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Introduction

What's a programming language 7

int ackermann(int m, int n) {
if (!Im) return n + 1;
if (!n) return ackermann(m-1,1);
return ackermann(m-1,
ackermann(m,n-1));

ackermann<—{
0=1Dw:1+2Dw
0=2Dw:V ( 1+1Dw)1
V(1+1Dw),V(1Dw), 1+2Dw

A complex and expressive tool for the representation of computations.
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Introduction

Focus on the problem of the verification of these computations.

What properties can one expect to be enforceable ?

@ Termination properties : is it possible to be perfectly certain that a
given program evaluates in a finite number of steps?

e Correctness properties : is it possible to be perfectly certain that a
program never ends up in an uncontrolled error state ?

And more pragmatically, checking for the presence or absence of :
@ null pointer exceptions, invalid file descriptors,

@ indices out of array bounds, divisions by zero . ..
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Introduction

How is it possible to enforce some of these properties ?

= Different families of methods, spread along the development cycle.

| ot [ Deductive methods
Formal verification | Model checking ...

Lexical analysis

Static analysis | Type systems...

[ Testing

Runtime verification | Monitoring.. ..

= Each family possesses different characteristics :

@ Compile-time or Runtime
@ Automatic or Assisted
@ Decidable (complexity 7) or Semi-decidable
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Type systems (informal description)

@ a family of tractable methods,
@ considering programs on a syntactic level,

o verifying some properties on their behaviors.

General tactics

o Classify the expressions occurring inside a program into types,

@ Verify that the combination of these types into the program respect
a set of coherence rules.

Example : locomotive + flower
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Programming languages and type systems studied in this course :

e OCaml (4.14) ocaml.org
@ Haskell (ghc-9.4) haskell.org/ghc
o LiquidHaskell (0.9.4-git) ucsd-progsys.github.io/liquidhaskell-blog
@ Scala (2.13) scala-lang.org

And their influence in mainstream languages :
o Java 8-21, C++ 14-23, C# 5-13 ...
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ocaml.org
haskell.org/ghc
ucsd-progsys.github.io/liquidhaskell-blog
scala-lang.org

Some references

@ Pierce, B. C. Types and Programming Languages. MIT Press, 2002.

@ Bruce, K. B. Foundations of Object-oriented Languages : Types and
Semantics. MIT Press, 2002.

e Hindley, J. R. Basic simple type theory. Cambridge University Press,
1997.

@ Wadler, P. Propositions as types. Communications ACM, 2015.
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Overview

© Simple lambda-calculus
@ Untyped
o Typed

© Polymorphism
@ Parametric

@ Inclusion
@ Adhoc

© Subtyping
@ Proofs with types
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© Simple lambda-calculus
@ Propositional logic
@ Untyped lambda calculus
@ Simply typed lambda calculus
@ Type checking and inference
@ Curry-Howard correspondence

© Polymorphism

© Subtyping

@ Proofs with types
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Definition (Minimal intuitionistic logic)

The minimal intuitionistic logic is the set of all formulae P, Q,...
constructed from :

@ an infinite set of atomic formulae denoted as variables «, 3, . . .,

o if P, Q are two formulas, then P = Q is also a formula.

It is a simple fragment of the more general propositional logic.
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Definition (Sequent)

A sequent is an assertion ' - «, where :
o [ is a possibly empty sequence of formulae called the antecedents,
@ and « is a formula called the consequent.
Writing I', P = @ means that the antecedents are constituted of a list of
formulae I along with a specific formula P.
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Definition (Derivation tree)

A derivation tree (or proof tree) is a tree whose nodes are syntactically
coherent with a finite set of inference rules. In propositional logic, these
rules are the following :

rPEQ P rEP=Q

Pre i Frpsq P - Q -

Each inference rule possesses a name indicating its role, most of the time
the introduction (1) or the elimination (E) of a logical operator.
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

rPEQ P TrEP=Q
pre ™ Frpog P o

[=E]

