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Sometimes, a polymorphic type may be too generic.
Take the example of an equality function, with the following type :

VT, T— T— Bool

Yet not all values are comparable, for instance functional values.
It is natural to restrict the possible Ts to a family of types.

VT € Comparable, T— T— Bool

This is a form of constrained polymorphism, appearing as :
@ the ’’a equality types in SML, a subset of the types of the language,
@ the Eq a type class in Haskell, defined by a form of overloading,

@ the Comparable<T> interface in Java, with inclusion polymorphism.
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Constrained polymorphism example :

In OCaml :

equality

In Haskell :

let rec belongs x 1 = match 1 with
| [1] — false
| y::ys — (x=y) || (belongs x ys)

belongs x [] = False
belongs x (y:ys) = (x==y) ||
(belongs x ys)

val belongs : ’a—’a list—bool

belongs :: Eq t = t—[t]—Bool

belongs sin [cos] compiles, but
yields an exception at runtime.

(* Exception: Invalid_argument
"equal: functional value”. x)
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The expression belongs sin [cos]
simply does not compile.

No instance for (Eq (a@ — a@))
arising from a use of "=="




Constrained polymorphism : numeric classes

Definition (Type class)

In Haskell, a type class is a set of concrete types sharing a common generic
interface. These concrete types are then instances of the type class.

Example :

class Eq a where instance Eq Int where
(==) :: a — a — Bool (==) i j = -- specific code
(/=) :: a - a — Bool (/=) 1 j = not (i == j)

@ A type class such as Eq a represents the following set of types :
Eq[T] ::={T € Typ, T “can be used with" ==
@ It is used as a universal type variable in the type of belongs :
belongs : VT € Eq[T], T— List[T]— Bool
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The numeric types in Haskell inherit a structure from the type classes.

1 <> ==, /=

Num
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The numeric types in Haskell inherit a structure from the type classes.

sin, cos

In the following, we investigate the inclusion relations of sets of values.
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Inclusion polymorphism

Inclusion polymorphism is based on the construction of sets of values
sharing relations of inclusion.

Object
Bool Number

Int Float

Whereas parametric polymorphism defines inclusions bottom-up
inclusions in this polymorphism are defined top-down.

For a better understanding of these relations, we introduce a new type.
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Record types

Definition (Record types)

Given a set {/;} of labels and a set {t;} of expressions of the same size n, a
record value is defined as the expression {h = t,,...,l, =t,}.

The pairs (I;, t;) are called the fields of the record.
The projection of r onto one of its fields (/;, t;), noted r+/;, evaluates to t;.
The type of r is the set of the types of its fields, noted {h : T,,..., [, : T,}.

Examples

@ {first = "Haskell”, last = "curry”} : {first : String, last : String}
o {hd =1,tl={hd =2,t/l ={}}} : {hd : Nat, t/ : {hd : Nat,t/: {}}}
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Syntax Evaluation rules

{l=Viticpa>l —p v

.. t—pgt’
tii= ... expressions ﬁ
t>l =g t’>
{l,‘ = ti}ie[l;n] record B
t+/ projection tj —)ﬁ t’j
S {..=t...}os{. . =ty...}
bo— o0oo values

{Ii = Vi}ie[l;n] record value
Typing Rules

foreach i, '+t : T,
[ {/, = t,-} : {I, : T,}

T = ... types
{li . Ti}ie[l;n] record type M {/’ — ti} : {II . T:}
MEtel: T,
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All-purpose records

Records are good examples of the saying “he who can do more, can do less".
Consider the following function :

half_size ;1= )\r.(rvsize/Z)
It can be happily applied to every record possessing a field size.
ry = {size = 2} half_size(rl) —p 1

ro i:= {size = 6, name = "Alonzo"} half_size(r,) —3 3
r3 ii= {size = 2, contents = Cons(1 ,Cons(Z,Nil))} half_size(r3) —8 1

A natural typing for this function is half_size : {size : Nat}— Nat.
Yet it is too restrictive : it only authorizes the first application. So what ?
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Inclusion subtyping

Lemma (Record subtyping) :

Let T={/;:T,} and T' = {m; : T';} be two record types.
o Width subtyping : if T D T as sets of pairs labels/types, then T <: T'.

o Depth subtyping :if T and T’ share exactly the same labels and
Vi, T,<:T';, then T<:T'.

