Type Systems and Programming

D. Renault
ENSEIRB-Matmeca
Apr. 9th 2025, v.1.5.1

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

https://www.labri.fr/perso/renault/working/teaching/stp/stp.php

@ Proofs with types
@ Phantom types
@ Refinement types
@ Dependent types

D. Renault (ENSEIRB-Matmeca) Ve SyEremrapreanmre B

General idea

Use types to enforce logic properties on the values they represent.

Examples

@ having values that can be compared (Comparable, Eq a . ..)
@ having numeric-like values (Number, Num a . ..)
@ having a list-like representation (Cons, Nil)

More generally, any form of interface can be seen as a logic property.

Can we generalize and find other sorts of properties represented by types?

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 3/28

Representation of particular sets of values

Consider the following algebraic data type for representing lists :

List[T] ::= Nil | Cons(T, List[T])

Suppose that this type is realized with the following constructors :

@ nil : List[T] is the empty list
@ cons : T— List[T]— List[T] is a constructor for lists.

The usual accessors head and tail are provided :

@ head : List[T]—> T returns the first element
@ tail : List[T]— List[T] returns all but the first element.

These accessors are problematic : they are not defined for nil.
Could these accessors be typed for only non-empty lists ?

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1

4/28

Refinement of sets of values

In this very case, it is natural to define two types :

@ EmptyList containing the nil value

@ NonEmptyList[T] containing the non-empty lists
Both types are naturally subtypes of List[T].

With this refinement, the accessors can be defined as total functions :

@ head : NonEmptyList[T]— T returns the first element
@ tail : NonEmptyList[T]— List[T] returns all but the first element.

(head nil) becomes a non-typable expression instead of stuck at runtime.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 5/28

This idea can be generalized, restricting values to :
@ non-zero or positive numeric values,
@ open file descriptors in contrast to closed ones,

@ non-null pointers in contrast to null ones.

It is desirable to have the possibility to refine the implementation and the

logical properties independently.
@ Otherwise, an implementation of an AssocList[T] <: List[T] must
provide code for both empty and non-empty lists.
@ One must devise a mechanism for attaching logical properties to
existing types without hindering the usual inheritance mechanisms.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1

6/28

Phantom types

Definition (Phantom type)

A type T is said to be a phantom type if it has no influence at runtime,
i.e its values never occur in any computation.

A type variable T in a parameterized type F[T] is said to be a phantom
type if it is only meant to be applied to phantom types.

Examples

interface Phantom {} // In Java type phantom (x In OCaml «)

A sufficient condition to be a phantom type is to stand for the empty set of values.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readurite] can be modified.

(+ Interface x) (* Implementation *)

module type REF = sig module Ref : REF = struct
type ’a t type 'a t = int ref
val create : int — readwrite t let create x = ref x
val set : readwrite t — int — unit let set r x =r :=x
val get :’at — int let get r =Ir
val freeze : ’a t — readonly t let freeze x = x

end end

let rw = create 4;;

let ro = freeze rw;;

set ro 7;; (x Type error : This expression has type readonly t)
(* but an expression was expected of type readwrite t *)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readurite] can be modified.

class Readable<A extends Access> {
int val;
Readable(int t){ val = t; }

static Readable<ReadWrite> create(int t) {..3%
static void set(Readable<ReadWrite> c, int t) { .. }
static int get(Readable<?> ¢) {..1%
static Readable<ReadOnly> freeze(Readable<?> c) { ..}

Readable<ReadWrite> rw = Readable.create(5);

Readable<ReadOnly> ro = Readable.freeze(rw);

Readable.set(ro, 11); // Incompatible types: Readable<ReadOnly> cannot
// be converted to Readable<ReadWrite>

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ©- containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int — int data
| Str : string — string data

| Pair : ’a data * 'b data — (’a * ’b) data

let x = Int 1 and y = Str "one” in Pair(x, y);; (x — (intxstring) data =)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ©- containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int — int data
| Str : string — string data

| Pair : ’a data * 'b data — (’a * ’b) data

let add (Int u) (Int v) = Int(u+v);; (x int data — int data — int data)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : typed evaluator