Proof as a derivation tree

F(R=(S=T)={(R=S)=(R=T))
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

Iax] rPEQ P rEP=Q
PFP rTFP=Q - Q

[=E]

Proof as a derivation tree

(R=(S=T)F(R=S)=>(R=T)
F(R=(5=T)={(R=S5)=(R=T))
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

Iax] rPEQ P rEP=Q
PFP rTFP=Q - Q

[=E]

Proof as a derivation tree

(R=(S=T),(R=95FR=T)
(R=(S=T)F(R=S)=>(R=T)
F(R=(5=T)={(R=S5)=(R=T))
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

MLPFQ P TFP=Q
r-Q

[=E]

Proof as a derivation tree

r={(R=S=T),(R=S),R}-T
(R=(S=T),(R=95FR=T)
(R=(S=T)F(R=S)=>(R=T)
FR=(S=T)=({(R=S)=(R=T))

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

MLPFQ P TFP=Q
r-Q

[=E]

Proof as a derivation tree

r-S=rT7T r=s
r={(R=(S=T),(R=S5),R}+-T
(R=(S=T),(R=95FR=T)
(R=(S=T)F(R=S)=>(R=T)

FR=S=T)={(R=S)=((R=T)
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

MLPFQ P TFP=Q
r-Q

[=E]

Proof as a derivation tree

rFR rFR=S5

r-S=rT7T r=s
r={(R=S=T),(R=S),R}-T
(R=(S=T),(R=95FR=T)
(R=(S=T)F(R=S)=>(R=T)

FR=(S=T)=({(R=S)=(R=T))
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Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

LPEQ P TFP=Q
-P=Q r-Q

[=E]

Proof as a derivation tree

r-r TFR=(S=T) rFR r-R=S
r-S=rT7T r=s
r={(R=S=T),(R=S),R}-T
(R=(S=T),(R=95FR=T)
(R=(S=T)F(R=S)=>(R=T)
F(R=(5=T)={(R=S5)=(R=T))

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Frege’s theorem

(R:(S:T)):((R:S):(R: T))

Inference rules

LPEQ P TFP=Q
-P=Q r-Q

[=E]

Proof as a derivation tree

r-r TFR=(S=T) rFR r-R=S
r-Ss=T7 r-s
r={(R=S=T),(R=S),R}-T
(R=(S=T),(R=95FR=T)
R=ES=THFR=95)=(R=T) ‘/
FR=(S=>T)=((R=S)=(R=T))
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Summary on propositional logic

The model of propositional logic offers :
@ a language describing a family of objects inductively,
@ and a system for defining a subset of this family respecting local rules.

The difficulty lies in constructing a kind of proof (here a derivation tree)
for assessing the validity of a proposition.

In the following, we construct an equivalent model for a programming
language : the untyped A-calculus.

So let's start again ...
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Definition (Untyped A-calculus)

The untyped A-calculus is the set of expressions t, u, ... constructed from :

@ [Variable] an infinite set of abstract variables x,y, ..

@ [Abstraction] if ¢ is an expression and x is a variable,
then Ax.t is an expression,

o [Application] if t,u are two expressions, then (t u) is an expression.

Example : ’

((AMF.Ax.(f x) not) true) e @
OO

Python . (lambda f: lambda x: f(x))(__not__)(True) e °
Scheme : (((lambda (f) (lambda (x) (f x))) not) #t) () ()
OCaml : (fun f — fun x — f(x))(not)(true) o °
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Definition (Free / Bound variables)

A variable x in a A-expression u is said to be bound iff it appears as a
descendant of an abstraction node over the same variable x. Otherwise, it
is said to be free.

