Type Systems and Programming

D. Renault ENSEIRB-Matmeca Apr. 9th 2025, v.1.5.1

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

Proofs with types

- Phantom types
- Refinement types
- Dependent types

General idea

Use types to enforce logic properties on the values they represent.

Examples

- having values that can be compared (Comparable, Eq a ...)
- having numeric-like values (Number, Num a ...)
- having a list-like representation (Cons, Nil)

More generally, any form of interface can be seen as a logic property.

Can we generalize and find other sorts of properties represented by types?

Representation of particular sets of values

Consider the following algebraic data type 📭 for representing lists :

List[T] ::= Nil | Cons(T, List[T])

Suppose that this type is realized with the following constructors :

- nil : List[T] is the empty list
- cons : $T \rightarrow \text{List}[T] \rightarrow \text{List}[T]$ is a constructor for lists.

The usual accessors head and tail are provided :

• head : List[T] \rightarrow T returns the first element • tail : List[T] \rightarrow List[T] returns all but the first element.

These accessors are **problematic** : they are not defined for nil. Could these accessors be typed for only non-empty lists? In this very case, it is natural to define two types :

- EmptyList containing the nil value
- NonEmptyList[T] containing the non-empty lists

Both types are naturally subtypes of List[T].

With this refinement, the accessors can be defined as total functions :

• head : NonEmptyList[T] \rightarrow T

• tail : NonEmptyList[T] \rightarrow List[T]

returns the first element returns all but the first element.

5 / 28

(head_nil) becomes a non-typable expression instead of stuck at runtime.

This idea can be generalized, restricting values to :

- non-zero or positive numeric values,
- open file descriptors in contrast to closed ones,
- non-null pointers in contrast to null ones.

It is desirable to have the possibility to refine the implementation and the logical properties **independently**.

- Otherwise, an implementation of an AssocList[T] <: List[T] must provide code for both empty and non-empty lists.
- One must devise a mechanism for attaching logical properties to existing types without hindering the usual inheritance mechanisms.

Definition (Phantom type)

A type T is said to be a **phantom type** if it has no influence at runtime, i.e its values never occur in any computation. A type variable T in a parameterized type F[T] is said to be a **phantom type** if it is only meant to be applied to phantom types.

Examples interface Phantom {} // In Java type phantom (* In OCaml *)

A sufficient condition to be a phantom type is to stand for the empty set of values.

Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its capabilities : only Readable[readwrite] can be modified.

```
(* Implementation *)
module Ref : REF = struct
type 'a t = int ref
let create x = ref x
let set r x = r := x
let get r = !r
let freeze x = x
end
```

8 / 28

Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its capabilities : only Readable[readwrite] can be modified.

```
class Readable<A extends Access> {
  int val;
  Readable(int t){ val = t; }
  static Readable<ReadWrite> create(int t) { .. }
  static void set(Readable<ReadWrite> c, int t) { .. }
  static int get(Readable<?> c) { .. }
  static Readable<ReadOnly> freeze(Readable<?> c) { .. }
}
```

Readable< ReadWrit	e > rw =	Readable.create(5);
Readable <readonly< th=""><th>> ro =</th><th><pre>Readable.freeze(rw);</pre></th></readonly<>	> ro =	<pre>Readable.freeze(rw);</pre>
Readable.set(ro,	11); //	Incompatible types: Readable <readonly> cannot</readonly>
	/	be converted to Readable <readwrite></readwrite>

GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype containing a phantom type, and whose constructors can enforce restrictions on the phantom type.

Example

type _ da	ata	a =							
Int	:	int			\rightarrow			int	data
Str	:	string			\rightarrow		str	ring	data
Pair	:	'a data	*	'b	data \rightarrow	('	a *	'b)	data

let x = Int 1 and y = Str "one" in Pair(x, y);; $(* \rightarrow (int*string) data*)$

GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype containing a phantom type, and whose constructors can enforce restrictions on the phantom type.

Example

type _ da	ata	a =							
Int	:	int				>		int	data
Str	:	string				>	str	ring	data
Pair	:	'a data	*	'b	data —) (a *	'b)	data

let add (Int u) (Int v) = Int(u+v);; (* int data \rightarrow int data \rightarrow int data *)

Example : typed evaluator

In this example, a GADT is used to represent typed computations :

The eval function returns the value encapsulated inside the expression :

```
let rec eval : type a. a expr \rightarrow a = function (* with type \forall T, (Expr[T]\rightarrow T) *)
| Bool b \rightarrow b
| Int i \rightarrow i
| If (b, 1, r) \rightarrow if eval b then eval 1 else eval r
| Eq (a, b) \rightarrow (eval a) = (eval b)
| Add (a,b) \rightarrow (eval a) + (eval b) ;; (* Addition on integers *)
```

• A GADT value is an existential value, involving runtime checking.

• The compiler checks the constraints for each constructor individually.

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Apr. 9th 2025, v.1.5.1 11/28

Reification of types

• Once phantom types have been attached to other types, it becomes natural to apply computations on these.

plus(int, float) \Rightarrow float plus(int, int) \Rightarrow int append(Int, String) ⇒ Vector<Any>
append(Char, String) ⇒ String

• Not all languages allow computations at the type level, and therefore mimic these computations at the value level.