In this example, a GADT is used to represent typed computations :

type _ expr =
| Bool : bool — bool expr
| Int : int — int expr
| If : bool expr x ’a expr x ’a expr — ’a expr
| Eq : ’a expr *x ’a expr — bool expr
| Add : int expr % int expr — int expr

The eval function returns the value encapsulated inside the expression :

let rec eval : type a. a expr — a = function (x with type VT, (Expr[T]— T) *)

| Bool b — b

| Int i — i

| If (b, 1, r) — if eval b then eval 1 else eval r

| Eq (a, b) — (eval a) = (eval b)

| Add (a,b) — (eval a) + (eval b) ;; (x Addition on integers x)

@ A GADT value is an existential value, involving runtime checking.
@ The compiler checks the constraints for each constructor individually.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 11/28

Reification of types

@ Once phantom types have been attached to other types, it becomes
natural to apply computations on these.

plus(int, float) = float append(Int, String) = Vector<Any>
plus(int, int) = int append(Char, String) = String

@ Not all languages allow computations at the type level, and therefore
mimic these computations at the value level.

Definition (Reification)

A set of types T ::= {T,} is said to be reified into a set of values V ::= {v;}
if there exists a bijection between the 7 and V.

Ideally, the set V is represented as (another) type supporting this bijection.
If both sets are of size 1, the type is called a singleton type.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example

reification of naturals

In this example, the phantom types represent the Peano naturals :

type zero
type ’a succ

(* Type for representing zero x)
(* Type for representing the successor)

type _ nat = (* Bridge Nat[T] between values and types *)
| NZ : zero nat (* Value for representing zero *)
| NS : ’a nat — (’a succ) nat (x Value for representing the successor)

@ Nz and Ns are values typed by Nat[T] in bijection with the naturals :

(Ns -~ Ns Nz) : (succ - -- sucg zero)
~—_—
k times k times

o Computations on types can be carried over onto values :

let rec nat_to_int :
| N2 — 0
| NS n — 1+ nat_to_int n

type a. a nat — int = fun x — match x with

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming

Example : length-encoded lists

Let's extend this example to create lists whose type contains their length :

type (_,_) seq = (x Ist parameter = type of elements, 2nd parameter = length x)
| Nil (’a, zero) seq
| Cons : ’a % ("a,’n) seq — (’a, ’n succ) seq

let rec head : type a n. (a, n succ) seq — a = function
| Cons(x, _) — x

let rec tail : type a n. (a, n succ) seq — (a, n) seq = function
| Cons(_, s) — s

let rec map : type a b n. (a = b) — (a,n) seq — (b,n) seq =
fun f 1 — match 1 with
| Nil — Nil
| Cons (x, s) — Cons (f x, map f s)

@ The type of map encodes the fact that it preserves the length of lists.
D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Example : length-encoded lists

@ In Haskell, it's even possible to express computations on types :

data Zero -- Phantom types for naturals
data Succ nat

type family natl :+ nat2 :: x - Type family for the ":+"" function on naturals

type instance Zero :+ nat2 = nat2
type instance Succ natl :+ nat2 = Succ (natl :+ nat2)

@ This yields the following type for the concatenation on lists :

(++) :: List a lenl — List a len2 — List a (lenl :+ len2)
Nil ++ list = list
Cons el els ++ list = Cons el (els ++ list)

@ The type of ++ encodes the fact that the length of the concatenation
of two lists is the sum of the lengths of its components.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 15 /28

Composition of static properties

Problem

Annotated types do not compose well in general.

Computations Computations
returning an integer applying a division

1) Consider the example of the mean function on lists of integers :

mean ;= fun 1 — let n = List.length 1 in (sum 1) / n

@ The length function must return a generic non-negative integer.