FV(u), the free variables of u : BV(u), the bound variables of u :
e FV(x) = {x} e BV(x) ={}
@ FV(uv) =FV(u)UFV(v) e BV(u v) = BV(u) UBV(v)
e FV(Ax.u) = FV(u)\{x} @ BV(Ax.u) = BV(u) U {x}
Examples

o FV((Af.Ax.(f x) not) true) = {not, true}
@ BV((Af.Ax.(f x) not) true) = {f,x}
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Definition (a-conversion)

Let t ::= Ax.u be an expression and y a variable. An a-conversion of t is
an expression \y.v where v is a copy of u where every free variable x in u

has been replaced by y.

acnvy_,y(t) is defined as :

o aCnVX_)y(AX.U) = )\y.rx_)y(v)

... where ry_,y(t) is defined as :

)] rx_)y(z) =Yy |f zZ = X,
= z otherwise
o rx_>y(>\Z-W) = )\Z.W |f zZ — X,

° acnvyoy(t) =t otherwise = Az.ryy(w) otherwise
0 rxoy(v w) = (rxoy(v) rxoy(w))
Examples
° acnVy_,y (Ax.x) = Ay.y

° acnvx_>y()\x.(()\x.x),x)) = Ayv.((Axx) y)
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Definition (a-conversion)

Let t ::= Ax.u be an expression and y a variable. An a-conversion of t is

an expression \y.v where v is a copy of u where every free variable x in u
has been replaced by y.

... where ry_,y(t) is defined as :
acnvy_,y(t) is defined as : ° noy(z) =yifz=x
= z otherwise
o aCnVX_>y(>\X.U) - )\y.rx_)y(V)

o rx_>y()\z.w) =Azwif z= X,
@ acnvyy(t) =t otherwise = Az.ry_y(w) otherwise

0 xoy(v w) = (roy(v) roy(w))

@ Barendregt convention : give distinct names to distinct bound variables.

@ The M-expressions can be considered equivalent up to a-conversion.
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Definition (Substitution)

Let t,u be A-expressions and x a variable. To substitute x by u into t,
noted [x — u]t, consists in replacing every free occurrence of x in t by a
copy of u.

[x — u]t is defined as :

@ [x—u z =uifz=x, zotherwise

(] [xi—>u] (v,w) = ([xi—)u]v,[xl—)u]w)

("] [xl—)u] Az.w :/\z.[xl—)u]w ifz;ﬁx and ngV(u),
Az.w otherwise.

Example

[x — biiip] (()\z.(xz)) y> = ()\z.(biiip,z)),y
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Definition (/-reduction)

A redex in a A-expression t is a sub-expression of the form ((Ax.v) w).
Applying a J-reduction step from t to u, noted t —3 u, consists in finding
a redex sub-expression ((Ax.v) w) inside t and replacing it by [x > w]v.
t =g u is defined as :
] ()\x.v),w -8 [x — w]v
@ Function reduction :  (u w) =g (v w)
@ if u =g vthen e Parameter reduction : (w u) =3 (w v)
@ Body reduction : Ax.u =8 Ax.v

Example

()\z.()\x.x+1)(z+2)> (3+4) =5 ... op ((3+4)+2)+1
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Definition (-reduction)

A redex in a A-expression t is a sub-expression of the form ((Ax.v) w).
Applying a J-reduction step from t to u, noted t —3 u, consists in finding
a redex sub-expression ((Ax.v) w) inside t and replacing it by [x — w]v.
t =g u is defined as :
@ (Ax.v) w—pg [x —u]v
@ Function reduction :  (u w) =g (v w)
@ if u—pgvthen e Parameter reduction : (w u) =3 (w v)
@ Body reduction : Ax.u =3 Ax.v

@ An expression to which no -reduction step can be applied is said to
be in normal form.

@ The evaluation of a A-expression consists in applying 3-reductions as
long as it is possible.
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Properties of the \-calculus

The A-calculus endowed with the -reduction relation is a Turing-complete
computational model.

@ Church-Rosser theorem : the B-reduction relation is confluent.

@ There exist A-expressions for which the evaluation is infinite.

nt ;i= ()\x.(x x)) ()\x.(x x)) nt —gnt

@ Church undecidability theorem : the problem of determining whether
the evaluation of a A-expression is finite or not is undecidable.

