f zero) else (f true)

b : B

f :F

B = Bool
F=U=V
U = Bool
U = Nat

Type Systems and Programming IREETEE R R

D. Renault (ENSEIRB-Matmeca)

Example : type checking (1)

[if b then (f zero) else (f true)]
b : B
f:F
B = Bool
F=U=>V
U = Bool
U = Nat

= Type error : Bool used where Nat expected.

Type Systems and Programming IREETEE R R

D. Renault (ENSEIRB-Matmeca)

Example : type checking (2)

[if b then (f,zero) else (f,succ zero)]
b : B
- F

D. Renault (ENSEIRB-Matmeca) Ve Syeeremmapreanmre B

Example : type checking (2)

[if b then (f zero) else (f succ zero)]
b : B
f:F
B = Bool
F=U=V

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : type checking (2)

[if b then (f zero) else (f succ zero)]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : type checking (2)

[if b then (f zero) else (f succ zero)]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained

Type checks : the following substitution unifies the constraints :

{B — Bool, F — (U—V),U — Nat}

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Definition (Constrained typing)

To deduce a constrained typing '+t : T | C means that t has type T
under the assumptions in [, whenever the constraints in C are satisfied.

t: Terl
M=+ T {}

[vaRr]

T17T2 fl’eSh r,X 5 T1 l_ u T2 | C Cf::: CU {U = T1_> Tz}
M Xxu:U | Cr

[aBs]

Mo T, |G NEu:T, | Co Cri=CruCou {T, =T,— U}
rl—(t,u):U|Cf

[aPP]

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

GEMM(F(FXx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

{f: T} EA(F (F x)): T,
GEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

Fo={f:Ty,x: Tt E(F(Fx)): T,
{f: T} EA(F (F x): T,
GEMMF(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

M- T, [(Fx): T

Fo={f:Ty,x:TstE(F (Fx): T,

{f: T} EA(F (F x): T,

GEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : deduction of a typing

f:T,el
MEf:Ts F=(fx):Te
Fo={f:Ty,x:TsrE(F (Fx)): T,
{fF T} EAx(F (fx): T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

f:T,erl F=f:7T, Ex:Tg
MEf:Ts F=(fx):Te
Fo={f:Ty,x: Tt E(F (Fx): T,
{f T} EAx(f (fx)): T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

f:T,erl x: 1€l
f:T,eTl Fr=f:T, MNEx: T
M=f:Ts FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : deduction of a typing

f:T, el x: T3l
f:T,erl FE=f:T, MNEx:Tg
rl—f:Tsf{TI:Ts} rl—(f,x):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} MNEx:Tg
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [{ Tr=Tom e}

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [{ Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{F:TiEA(F(Fx)):T,
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [{ Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} H)\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMM(F(Fx):T

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FTE(FX):Te| { . Tr=TemTe}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} F)\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMME(FX):T|{. T=TinT2}

List of constraints :

Tl = T57T1 = T77T3 = T87
T7 == T3_> T67T5 = T6_> T47
T2 — T3_> T4,T - T1_> T2

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

Tl = T57T1 = T77T3 = T87
T7 - T8_> T67T5 == T6_> T47
T2 — T3_> T4,T - T1_> T2

Deduction of the constraints :
e T, =T;,=T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

T1 = T5,T1 = T77T3 = T87
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,
0 Tg—=Teg=Te—T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Too Te, Ts = Tes Ta,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

0o T;=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,

)\f.)\x.(f (f X)) (T4_> T4)_> T4_> T4

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Definition (Unification algorithm)

unify(C) takes a list of constraints and returns a substitution :
@ unify({}) = id the identity on Typ;
e if C::={S=T}UC then:
e if S =T syntactically, return unify(C’)

o if Sis a variable T is a type expression,
if S €T, fail, otherwise return unify([S — T]C') o [S — T],

@ proceed symetrically if S is a type expression and T is a variable

e ifS= 51—) Sg and T = T1—>T2,
then return unif‘y(C’ U {Sl = T]_, 52 = T2})

@ otherwise fail.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Principal types

Theorem (Principal types) :

Given a constraint set C for an expression e : T, the unification algorithm
returns a substitution o that unifies all the constraints.

Moreover, o is the most general solution in the following sense : every
unifier 7 of C can be decomposed as 7 = v o 0.

@ o is called the most general unifier (or mgu) of the set C.

@ o(T) yields a type for e that is called the principal type of e.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Summary on type checking and inference

In this context, both problems of type checking and type inference are
reduced to a single constraint solving problem.

@ The description of languages and type systems by sequents is
modular and extensible;

@ The algorithms for checking and inference are effective (quadratic
complexity in general) for _, ;

@ The sequent description and the algorithms are tightly linked,
involving the same inductive approach.

Other algorithms may prevail for different type systems, in particular for
languages with explicit type annotations.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 39 /44

There is a strong relation between type systems and logics :

Curry-Howard correspondence

Given a derivation tree proving I = P in the propositional calculus, one
can construct a well-typed expression e and a derivation tree [- e : P in
the simply-typed A-calculus, and conversely.

types < theorems
expressions < proofs
From this seminal idea stemmed numerous developments in proof theory :
@ de Bruijn's Automath (1967),
@ Martin-L6f's intuitionistic type theory (1972),
@ Milner's LCF (1972) = HOL (1988) and Isabelle (1986),
@ and Huet and Coquand's calculus of constructions (1988) = Coq

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

General tactics

Associate a typed A-calculus and a logic system.

Constructs in logic are associated to constructs in the calculus :

@ The proposition A = B is associated to the function type A— B.
“Given an expression/proof of A, | can derive an expression/proof of B"

@ The proposition AV B is associated to a sum type A®B.
“I contain either an expression/proof of A, or an expression/proof of B”

@ The proposition A A B is associated to a pair type A®B.
“I contain both an expression/proof of A, and an expression/proof of B

And the expressivity of the logic and of the calculus are intertwined.

This is called the Brouwer-Heyting-Kolmogorov interpretation for intui-
tionistic logic (introduced between 1908 and the 1930’s).

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 41 /44

2Mord Intuit. Logic

Higher order

Dependent types
Intuit. Logic + Ve : %

Intuitionistic Logic

First order

Church int/bool

Recursive structs
Affine Logic
E
S iqueness typ
©
3 Linear Logic
s
5
E=}
=]
w

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 42 /44

Summary on the simply-typed \-calculus

Up until now, the framework we developed around _, contains :

@ A language containing functions, integers and booleans, that can be
easily extended (cf. references and algebraic data types),

@ A family of types Typ sufficiently rich to accomodate for all these
constructs,

@ A framework for type checking and inference within the language.

More importantly, this framework boasts type-safety : a type is always an
approximation of an expression and remains invariant through evaluation.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 43 /44

Bibliography

@ Pierce, B. C. Types and Programming Languages. MIT Press, 2002.

@ Bruce, K. B. Foundations of Object-oriented Languages : Types and
Semantics. MIT Press, 2002.

e Hindley, J. R. Basic simple type theory. Cambridge University Press,
1997.

@ Wadler, P. Propositions as types. Communications ACM, 2015.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Feb. 5th 2025, v.1.5.1 44 /44

	Type Systems and Programming
	Simply typed lambda calculus
	Type checking and inference
	Curry-Howard correspondence