@ The division function should take a generic positive integer.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1

16 /28

Composition of static properties

Problem

Annotated types do not compose well in general.

Computations re- Computations taking
turning a list the head of a list

2) Consider a function returning the first even integer in a list :
fst_even :i= fun 1 — let m = filter is_even 1 in head m

Without static knowledge that m is non-empty, one must check dynamically.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 17 /28

Composition of static properties

Problem

Annotated types do not compose well in general.

Computations re- Computations taking
turning a list the head of a list

2) Consider a function returning the first even integer in a list :
fst_even :i= fun 1 — let m = filter is_even 1 in head m

Without static knowledge that m is non-empty, one must check dynamically.

This is a consequence of the undecidability of evaluation : logic proper-
ties that evolve at runtime cannot be decided statically in general.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 17 /28

Strategy for composing properties

In some cases, it is possible to provide a static proof of the property.

Consider the problem of accessing the n-th element of a list :
get : Nat— List[T]—> T

How could we make get access only concrete indices of the list?

e Construct a type Leq[m, n| expressing the fact that m € [0; n] :

data Leq[m,n] where -- Proof that :
LessZ :: Leq[Zero,Succ n] -0<n
LessS :: Leqlm,n] — Leq[Succ m,Succ n] — if m < n, then m+1 < n+1

@ A value of type Leq[m, n] is computed dynamically when required.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 18 /28

Example : lists with safe access

@ The GADT reifying the property m < n :

data Leq[m,n] where
LessZ :: Leqg[Zero,Succ n]
LessS :: Leq[lm,n] — Leqg[Succ m,Succ n]

@ The less-than function computes a proof that m < n (if any) :

1t :: Nat m — Nat n — Maybe (Leqlm,n])

1t Zero (Succ n) = Just LessZ

1t (Succ m) (Succ n) = case 1t m n of Some proof — Some (LessS proof)
Nothing — Nothing

1t

Nothing

@ The type-safe get function can only access safe indices of a list :

get :: Leq[m,n] — List[a,n] — a
get LessZ (Cons x xs) = x
get (LessS k) (Cons x xs) = get k xs

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 19 /28

Refinement types

Going further along these lines, it is possible to attach a proof-checker to
help the compilation phase, as is done in Liquid Haskell or in Dafny.

Consider the problem of defining a type-safe divide function on integers :

type NonZero = { v : Int | v /= @ } -- type for non-zero integers

divide :: Int — NonZero — Int
divide _ @ = die "divide_by_zero” -- can never happen
divide n d = n ‘div‘ d

@ A type attached with a logical property is called a refinement type.

@ Logical assertions are transferred and checked by a SMT solver.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 20/28

Example : iterating on vectors (1)

Here, loop iterates a function over the integers in the interval [lo; hi] :

loop :: lo:Nat — hi:{Nat|lo <= hi} — a — (Btwn lo hi — a — a) — a
loop lo hi base f = loop_rec base lo where

loop_rec acc i | i < hi = loop_rec (f i acc) (i + 1)

loop_rec _ | otherwise = acc

Typically, 1oop @ n x, f computes the sequence :
Xo given

X1 — f(k7 Xk)

The type of the 1oop function is verified by the compiler and ensures that :
@ lo < hi, forming an interval Btwn lo hi ::= [lo; hi[;

@ f accesses only integers in the interval Btwn 1o hi.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 21/28

Example : iterating on vectors (2)

The 1oop function can then be used to write a dotProduct function :

loop :: lo:Nat — hi:{Nat|lo <= hi} — a — (Btwn lo hi — a — a) — a

dotProduct :: x:[Int] — { y:[Int] | len x = leny } — Int
dotProduct x y = loop @ n @ body where

n length x

body i acc = acc + (x ! i) x (y ! i)

@ The compiler is able to infer that the indices accessed are always valid.
@ This function only requires a proof that both vectors have same length.

o It does not need to check that all the array accesses are safe.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 22/28

Termination proofs

Liquid Haskell is able to prove the termination of the following function :

fib :: i:Int — Int

fib i | i==20 =0
| 1 ==1 =1
| otherwise = fib (i-1) + fib (i-2)

@ Applying a series of well-chosen heuristics, the compiler finds a well
founded metric that decreases at each recursive call.