Examples

e Width : {size : Nat, name : String} <: {size : Nat}
e Depth : if Int <: Number, then {size : Int} <: {size : Number}
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With the following definitions :
@ half_size ::= Ar.(r+size/2)
@ person ::= {size = 7, name = "Haskell"}

Let I ::= {half_size : {size : Nat}— Nat,person : {size : Nat, name : String}}

Then the expression (half_size person) is well-typed :

person € [
half_size € I I person:{size : Nat, name : String}
I half_size : {size : Nat}— Nat I person : {size : Nat}

I+ (half_size person) : Nat

In this case, the subtyping rules solve the “do-more, do-less” problem.
But what implications does this have on our sets of values?
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Existential types

Proposition

A record type is by nature an existential type.

All records having a field size of type Nat can be typed with {size : Nat}.

{size : Nat} = U {size : Nat}UT
T
IT.{size : Nat} U T

Example

half_size : (3T.{size : Nat} U T)— Nat
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Aside : upcast, downcast

Definition (Casting)

Casting (or ascription) consists in ascribing a particular type to an expres-
sion in an explicit manner. It has no effect on the value.
The expression v as T is a called a cast from v into the type T.

Mr-t:7?
vas T =gV TFtasT:T

@ A cast can be seen as an operation redefining the type of an expression.

o Casting into a supertype is also called an upcast. ret:s soT
Upcasts are implicit with the subsumption rule. r-tasT:T
@ Casting into a subtype is also called an downcast. ErvV:T

Downcasts are usually checked dynamically. VasTopV
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Consider the following function :

cut_in_half ::= )\r.{rvsize := (half_size (r+size)); r}
It basically takes a record with a size field and returns a record where this

field has been modified and the others left untouched.

What is a good type for cut_in_half?
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Consider the following function :

cut_in_half ::= )\r.{rvsize := (half_size (r+size)); r}

It basically takes a record with a size field and returns a record where this
field has been modified and the others left untouched.

What is a good type for cut_in_half?
@ cut_in_half : VT, T— T7?
Too generic, no way of ensuring the existence of the size field.

@ cut_in_half : {size : Ref[Nat]}— {size : Ref[Nat]}?
Too restrictive, the return type constrains the result.
Same behavior as the clone method in Java, requiring downcasts.
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Consider the following function :

cut_in_half :1= )\r.{rvsize := (half_size (r»size)); r}
It basically takes a record with a size field and returns a record where this
field has been modified and the others left untouched.

What is a good type for cut_in_half?

What about : VT, ({size : Nat} U T)—> ({size : Nat} U T> v

Or is it an existential type ?

(ET.{sizs . Nat} U T§—> gHU.{size . Nat} U u) X

3T. ({size SNat}UT {size : Nat} U T) )(

—
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Aside on existentials and universals

Beware : VT, {size : Nat} UT # 3T.{size : Nat} U T

A universal type T can substitute for all possible types.
An existential type T can substitute for only one.

Nevertheless, there are equivalences :

Equivalence theorem

(Hx.P(x)) = Q & Vx. (P(x) = Q)

Example
(EIT.{size : Nat} U T) — Nat = VT, ({size :Nat} UT— Nat)
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Naming the existential variables prompts for more precise types :

@ Existential types in PureScript :

cut_in_half :: forall b. { size :: Int | b } — { size :: Int | b }

@ Open types in OCaml :

cut_in_half : (<get_size : int; set_size : int — unit; ..> as ’a) — ’a

But in general, libraries contain few functions requiring such types.
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Existentials as an abstraction means

Definition (Abstract data type)

An abstract data type or ADT consists of :

@ a type variable T and a set of operation types acting on values of type T.

@ a concrete type S and an implementation of these operation types where the
variable T is substituted by S.

Akin to interfaces in Java or module signatures in ML.

interface Counter { class CImpl implements Counter {

private int val = 0;

CImpl(int in) { val = in; }

int get(); int get() { return val; }

Counter incr(); Counter incr() { return new CImpl(val+1); }

3 3

The existential type corresponds here to the “abstract” part of the ADT.
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Existentials as an abstraction means

Definition (Abstract data type)

An abstract data type or ADT consists of :

@ a type variable T and a set of operation types acting on values of type T.