Definition (Reification)

A set of types $\mathcal{T} ::= \{\mathsf{T}_i\}$ is said to be **reified** into a set of values $\mathcal{V} ::= \{\mathsf{v}_i\}$ if there exists a bijection between the \mathcal{T} and \mathcal{V} . Ideally, the set \mathcal{V} is represented as (another) type supporting this bijection. If both sets are of size 1, the type is called a **singleton type**.

Example : reification of naturals

In this example, the phantom types represent the Peano naturals :

type zero(* Type for representtype 'a succ(* Type for represent	(* Type for representing zero *) (* Type for representing the successor *)				
type _ nat =	(* Bridge Nat[T] between values and types *)				
NZ : zero nat	(* Value for representing zero *)				
NS : 'a nat \rightarrow ('a succ) nat	(* Value for representing the successor *)				

• NZ and NS are values typed by Nat[T] in bijection with the naturals : $(NS \cdots NS NZ) : (Succ \cdots Succ Zero)$

k times k times

• Computations on types can be carried over onto values :

```
let rec nat_to_int : type a. a nat \rightarrow int = fun x \rightarrow match x with \mid NZ \rightarrow 0 \mid NS n \rightarrow 1 + nat_to_int n
```

Example : length-encoded lists

Let's extend this example to create lists whose type contains their length :

```
type (_,_) seq = (* 1st parameter = type of elements, 2nd parameter = length *)
  | Nil : ('a, zero) seq
  | Cons : 'a * ('a, 'n) seq → ('a, 'n succ) seq
```

```
let rec head : type a n. (a, n succ) seq \rightarrow a = function
 | Cons(x, _) \rightarrow x
let rec tail : type a n. (a, n succ) seq \rightarrow (a, n) seq = function
 | Cons(_, s) \rightarrow s
let rec map : type a b n. (a \rightarrow b) \rightarrow (a,n) seq \rightarrow (b,n) seq =
 fun f 1 \rightarrow match 1 with
 | Ni1 \rightarrow Ni1
 | Cons (x, s) \rightarrow Cons (f x, map f s)
```

• The type of map encodes the fact that it preserves the length of lists.

Example : length-encoded lists

• In Haskell, it's even possible to express computations on types :

data data	Zero Succ nat	Phantom types for naturals
type	<pre>family nat1</pre>	:+ nat2 :: * Type family for the '':+'' function on naturals
type type	instance Zer instance Suc	ro :+ nat2 = nat2 cc nat1 :+ nat2 = Succ (nat1 :+ nat2)

• This yields the following type for the concatenation on lists :

• The type of ++ encodes the fact that the length of the concatenation of two lists is the sum of the lengths of its components.

Composition of static properties

Annotated types do not compose well in general.

Computations returning an integer applying a division

1) Consider the example of the mean function on lists of integers :

mean ::= fun 1 \rightarrow let n = List.length 1 in (sum 1) / n

- The length function must return a generic non-negative integer.
- The division function should take a generic positive integer.

Composition of static properties

Problem

Annotated types do not compose well in general.

Computations returning a list Computations taking the head of a list

2) Consider a function returning the first even integer in a list :

<code>fst_even ::= fun 1 \rightarrow let m = filter is_even 1 in head m</code>

Without static knowledge that m is non-empty, one must check dynamically.

Composition of static properties

Problem

Annotated types do not compose well in general.

Computations returning a list Computations taking the head of a list

2) Consider a function returning the first even integer in a list :

<code>fst_even ::= fun 1 \rightarrow let m = filter is_even 1 in head m</code>

Without static knowledge that m is non-empty, one must check dynamically.

This is a consequence of the **undecidability of evaluation** : logic properties that evolve at runtime cannot be decided statically in general.

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Strategy for composing properties

In some cases, it is possible to provide a static proof of the property.

Consider the problem of accessing the n-th element of a list :

 $get: Nat \rightarrow List[T] \rightarrow T$

How could we make get access only concrete indices of the list?

 \bullet Construct a type Leq[m, n] expressing the fact that $m \in [0; \, n[$:

• A value of type Leq[m, n] is computed dynamically when required.

Example : lists with safe access

• The GADT reifying the property m < n:

```
data Leq[m,n] where
LessZ :: Leq[Zero,Succ n]
LessS :: Leq[m,n] → Leq[Succ m,Succ n]
```

• The less-than function computes a proof that m < n (if any) :

• The type-safe get function can only access safe indices of a list :

```
\begin{array}{l} \texttt{get} :: \ \texttt{Leq[m,n]} \to \texttt{List[a,n]} \to \texttt{a} \\ \texttt{get} \ \texttt{LessZ} \qquad (\texttt{Cons } \texttt{x} \ \texttt{xs}) = \texttt{x} \\ \texttt{get} \ \texttt{(LessS } \texttt{k}) \ \texttt{(Cons } \texttt{x} \ \texttt{xs}) = \texttt{get} \ \texttt{k} \ \texttt{xs} \end{array}
```

Going further along these lines, it is possible to attach a proof-checker to help the compilation phase, as is done in Liquid Haskell or in Dafny.