Undecidability is at the heart of dealing with programming languages.
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Syntax Evaluation rules

— expressions ty =g t1
X variable (tlftz) —g (ti,tg)
Ax.t abstraction
(t t)  application t—pt
() —p (v t)
v ii= values
Ax.t abstraction value ()\X'tl’tz) —p [X s tz]tl

@ Values are particular expressions that need no more evaluation.

@ In this model, the values are exactly the expressions in normal form.
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Church encodings : booleans

Let us encode the classical boolean values as the following expressions :

true :::)\x.)\y.x
false = Ax.Ay.y

(these are the classical projection functions)

The booleans can now be manipulated with the following expressions :

if = Ab. At Ae.((b t) e)

or = AxAy.(((if x) true) y)
and = )\x.)\y.(((if x) y) false)
not = Ax.(((if x) false) true)

Example

or true false —p
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Church encodings : booleans

Let us encode the classical boolean values as the following expressions :

true :::)\x.)\y.x
false = Ax.Ay.y

(these are the classical projection functions)

The booleans can now be manipulated with the following expressions :

if = Ab. At Ae.((b t) e)

or = AxAy.(((if x) true) y)
and = )\x.)\y.(((if x) y) false)
not = Ax.(((if x) false) true)

Example

or true false —pg if true true false —p
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Church encodings : booleans

Let us encode the classical boolean values as the following expressions :

true :::)\x.)\y.x
false = Ax.Ay.y

(these are the classical projection functions)

The booleans can now be manipulated with the following expressions :

if = Ab. At Ae.((b t) e)

or = AxAy.(((if x) true) y)
and = )\x.)\y.(((if x) y) false)
not = Ax.(((if x) false) true)

Example

or true false —pg if true true false —p true true false —p
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Church encodings : booleans

Let us encode the classical boolean values as the following expressions :

true :::)\x.)\y.x
false = Ax.Ay.y

(these are the classical projection functions)
The booleans can now be manipulated with the following expressions :

if = Ab. At Ae.((b t) e)

or = AxAy.(((if x) true) y)
and = )\x.)\y.(((if x) y) false)
not = Ax.(((if x) false) true)

Example

or true false —pg if true true false —pg true true false —g true
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Church encodings : naturals

And the following expressions encode the natural numbers :

zero = Af.Ax.x f applied zero times
suce = AL AFAx(f ((i f) x)) f applied once to the result of (i f)

With the addition and multiplication functions defined as follows :
plus = Ai.Aj.((i succ) ((j succ) zero)) apply succ, first j times then i

times to zero
mult = Ai.Aj.((i (plus i)) zero) apply (plus i), j times to zero
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Example : derivation tree of a -reduction

In the A-calculus extended with the Church boolean values :

(if - true) -5 At. Xe.((true _t) e)

((if - true) false) —5 (At.Xe.((true false) e) . false) -5 Xe.((true _false) e)

(not _ true) —g (((if —true) false) true) —5 (Xe.((true false) e)_ true)

(true - false) -5 Ay.false

C =g ((true - false) - true) -5 (Ay.false true) —p false
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The untyped A-calculus is everything but practical :
@ lts evaluation rule is remarkably simple.

@ But the encodings are multiple and possibly overlapping.

Improvement idea

Extend the language with new expressions : true, succ, zero ...

Possible advantages : higher level of abstraction, custom constructs and

values in the language, specific evaluation rules . ..

But it becomes necessary to deal with expressions such as succ true.

