
Type Systems and Programming

D. Renault
ENSEIRB-Matmeca

Mar. 26th 2025, v.1.5.1

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

1 Subtyping
Variance
The contravariance curse
Principles for variance

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 2 / 22

The subtyping test (1)

Rationale

A value can have multiple types, and the types share inclusion relations.
By definition, a value v : T can also be typed v : T′ whenever T<:T′.

Consequence :

▶ Substitution Lemma

T<:T′ iff every value v : T can be used in a context where T′ is expected.

Subtyping test (example in Java)

Attempt to assign a value of type T into a variable of type T′ unchanged.

Integer one = 1;
Number super_one = one; // OK

Number pi = 3.14;
Double sub_pi = pi; // Type error

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 3 / 22

The subtyping test (2)

Problem : implicit conversions

As a subtyping test, it has false positives, because many languages allow
implicit conversions of values.

Example in C

Initializing an int variable with a float value forces an implicit conversion :

int main(void) {
int z = 3.14; // !!
z += 2.92; // !!
printf("%d\n", z); }

% clang implicit.cpp -Wall -Wextra
implicit.cpp:4:11: warning: implicit conversion
from ’double’ to ’int’ changes value from 3.14 to 3

int z = 3.14;
~ ^~~~

1 warning generated.

The subtyping relation is supposed to be antisymmetric, but the
implicit conversions blur this property.
In this course, we consider subtyping without implicit conversions.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 4 / 22

Summary on the different kinds of polymorphisms

Each form of polymorphism defines new families of types, and these
families share subtyping relations.
The more families of types exist, the more complex the subtyping
relation between types becomes.
In this section, we explore some characteristics of this relation, and
examine some implications in terms of programming.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 5 / 22

Recall the subtyping theorems established for each form of polymorphism :

▶ Lemma (Parametric subtyping) :

Let ∀T1..Tn, U be a parametric type.
Parametric subtyping : ∀T1..Tn, U<:[T1 7→ U1, ..Tn 7→ Un]U.

▶ Lemma (Record subtyping) :

Let T = {li : Ti} and T′ = {mi : T′
i} be two record types.

Width subtyping : if T ⊃ T′ as sets of pairs labels/types, then T<:T′.
Depth subtyping : if T and T′ share exactly the same labels and

∀i ,Ti <:T′
i , then T<:T′.

▶ Lemma (Intersection subtyping) :

If T1 and T2 are two different types, T1 & T2 <:T1 and T1 & T2 <:T2

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 6 / 22

Where do subtyping relations come from ?

Some relations are structural, meaning that they are related to the
form of the underlying type families.
Some relations may be deduced as consequences of existing subty-
ping relations.

Given for instance :
the List[·] type as a type function T → List[T],
two types Banana and Fruit such that Banana<:Fruit.

Can we deduce a subtyping relation between List[Banana] and List[Fruit] ?

For example : List[Banana]
?
<: List[Fruit]

⇒ In other words, is the List[·] function increasing on types ?

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 7 / 22

Variance

Definition (Covariance / Contravariance / Invariance)

Let f : Typ → Typ be a function on types.
f is said to be covariant iff it is increasing with regard to <:

∀T,U, T<:U ⇒ f (T)<: f (U)
f is said to be contravariant iff it is decreasing with regard to <:

∀T,U, T<:U ⇒ f (T) :> f (U)
If the images f (T) and f (U) are always incomparable when T ̸= U,
f is said to be invariant.

Example

The type of the immutable lists List[·] can be considered to be covariant.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 8 / 22

The Java generics are invariant, the variance appearing in wildcards.

// "? extends Number" refers to any subtype of Number
ArrayList<? extends Number> a = new ArrayList<Integer>();

C# support variance for generic interfaces, but the classes are invariant.

public interface IEnumerable<out T> { // "out T" indicates the covariance
public IEnumerable<T> Append<T> (IEnumerable<T> source, T elem); }

Scala supports variance for generic interfaces and classes.

class List[+A] { // "+A" indicates the covariance
def append[B >: A](x : B) : List[B] } // append is called "::" in Scala

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 9 / 22

Function subtyping

Variance of the function type

The type T→U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall ▶ that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit→Nat, set : Nat→Unit}

Could such a store be replaced with one of the following types ?