@ More generally, it can automatically prove termination for a particular
but expressive class of recursive functions (- strong normalization).

... which in itself is a pretty amazing feat.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 23 /28

The frontier of automaticity

In some cases, the compiler is not able to infer the proofs automatically.

@ More complex calculi exist with particularly powerful type systems.
Examples : Martin-Lof's type theory, the calculus of constructions . ..

@ As type inference became undecidable for)\, it is not surprising that it
remains undecidable for more powerful calculi.

These proofs may be provided, possibly with the help of a proof-assistant.

@ Proofs become another software component, at the same level as code.

Examples : languages with proof assistants such as Coq, Agda, Idris, ...

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 24 /28

Definition (Dependent type)

A dependent type is a type whose definition is parameterized by a value.

Note : allowing values inside types dramatically complexifies a type system

Example

The type Vec|n, A] of the vectors of n elements of type A.
It is technically called a dependent product written ,cnVec,[A].

Inductive vec a : nat — Type := (* Dependent type written as a function)
| nil : vec a 0
| cons : forall (h:a) (n:nat), vec a n — vec a (S n).

Definition hd {a} {n} (v:vec a (S n)) :a
Definition t1 {a} {n} (v:vec a (S n)) :vec an
Definition nth {a} {n} {p} (v:vec an) (H: p<n) : a

Fixpoint append {a} {n} {p} (v:vec a n) (w:vec a p) : vec a (n+p)

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _

Proof example

associativity of concatenation

data List a = Nil | a ::: List a deriving (Eq)
-- Definition of a concatenation function '++ on lists
Nil ++ ys = ys
(X ::: xS) ++ ys = x ::: (Xs ++ ys)
assocThm xs ys zs = (xs ++ ys) ++ zs == xs ++ (ys ++ zs)
assocPf :: xs:_ — ys:_ — zs:_ — { assocThm xs ys zs }
assocPf Nil ys zs = (Nil ++ ys) ++ zs
== ys ++ zs
== Nil ++ (ys ++ zs)
assocPf (x ::: xs) ys zs = ((x ::: XxS) ++ ys) ++ zs
==, (X ::: (xs ++ ys)) ++ zs
==. X ::: ((Xxs ++ ys) ++ zs)
==, X ::: (xs ++ (ys ++ zs)) ? assocPf xs ys zs
==. (X ::: xs) ++ (ys ++ zs)

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming

Conclusion

e Type systems offer a general framework to verify the safety of the
composition of programming expressions.

@ The association between types and logic properties is natural in this
framework and mechanisms exist to facilitate this association :

@ These logic properties constitute another form of programming.
Types / proofs become a natural component accompanying the code.

@ The mechanisms for the verification of these properties grow in
complexity accordingly with the expressivity of the properties :
type annotations, SMT-solvers ... up to proof assisants.

@ Undecidability problems occur for the highest levels of complexity,
hindering the verification capabilities for programmers.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 27 /28

The present and future of type systems

@ The development of more recent type systems and even more recent
programming languages displays a high level of activity.

@ As an example, regions constitute a mechanism to describe zones of
code and memory determined statically.

o Effects systems restrict the kind of operations allowed in certain of
these regions, typically reading or writing to memory.

Many of these languages are experimentations derived from Haskell.
e The Rust programming language is an example of the last generation
of general-purpose languages incorporating some of these advances.

@ It claims solving the problems of dangling pointers, uses-after-free and
even data races for some classes of concurrent programs.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 28 /28

	Type Systems and Programming
	Proofs with types
	Phantom types
	Refinement types
	Dependent types

	Conclusion
	Conclusion

