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General idea

Use types to enforce logic properties on the values they represent.

Examples

having values that can be compared (Comparable, Eq a . . .)
having numeric-like values (Number, Num a . . .)
having a list-like representation (Cons, Nil)

More generally, any form of interface can be seen as a logic property.

Can we generalize and find other sorts of properties represented by types ?
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Representation of particular sets of values

Consider the following algebraic data type ▶ for representing lists :

List[T] ::= Nil | Cons(T, List[T])

Suppose that this type is realized with the following constructors :

nil : List[T] is the empty list
cons : T→ List[T]→ List[T] is a constructor for lists.

The usual accessors head and tail are provided :

head : List[T]→T returns the first element
tail : List[T]→ List[T] returns all but the first element.

These accessors are problematic : they are not defined for nil.
Could these accessors be typed for only non-empty lists ?
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Refinement of sets of values

In this very case, it is natural to define two types :
EmptyList containing the nil value
NonEmptyList[T] containing the non-empty lists

Both types are naturally subtypes of List[T].

With this refinement, the accessors can be defined as total functions :

head : NonEmptyList[T]→T returns the first element
tail : NonEmptyList[T]→ List[T] returns all but the first element.

(head nil) becomes a non-typable expression instead of stuck at runtime.
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This idea can be generalized, restricting values to :
non-zero or positive numeric values,
open file descriptors in contrast to closed ones,
non-null pointers in contrast to null ones.

It is desirable to have the possibility to refine the implementation and the
logical properties independently.

Otherwise, an implementation of an AssocList[T]<: List[T] must
provide code for both empty and non-empty lists.
One must devise a mechanism for attaching logical properties to
existing types without hindering the usual inheritance mechanisms.
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Phantom types

Definition (Phantom type)

A type T is said to be a phantom type if it has no influence at runtime,
i.e its values never occur in any computation.
A type variable T in a parameterized type F[T] is said to be a phantom
type if it is only meant to be applied to phantom types.

Examples

interface Phantom {} // In Java type phantom (∗ In OCaml ∗)

A sufficient condition to be a phantom type is to stand for the empty set of values.
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Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readwrite] can be modified.

(∗ Interface ∗)
module type REF = sig
type ’a t
val create : int → readwrite t
val set : readwrite t → int → unit
val get : ’a t → int
val freeze : ’a t → readonly t

end

(∗ Implementation ∗)
module Ref : REF = struct

type ’a t = int ref
let create x = ref x
let set r x = r := x
let get r = !r
let freeze x = x

end

let rw = create 4;;
let ro = freeze rw;;
set ro 7;; (∗ Type error : This expression has type readonly t ∗)

(∗ but an expression was expected of type readwrite t ∗)
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Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readwrite] can be modified.

class Readable<A extends Access> {
int val;
Readable(int t){ val = t; }

static Readable<ReadWrite> create(int t) { .. }
static void set(Readable<ReadWrite> c, int t) { .. }
static int get(Readable<?> c) { .. }
static Readable<ReadOnly> freeze(Readable<?> c) { .. }}

Readable<ReadWrite> rw = Readable.create(5);
Readable<ReadOnly> ro = Readable.freeze(rw);
Readable.set(ro, 11); // Incompatible types: Readable<ReadOnly> cannot

// be converted to Readable<ReadWrite>
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GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ▶ containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int → int data
| Str : string → string data
| Pair : ’a data ∗ ’b data → (’a ∗ ’b) data

let x = Int 1 and y = Str "one" in Pair(x, y);; (∗ → (int∗string) data ∗)
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GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ▶ containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int → int data
| Str : string → string data
| Pair : ’a data ∗ ’b data → (’a ∗ ’b) data

let add (Int u) (Int v) = Int(u+v);; (∗ int data → int data → int data ∗)
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Example : typed evaluator

In this example, a GADT is used to represent typed computations :

type _ expr =
| Bool : bool → bool expr
| Int : int → int expr
| If : bool expr ∗ ’a expr ∗ ’a expr → ’a expr
| Eq : ’a expr ∗ ’a expr → bool expr
| Add : int expr ∗ int expr → int expr

The eval function returns the value encapsulated inside the expression :

let rec eval : type a. a expr → a = function (∗ with type ∀T,
(
Expr[T]→ T

)
∗)

| Bool b → b
| Int i → i
| If (b, l, r) → if eval b then eval l else eval r
| Eq (a, b) → (eval a) = (eval b)
| Add (a,b) → (eval a) + (eval b) ;; (∗ Addition on integers ∗)

A GADT value is an existential value, involving runtime checking.
The compiler checks the constraints for each constructor individually.
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Reification of types

Once phantom types have been attached to other types, it becomes
natural to apply computations on these.

plus(int, float) ⇒ float append(Int, String) ⇒ Vector<Any>

plus(int, int) ⇒ int append(Char, String) ⇒ String

Not all languages allow computations at the type level, and therefore
mimic these computations at the value level.