{get : Unit→ Int, set : ..} where Int<:Nat
{get : Unit→Number, set : ..} where Nat<:Number

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 10 / 22

Function subtyping

Variance of the function type

The type T→U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall ▶ that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit→Nat, set : Nat→Unit}

Could such a store be replaced with one of the following types ?

{get : Unit→ Int, set : ..} where Int<:Nat ✓

{get : Unit→Number, set : ..} where Nat<:Number ✗

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 10 / 22

Function subtyping

Variance of the function type

The type T→U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall ▶ that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit→Nat, set : Nat→Unit}

Could such a store be replaced with one of the following types ?

{get : .., set : Int→Unit} where Int<:Nat
{get : .., set : Number→Unit} where Nat<:Number

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 10 / 22

Function subtyping

Variance of the function type

The type T→U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall ▶ that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit→Nat, set : Nat→Unit}

Could such a store be replaced with one of the following types ?

{get : .., set : Int→Unit} where Int<:Nat ✗

{get : .., set : Number→Unit} where Nat<:Number ✓

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 10 / 22

Lemma (Function subtyping) :

A function type is covariant in its result type and
contravariant in its parameter type.

If Tinf <:Tsup and Uinf <:Usup, then (Tsup→Uinf)<:(Tinf→Usup)

Number

Nat Boolf : → can be replaced by

Number

Nat Boolg : →

Bool

Number

Floatf : → can be replaced by

Number

FloatBoolg : →

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 11 / 22

The contravariance curse

Subtyping is often used as a means to refine types (e.g. with inheritance).
But the variance rules somewhat hinder these forms of refinements.

Consider the example for a record type that compares numbers :

EqNumber ::= {val : Number, equal : Number→Bool}

Consider now inheriting from this with more precise internal numbers :

EqFloat ::= {val : Float, equal : Float→Bool}

Deceptive (but also disappointing) fact

EqFloat≮:EqNumber

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 12 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOrigin(Point p) { return p.equal(new ColPoint(0,0,0)); }

What happens when calling isOrigin(new ColPoint(0,0,7)) ?

ColPoint.equal≮:Point.equal because of the contravariance rule.

equal is overloaded, it uses Points in isOrigin and returns true.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 13 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOrigin(Point p) { return p.equal(new ColPoint(0,0,0)); }

What happens when calling isOrigin(new ColPoint(0,0,7)) ?
ColPoint.equal≮:Point.equal because of the contravariance rule.

equal is overloaded, it uses Points in isOrigin and returns true.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 13 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOrigin(Point p) { return p.equal(new ColPoint(0,0,0)); }

What happens when calling isOrigin(new ColPoint(0,0,7)) ?
ColPoint.equal≮:Point.equal because of the contravariance rule.
equal is overloaded, it uses Points in isOrigin and returns true.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 13 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

What happens if we suppose that ColPoint.equal<:Point.equal anyway ?

the call isOriginBis(new ColPoint(0,0,7)) is well-typed,
it uses the ColPoint equality with a Point parameter, and gets stuck.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 14 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

What happens if we suppose that ColPoint.equal<:Point.equal anyway ?
the call isOriginBis(new ColPoint(0,0,7)) is well-typed,

it uses the ColPoint equality with a Point parameter, and gets stuck.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 14 / 22

class Point {
int x, y;
Point(int _x, int _y) { x = _x; y = _y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); }
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); c = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

What happens if we suppose that ColPoint.equal<:Point.equal anyway ?
the call isOriginBis(new ColPoint(0,0,7)) is well-typed,
it uses the ColPoint equality with a Point parameter, and gets stuck.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 14 / 22

Principles for variance of type variables

A type playing the role of a supplier can vary covariantly and must not
vary contravariantly.
For example : r-values, getters, results of functions

A type playing the role of a receiver can vary contravariantly and must
not vary covariantly.
For example : l-values, setters, parameters of functions

In Java, this takes the form of the “Get and Put principle” popularized
by Naftalin and Wadler in Java Generics (2006) :

“Use an extends wildcard when you only get values out of a
structure, use a super wildcard when you only put values into a
structure, and don’t use a wildcard when you both get and put.”