(succ true) —B ()\i fx.(f ((1 f) x)) ()\u v.u)) —3 )\fx.(f f)
succ true 7

Let's do it anyway ...
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Extension of the \-calculus

Syntax Evaluation rules

T o= ooo expressions
true, false booleans
Zero, succ t naturals
if t then t else t ifthen-else
iszero t zero-equality
VY 6= ocoo values
true, false boolean value
nv numeric value
nv i= numeric values
zero zero value
Succ nv successor value

booleans & naturals

t, g t1

if t, then t; else t; —p
if t] then t, else t;

if true then t, else t; —g t,
if false then t, else t; =g t;

t =gt
iszero t —»p iszero t’

iszero zero —g true
iszero (succ t) —g false
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Example : derivation tree of a -reduction

Examples of evaluation in the A-calculus with booleans and integers :

iszero (succ zero) —3 false
(]
if (iszero (succ zero)) then zero else (succ zero) —»g if false then zero else (succ zero) — g succ zero
if false then zero else false —3 false
succ (if false then zero else false) —p succ false —g 77
Problem

This new language contains stuck expressions, that cannot be evaluated
further but are still not values, €.g succ true or if zero then true else false.

@ These expressions are the sign of an indecision in the evaluation relation.

@ They occur because most of the interesting functions are partial.
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Summary on the untyped A-calculus

Starting from now, we consider that the booleans and naturals are part of
the definition of the A-calculus.

@ The obtained language is close to a classical programming language
without side effects.

@ There exist stuck expressions that are neither values nor in normal form.

@ Stuck expressions are mostly unavoidable when extending the language.

In the following we shall endow this language with types that allow to
determine whether an expression is stuck or not without its full evaluation.
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From untyped to typed

Recall our general approach :

General tactics

@ Classify the expressions occurring inside a program into types,

@ Verify that the composition of these types into the program respects a
set of coherence rules.

In order to do this, we shall define a set of types and rules such that :
@ a type acts as an approximation of the evaluation of an expression;

@ a rule is associated to a syntactic construct of the language and
expresses how this construct evaluates with regard to types.

These types and rules shall define a type system.
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Definition (Types)

The set of types, noted Typ, is defined as :
@ Type variable : an infinite set of abstract type variables T, U, ...

e Function type : if T and U are types, then T— U is also a type.

@ In our setting, we add two constant types : Nat and Bool.
@ A type is concrete iff it contains only constant types as sub-expressions.

Example

(Nat— Nat)— (Bool— Bool
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Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t,, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

Assumption on t, Assumption on t, Assumption on t;
Assumption on if t; then t, else t;
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Example : the if-then-else construct

Consider an expression t; ::= if t; then t, else t; that should be checked.

An inference rule for the if construct should :
@ assume a series of properties on the types of t, t, and t;,
@ and deduce a property on the type of t.

Key : a type approximates the result of the evaluation of an expression.

if t; has type Bool t, has type T t; has the same type as t,
then if t; then t, else t; has type T
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@ An expression t is said to have type T € Typ, noted t : T.
This yields a typing, an association between an expression and a type.

@ An environment [ is a possibly empty sequence of typings.

Definition (Typing deduction)

To deduce a typing from I, noted ' = t : T, consists in building a
derivation tree using ' as a set of axioms and a finite set of typing rules,
whose root asserts that t : T.

@ An expression t is said to be typable if it is possible to deduce a
typing T for t starting from the empty environment.

@ As a consequence, the expression t : T is said to be (well)-typed.
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Example : the if-then-else construct

For the if-then-else construct t; ::= if t; then t, else ts.

Suppose that in an environment I :
@ one can prove that t, : Bool,
@ one can prove that t, : T for a particular T,
@ one can prove that t; : T,

Then we deduce that t;, : T.

I+ t; : Bool MEt,:T MNEt3:T
NFif t; then t, else t3: T
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-t Mt
M (t t2)
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
Me(t; t2): U
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+¢:T—U M-t T
M= (t; t): U

For the abstraction construct t,,, ::= Ax.t; in an environment .

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
M Ax.ty
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
r, X |_ tl
M Ax.ty
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Example : application and abstraction

For the application construct t,,, ::= (t; t,) in an environment I

M-+t :T—U M-t T

M= (t; t): U
For the abstraction construct t,,, ::= Ax.t; in an environment .
Mx:TkHFt U

M= Ax.t;: T—=U
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What about the typed abstraction ?