Definition (Reification)

A set of types T ::= {Ti} is said to be reified into a set of values V ::= {vi}
if there exists a bijection between the T and V.
Ideally, the set V is represented as (another) type supporting this bijection.
If both sets are of size 1, the type is called a singleton type.
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Example : reification of naturals

In this example, the phantom types represent the Peano naturals :

type zero (∗ Type for representing zero ∗)
type ’a succ (∗ Type for representing the successor ∗)

type _ nat = (∗ Bridge Nat[T] between values and types ∗)
| NZ : zero nat (∗ Value for representing zero ∗)
| NS : ’a nat → (’a succ) nat (∗ Value for representing the successor ∗)

NZ and NS are values typed by Nat[T] in bijection with the naturals :(
NS · · · NS︸ ︷︷ ︸
k times

NZ
)
:
(
succ · · · succ︸ ︷︷ ︸

k times

zero
)

Computations on types can be carried over onto values :

let rec nat_to_int : type a. a nat → int = fun x → match x with
| NZ → 0
| NS n → 1 + nat_to_int n
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Example : length-encoded lists

Let’s extend this example to create lists whose type contains their length :

type (_,_) seq = (∗ 1st parameter = type of elements, 2nd parameter = length ∗)
| Nil : (’a, zero) seq
| Cons : ’a ∗ (’a,’n) seq → (’a, ’n succ) seq

let rec head : type a n. (a, n succ) seq → a = function
| Cons(x, _) → x

let rec tail : type a n. (a, n succ) seq → (a, n) seq = function
| Cons(_, s) → s

let rec map : type a b n. (a → b) → (a,n) seq → (b,n) seq =
fun f l → match l with
| Nil → Nil
| Cons (x, s) → Cons (f x, map f s)

The type of map encodes the fact that it preserves the length of lists.
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Example : length-encoded lists

In Haskell, it’s even possible to express computations on types :

data Zero -- Phantom types for naturals
data Succ nat

type family nat1 :+ nat2 :: ∗ -- Type family for the ‘‘:+’’ function on naturals

type instance Zero :+ nat2 = nat2
type instance Succ nat1 :+ nat2 = Succ (nat1 :+ nat2)

This yields the following type for the concatenation on lists :

(++) :: List a len1 → List a len2 → List a (len1 :+ len2)
Nil ++ list = list
Cons el els ++ list = Cons el (els ++ list)

The type of ++ encodes the fact that the length of the concatenation
of two lists is the sum of the lengths of its components.
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Composition of static properties

Problem

Annotated types do not compose well in general.

Computations
returning an integer

Computations
applying a division

1) Consider the example of the mean function on lists of integers :

mean ::= fun l → let n = List.length l in (sum l) / n

The length function must return a generic non-negative integer.
The division function should take a generic positive integer.
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Composition of static properties

Problem

Annotated types do not compose well in general.

Computations re-
turning a list

Computations taking
the head of a list

2) Consider a function returning the first even integer in a list :

fst_even ::= fun l → let m = filter is_even l in head m

Without static knowledge that m is non-empty, one must check dynamically.

This is a consequence of the undecidability of evaluation : logic proper-
ties that evolve at runtime cannot be decided statically in general.
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Strategy for composing properties

In some cases, it is possible to provide a static proof of the property.

Consider the problem of accessing the n-th element of a list :

get : Nat→ List[T]→T

How could we make get access only concrete indices of the list ?

Construct a type Leq[m, n] expressing the fact that m ∈ [0; n[ :

data Leq[m,n] where -- Proof that :
LessZ :: Leq[Zero,Succ n] -- 0 < n
LessS :: Leq[m,n] → Leq[Succ m,Succ n] -- if m < n, then m+1 < n+1

A value of type Leq[m, n] is computed dynamically when required.
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Example : lists with safe access

The GADT reifying the property m < n :

data Leq[m,n] where
LessZ :: Leq[Zero,Succ n]
LessS :: Leq[m,n] → Leq[Succ m,Succ n]

The less-than function computes a proof that m < n (if any) :

lt :: Nat m → Nat n → Maybe (Leq[m,n])
lt Zero (Succ n) = Just LessZ
lt (Succ m) (Succ n) = case lt m n of Some proof → Some (LessS proof)

Nothing → Nothing
lt _ _ = Nothing

The type-safe get function can only access safe indices of a list :

get :: Leq[m,n] → List[a,n] → a
get LessZ (Cons x xs) = x
get (LessS k) (Cons x xs) = get k xs
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Refinement types

Going further along these lines, it is possible to attach a proof-checker to
help the compilation phase, as is done in Liquid Haskell or in Dafny.