@ a concrete type S and an implementation of these operation types where the
variable T is substituted by S.

Akin to interfaces in Java or module signatures in ML.

module type COUNTER = sig module C : COUNTER = struct
type counter type counter = int
val new_c : unit — counter let new_c () =0
val get : counter — int let get ¢ = ¢
val inc : counter — counter let incc =c + 1
end end

The existential type corresponds here to the “abstract” part of the ADT.
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Existentials vs Universals

o Existentials are items of abstraction.
Allowing multiple implementations,
Offering a precise protocol of exchange.

@ Universals are items of genericity.
Maximising code reuse,
With few knowledge on the values they manipulate.

In that, the combination of both polymorphisms is natural.

<T extends Comparable<T>> void sort(List<T> list)

VT, 3U.List{Comparable[T] U U]— Unit

3T.T
Comparable
List[Nat]
VT, List[T]

2 \\
VT, T
- v
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ITUTSU (T}

List[Bool] — List[Bool]
! List[Nat] — List[Nat]/
/ \ N

'
'

'

i {hd :Nat}  pO.{il : Unit — O}
'

'

'

. Int—1Int  Nat— Nat Bool — Bool VT.List[T] — List[T]

'

'

'

'

'

'

'

'

Nat 1O.{hd : Nat, ¢l : Unit — O}
Unit  Bool Int Nat — Int Ve @ ----------=======- VT.4O.{hd : T, tl : Unit — O}

YTUT U LozzmoT

List types
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Object types (1)

Objects can be modelled as records with access to self : they are recursive.

let (c:cpt) = let rec self = { (% Recursive definition )
v = 0;
get = (fun () — self.v);
set = (fun y — self.v < y);
inc = (fun () — self.set (self.get() + 1)); }
in self;;

In OCaml, classes are indeed identified to their recursive constructors :

class cpt = fun init — object (self)
val mutable v:int = init
method get =v
method set d = v < d
method inc () = selft#tset (selfttget + 1)
end;;
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Object types (2)

A class, representing a set of values, can be identified to a type.

Accordingly, these types are also recursive :

Object = fix(AT.{
equals : T— Bool,
clone : Unit— T

)

. where fix is a fixed-point operator.

This definition yields an infinite type represented by a rewriting rule.

Usually, this fixed-point is made invisible by nominal types :

Object == {
equals : Object— Bool,
clone : Unit— Object

}

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 22/32



Summary on the inclusion polymorphism

@ The inclusion polymorphism allows the definition of types by refining
sets of values into more specific subsets.

@ These sets of values can be identified as logic formulas containing
existentially quantified variables.

ITF[TI = |J FY]
UeTyp

@ Subtyping relations with existential types promote abstraction by
masking concrete types :

F[U] <: 3T.F[T] where U concrete

@ Object types are at the same time existential and recursive types.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 23 /32



Aside on Inheritance

Inheritance is a mechanism to derive new classes from old ones by :

(i) adding implementation for new methods
(i) and / or overriding implementations of old methods.

Consider a method m defined in Number and overriden in its subclasses.

Number class Number {mC..); } m(x : Number,...)
A
Int class Int extends Number { m(..); } m(x cnt, .. )
A
Nat class Nat extends Int {mC..); % m(x : Nat, .. )

The method m can be considered as a function whose definition is selected
depending on the value of its first parameter.
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Overloading

Overloading

Overloading is a mechanism allowing the use of a single identifier for the
representation of multiple values, distinguished according to their type.