Consider the problem of defining a type-safe divide function on integers :

```
type NonZero = { v : Int | v /= 0 } -- type for non-zero integers
divide :: Int \rightarrow NonZero \rightarrow Int
divide _ 0 = die "divide_by_zero" -- can never happen
divide n d = n 'div' d
```

• A type attached with a logical property is called a refinement type.

• Logical assertions are transferred and checked by a SMT solver.

Example : iterating on vectors (1)

Here, loop iterates a function over the integers in the interval [lo; hi[:

Typically, 100p 0 n x_0 f computes the sequence :

 $\begin{cases} x_0 \text{ given} \\ x_{k+1} = f(k, x_k) \end{cases}$

The type of the loop function is verified by the compiler and ensures that :

- $lo \leq hi$, forming an interval Btwn lo hi ::= [lo; hi[;
- f accesses only integers in the interval Btwn lo hi.

Example : iterating on vectors (2)

The loop function can then be used to write a dotProduct function :

loop :: lo:Nat \rightarrow hi:{Nat|lo <= hi} \rightarrow a \rightarrow (Btwn lo hi \rightarrow a \rightarrow a) \rightarrow a

• The compiler is able to infer that the indices accessed are always valid.

- This function only requires a proof that both vectors have same length.
- It does not need to check that all the array accesses are safe.

Liquid Haskell is able to prove the termination of the following function :

```
fib :: i:Int \rightarrow Int
fib i | i == 0 = 0
| i == 1 = 1
| otherwise = fib (i-1) + fib (i-2)
```

- Applying a series of well-chosen heuristics, the compiler finds a well founded metric that decreases at each recursive call.
- More generally, it can automatically prove termination for a particular but expressive class of recursive functions (strong normalization).

... which in itself is a pretty amazing feat.

In some cases, the compiler is not able to infer the proofs automatically.

- More complex calculi exist with particularly powerful type systems. Examples : Martin-Löf's type theory, the calculus of constructions
- As type inference became undecidable for λ_2 , it is not surprising that it remains undecidable for more powerful calculi.

These proofs may be provided, possibly with the help of a proof-assistant.

Proofs become another software component, at the same level as code.
 Examples : languages with proof assistants such as Coq, Agda, Idris, ...

A dependent type is a type whose definition is parameterized by a value.

Note : allowing values inside types dramatically complexifies a type system

Example

The type Vec[n, A] of the vectors of n elements of type A. It is technically called a dependent product written $\prod_{n \in \mathbb{N}} Vec_n[A]$.

```
Inductive vec a : nat \rightarrow Type := (* Dependent type written as a function *)
| nil : vec a 0
| cons : forall (h:a) (n:nat), vec a n \rightarrow vec a (S n).
Definition hd {a} {n} (v:vec a (S n)) : a
Definition tl {a} {n} (v:vec a n) (H: p < n) : a
Fixpoint append {a} {n} {p} (v:vec a n) (w:vec a p) : vec a (n+p)</pre>
```

Proof example : associativity of concatenation

```
data List a = Nil | a ::: List a deriving (Eq)
-- Definition of a concatenation function '++' on lists
Nil ++ ys = ys
(x ::: xs) ++ ys = x ::: (xs ++ ys)
```

```
assocThm xs ys zs = (xs ++ ys) ++ zs == xs ++ (ys ++ zs)
```

```
assocPf :: xs:_ → ys:_ → zs:_ → { assocThm xs ys zs }
assocPf Nil ys zs = (Nil ++ ys) ++ zs
==. ys ++ zs
==. Nil ++ (ys ++ zs)
assocPf (x ::: xs) ys zs = ((x ::: xs) ++ ys) ++ zs
==. (x ::: (xs ++ ys) ++ zs)
==. x ::: ((xs ++ ys) ++ zs)
==. x ::: (xs ++ (ys ++ zs)) ? assocPf xs ys zs
==. (x ::: xs) ++ (ys ++ zs)
```

Conclusion

- Type systems offer a general framework to verify the safety of the composition of programming expressions.
- The association between types and logic properties is natural in this framework and mechanisms exist to facilitate this association :

- These logic properties constitute another form of programming. Types / proofs become a natural component accompanying the code.
- The mechanisms for the verification of these properties grow in complexity accordingly with the expressivity of the properties : type annotations, SMT-solvers ... up to proof assisants.
- Undecidability problems occur for the highest levels of complexity, hindering the verification capabilities for programmers.

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

- The development of more recent type systems and even more recent programming languages displays a high level of activity.
- As an example, regions constitute a mechanism to describe zones of code and memory determined statically.
- Effects systems restrict the kind of operations allowed in certain of these regions, typically reading or writing to memory.
 Many of these languages are experimentations derived from Haskell.
- The Rust programming language is an example of the last generation of general-purpose languages incorporating some of these advances.
- It claims solving the problems of dangling pointers, uses-after-free and even data races for some classes of concurrent programs.