Consider the problem of defining a type-safe divide function on integers :

type NonZero = { v : Int | v /= 0 } -- type for non-zero integers

divide :: Int → NonZero → Int
divide _ 0 = die "divide␣by␣zero" -- can never happen
divide n d = n ‘div‘ d

A type attached with a logical property is called a refinement type.
Logical assertions are transferred and checked by a SMT solver.
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Example : iterating on vectors (1)

Here, loop iterates a function over the integers in the interval [lo; hi[ :

loop :: lo:Nat → hi:{Nat|lo <= hi} → a → (Btwn lo hi → a → a) → a
loop lo hi base f = loop_rec base lo where

loop_rec acc i | i < hi = loop_rec (f i acc) (i + 1)
loop_rec _ _ | otherwise = acc

Typically, loop 0 n x0 f computes the sequence :{
x0 given
xk+1 = f(k, xk)

The type of the loop function is verified by the compiler and ensures that :
lo ≤ hi, forming an interval Btwn lo hi ::= [lo; hi[ ;
f accesses only integers in the interval Btwn lo hi.
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Example : iterating on vectors (2)

The loop function can then be used to write a dotProduct function :

loop :: lo:Nat → hi:{Nat|lo <= hi} → a → (Btwn lo hi → a → a) → a

dotProduct :: x:[Int] → { y:[Int] | len x = len y } → Int
dotProduct x y = loop 0 n 0 body where

n = length x
body i acc = acc + (x ! i) ∗ (y ! i)

The compiler is able to infer that the indices accessed are always valid.
This function only requires a proof that both vectors have same length.
It does not need to check that all the array accesses are safe.
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Termination proofs

Liquid Haskell is able to prove the termination of the following function :

fib :: i:Int → Int
fib i | i == 0 = 0

| i == 1 = 1
| otherwise = fib (i-1) + fib (i-2)

Applying a series of well-chosen heuristics, the compiler finds a well
founded metric that decreases at each recursive call.
More generally, it can automatically prove termination for a particular
but expressive class of recursive functions ( ▶ strong normalization).

. . . which in itself is a pretty amazing feat.
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The frontier of automaticity

In some cases, the compiler is not able to infer the proofs automatically.

More complex calculi exist with particularly powerful type systems.

Examples : Martin-Löf’s type theory, the calculus of constructions . . .

As type inference became undecidable for λ2, it is not surprising that it
remains undecidable for more powerful calculi.

These proofs may be provided, possibly with the help of a proof-assistant.

Proofs become another software component, at the same level as code.

Examples : languages with proof assistants such as Coq, Agda, Idris, . . .
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Definition (Dependent type)

A dependent type is a type whose definition is parameterized by a value.

Note : allowing values inside types dramatically complexifies a type system

Example

The type Vec[n,A] of the vectors of n elements of type A.
It is technically called a dependent product written Πn∈NVecn[A].

Inductive vec a : nat → Type := (∗ Dependent type written as a function ∗)
| nil : vec a 0
| cons : forall (h:a) (n:nat), vec a n → vec a (S n).

Definition hd {a} {n} (v:vec a (S n)) : a
Definition tl {a} {n} (v:vec a (S n)) : vec a n
Definition nth {a} {n} {p} (v:vec a n) (H: p < n) : a
Fixpoint append {a} {n} {p} (v:vec a n) (w:vec a p) : vec a (n+p)
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Proof example : associativity of concatenation

data List a = Nil | a ::: List a deriving (Eq)
-- Definition of a concatenation function ’++’ on lists
Nil ++ ys = ys
(x ::: xs) ++ ys = x ::: (xs ++ ys)

assocThm xs ys zs = (xs ++ ys) ++ zs == xs ++ (ys ++ zs)

assocPf :: xs:_ → ys:_ → zs:_ → { assocThm xs ys zs }
assocPf Nil ys zs = (Nil ++ ys) ++ zs

==. ys ++ zs
==. Nil ++ (ys ++ zs)

assocPf (x ::: xs) ys zs = ((x ::: xs) ++ ys) ++ zs
==. (x ::: (xs ++ ys)) ++ zs
==. x ::: ((xs ++ ys) ++ zs)
==. x ::: (xs ++ (ys ++ zs)) ? assocPf xs ys zs
==. (x ::: xs) ++ (ys ++ zs)
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Conclusion

Type systems offer a general framework to verify the safety of the
composition of programming expressions.
The association between types and logic properties is natural in this
framework and mechanisms exist to facilitate this association :
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These logic properties constitute another form of programming.
Types / proofs become a natural component accompanying the code.
The mechanisms for the verification of these properties grow in
complexity accordingly with the expressivity of the properties :
type annotations, SMT-solvers . . . up to proof assisants.
Undecidability problems occur for the highest levels of complexity,
hindering the verification capabilities for programmers.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 27 / 28



The present and future of type systems

The development of more recent type systems and even more recent
programming languages displays a high level of activity.
As an example, regions constitute a mechanism to describe zones of
code and memory determined statically.
Effects systems restrict the kind of operations allowed in certain of
these regions, typically reading or writing to memory.
Many of these languages are experimentations derived from Haskell.

The Rust programming language is an example of the last generation
of general-purpose languages incorporating some of these advances.
It claims solving the problems of dangling pointers, uses-after-free and
even data races for some classes of concurrent programs.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 28 / 28


	Type Systems and Programming
	Proofs with types
	Phantom types
	Refinement types
	Dependent types

	Conclusion
	Conclusion