Example : string concatenation in C++

string operator+ (const string& lhs, const string& rhs);
string operator+ (const string& lhs, const charx rhs);
string operator+ (const charx lhs, const string& rhs);
string operator+ (const string& lhs, char rhs);
string operator+ (char lhs, const string& rhs);

Example : default values in Haskell

class Default a where def :: a -- | The default value for this type
instance Default Int where def = @

instance Default [a] where def = []

instance (Default a, Default b) = Default (a, b) where def = (def, def)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



@ A manner to represent overloaded values consists in packing all the
implementations together in a single object.

def =0 [] packing @ and [] together
plus ::= plusiyt @D plusp it  packing addition and concatenation

@ For typing purposes, an overloaded value possesses the types of all the
values it merges :
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@ A manner to represent overloaded values consists in packing all the
implementations together in a single object.

def =0 [] packing @ and [] together
plus ::= plusiyt @D plusp it  packing addition and concatenation

@ For typing purposes, an overloaded value possesses the types of all the
values it merges : an intersection type.

def : Nat & VA, List[A]

@ It is not a union type : as a value, def has the possibility to be used
indifferently as a number and as a list (but only one at a time).

Consequence

If an identifier is overloaded, a correct implementation must be selected
every time the identifier is used (at compile-time or at runtime)
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Syntax Evaluation rules Typing rules

ti =gt MFt,:T, MFt:T,
LDt =t D, M-t et T,&T,
T 80= ooo expressions
t Dt merge t2_>,3t’2 FM=t:T,8&8T,
t1@t2_>ﬂt1@tyz MrM=t:T,
To= ... types
T&T intersec. type V1®V2_>'BV1 I-'_t:Tl &Tz
o FFe:T,

@ Caution : these rules break the type safety of the system.

@ At least, a mechanism must be introduced to ensure that the value used at
runtime is compatible with the type checked at compile-time.

Lemma (Intersection subtyping) :

If T, and T, are two different types, T, & T,<<T,and T, & T, < T,
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at compile-time (cf. Haskell),

I def : Bool & Nat I - def : Bool & Nat
I - def : Bool I - def : Nat
I = def as Bool : Bool o: Nat I = def as Nat : Nat
[+ if def as Bool then @ else def as Nat : Nat
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at runtime (cf. Python),
£ | def : Bool & Nat
def —g def as Bool
if def then 0 else def —3 if def as Bool then 0 else def —g - -
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at compile-time (cf. Haskell),
[ def : Bool & Nat [k def : Bool & Nat
[ F def : Bool I F def : Nat

I - def as Bool : Bool o: Nat [ def as Nat : Nat
[+ if def as Bool then @ else def as Nat : Nat

Decide the implementation used at runtime (cf. Python),
€ F def : Bool & Nat
def —g def as Bool
if def then 0 else def —3 if def as Bool then 0 else def —g - -

@ ... or use a combination of both (cf. Java, C++).
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Static/ Late binding

The presence of subtyping allows the following technique :

Static / Late binding

To every object value is attached a type called its concrete type.
It may differ from the apparent type of this same value in an expression.

At the callpoint of an overloaded method, the appropriate code is selected.
In static binding, the selection depends on the apparent type.
In late binding, the selection depends on the concrete type.

Example

String s = new String("Concrete") // Apparent : String / Concrete : String
Object o = (Object) s; // Apparent : Object / Concrete : String
0.equals(s); // Which equals method is called ?
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.at++; super.set(v); 3}
void inc() { this.set(this.get() + 1); } 8 // inherit inc
9 int get_a() { return a; }
3 10 3
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;3};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.a++; super.set(v); 3}
void inc() { this.sel(this.get() + 1); } 8 // inherit inc
El int get_a() { return a; }
3} 10 3

Consider the call to set inside the inc method in Counter :

@ In early binding, this call is attached to the apparent type.
For an object of type CounterExt, the set method of Counter is used.
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;3};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.a++; super.set(v); 3}
void inc() { this.sel(this.get() + 1); } 8 // inherit inc
El int get_a() { return a; }
3} 10 3

Consider the call to set inside the inc method in Counter :

@ In late binding, this call is attached to the concrete type.
For an object of type CounterExt, the set method of CounterExt is used.
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Summary on the overloading polymorphism
@ Overloading polymorphism allows the definition of values sharing multiply
different implementations :
ma={m :Ty,m:To..oym,:T,}

The types T; may not share a common structure.

@ Overloaded types may be modelized as finite intersection types.

T,aT,8 ... &Tn:ﬂT,-

@ In order to use this polymorphism, a selection of the correct
implementation for m is necessary, be it static or dynamic.

@ The late binding is an example of dynamic selection in the case of
overloaded types. It appears naturally in object-oriented programming.
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