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 15 / 22

Consider two types ColPoint<:Point, and the following generic interfaces :

GetF[T] ::= {get : Unit→T} covariant contravariant
SetF[T] ::= {set : T→Unit} contravariant covariant

The following examples are unsafe if the variance is reversed :

let gpt : GetF[Point] = ... in
(∗ Valid if GetF[·] is contravariant ∗)
let gcpt : GetF[ColPoint] = gpt in
(∗ Unsafe access to inexistant color field ∗)
gcpt.get().color

let gcpt : SetF[ColPoint] = ... in
(∗ Valid if SetF[·] is covariant ∗)
let gpt : SetF[Point] = gcpt in
(∗ Unsafe setting of missing color field ∗)
gpt.set(new Point())

The following is an example of type unsafety in Java :

String[] strings = new String[1];
Object[] objects = strings; // Arrays are covariant
objects[0] = new Integer(1); // Runtime failure

The Java arrays implement both GetF and SetF, and should be invariant.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 16 / 22

Summary on subtyping

Subtyping is an important property of a type system, enabling to use
the polymorphism at full strength.
The subtyping relations are refined by the notion of variance.
Many constructions of the language (functions, records . . .) are the
source of specific subtyping rules.
It is also possible to refine these relations by defining variance relations
for particular type functions.
Depending on the coherence of the relations, type unsafety
problems may appear when programming.
Deciding the subtyping relation also relies on verifying the coherence
of the different local subtype relations.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 17 / 22

The type lattice

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 18 / 22

Deciding the subtype relation (1)

In order to deal with object types, it is necessary to decide the subtyping
relation on a wide family of types, among which recursive types.

Subtyping decision algorithm

The function subtype(A, S,T) decides whether S<:T.
It considers a set of assumptions A, each assumption being a pair
(Si ,Ti) such that Si <:Ti . Initially, the set is empty.
Depending on the form of S and T, it deduces new assumptions.
It terminates either when finding an incoherent set of assumptions or
returns a set of coherent assumptions.

Basically, subtype builds a subset of the type lattice.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 19 / 22

Definition (Subtyping decision algorithm)

The function subtype(A, S,T) is defined as :
if S = T or (S,T) ∈ A, return A
if (T, S) ∈ A, fail
else let A0 = A ∪ (S,T) and depending on (S,T) :

S = {li : Si}i=[1..n+m] and T = {li : Ti}i=[1..n], then
compute in sequence Ai = subtype(Ai−1, Si ,Ti) for i ∈ [1..n],
return fail if any computation fails otherwise return An.

S = S1→ S2 and T = T1→T2 then
let A1 = subtype(A0,T1, S1) and A2 = subtype(A1, S2,T2) in
return fail if any computation fails otherwise return A2.

T = µX.T1 then compute subtype(A0, S, [X 7→ µX.T1]T1)

S = µX.S1 then compute subtype(A0, [X 7→ µX.S1]S1,T)

otherwise fail.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 20 / 22

Deciding the subtype relation (2)

Consider the following two object types :

O ::= µX.{clone : Unit→X}
S ::= µY.{clone : Unit→Y, val : Nat}

The computation of subtype(S,O) passes through the following steps :
subtype(S,O)

subtype(S, {clone : Unit→O})
subtype({clone : Unit→ S, val : Nat}, {clone : Unit→O})
subtype(Unit→ S,Unit→O)

subtype(Unit,Unit) and subtype(S,O) then terminates successfully.
As a result, this proves S<:O, even if they both are recursive types.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 21 / 22

Bibliography

Pierce, B. C. Types and Programming Languages. MIT Press, 2002.
Bruce, K. B. Foundations of Object-oriented Languages : Types and
Semantics. MIT Press, 2002.
Hindley, J. R. Basic simple type theory. Cambridge University Press,
1997.
Wadler, P. Propositions as types. Communications ACM, 2015.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Mar. 26th 2025, v.1.5.1 22 / 22

	Type Systems and Programming
	Subtyping
	Variance
	The contravariance curse
	Principles for variance