Consider the typed abstraction construct : t.,, ::= Ax : T.t;
With nearly the same typing rule :

Mx:Tkt:U
FEXx:Tt;: T—>U

Annotating the code with types or not offers different perspectives :
e Explicit types : simpler (or even just decidable) verification.

@ Implicit types : no-hassle programming, principal types.

vector<int> list;
for (auto it = list.begin(); it != list.end(); it++)
cout << xit << endl; // in place of 'vector<int>::iterator’
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Example : derivation tree of a typing

D= AMA(F(F %)) :
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Example : derivation tree of a typing

{f: FE M (F (F x)):
D= AMA(F(F %)) :
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Example : derivation tree of a typing

Mo={f: oxo PE(F(Fx):
{f: FE A (F (f x)):
D= AMA(F(F %)) :
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Example : derivation tree of a typing

Me=f: e (f x):

Moe={f: oxo FE(F(Fx):
{f: FE M (F (F x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f el

Mef: ME(f x):

Mo={f: oxo FE(F(Fx):
{f: FE A (F (f x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f: el FEf: Ex:
Mef: ME(f x):
ra={f: xR (F(FX):

{f: FE M (F (F x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f er X el
f el FEf: M-x:
Mef: ME(f x):
Ma={f: x:o PE(F(FX):
{f: FE M (F (f x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f el x:Natel
f: el =f: "= x: Nat
Mef: IE(f x) : Nat
Ma={f: ,x : Nat} F (f (f x)) : Nat
{f: FE M (F (f x)):

D= AMA(F(F %)) :
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Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
D= AMA(F(F %)) :
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Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f : Nat— Nat} F Ax.(f (f x)) : Nat— Nat
@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat
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Example : derivation tree of a typing

f:Nat— Nate Tl x:Natel
f:Nat— Nate Tl I+ f: Nat— Nat I x: Nat
I f: Nat— Nat IE(f x) : Nat

= {f: Nat— Nat,x : Nat} F (f (f x)) : Nat
{f: Nat— Nat} F Ax.(f (f x)) : Nat— Nat /

@ = M Ax(f (f x)) : (Nat— Nat)— Nat— Nat
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The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t Tgr [VAR]

Jimse U TEx:T  TEToU oy
x:Thu:U TR =) b
TR

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



The simply-typed A-calculus or A, is defined as the set of the typable
A-expressions in the Typ family of types with the following typing rules :

t: T e I [VAR]
Jirresl TEx:T  TEEToU |y
Mo The:U o FE(fFx):U
N Axu:T—U
Comparison with the rules in propositional logic :
MPEQ kP TFP=Q
prp N Hesg = T Q e
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Typing rules for booleans and naturals

r|_t1

[+ true
[+ false

rl_tz I_I_t3

IF
[ if t; then t» else t3 [1e]

[+ zero

M-t
[ iszero t

[15z]

M-t
[ succ t

[suc]
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Typing rules for booleans and naturals

r|_t1

[+ true : Bool
I - false : Bool

rl_tz I_I_t3

IF
[ if t; then t» else t3 [1e]

[+ zero

[t
[ iszero t

[15z]

M-t
[ succ t

[suc]
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Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T

e T [1F]

["F if t; then t> else t3: T

[+ zero
[t
[ iszero t e
M-t
[ succ t 2]
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Typing rules for booleans and naturals

[ true : Bool
I - false : Bool
I+t : Bool M-t6:T I'I—t3:T[IF]
MEif t; then tp else t3 : T
[ F zero : Nat
Mt
1SZ
[ iszero t B
M=t
SUC
[F succ t [su]
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Typing rules for booleans and naturals

It : Bool

[+ true : Bool
I - false : Bool
FlE6:T rl—t3:T[IF]
["F if t; then t> else t3: T
[+ zero : Nat
- t: Nat
I+ iszero t : Bool i
M-t
[ succ t 2]
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Typing rules for booleans and naturals

[+ true : Bool
I - false : Bool

It : Bool Fl6%:T Fl65:T

["F if t; then t> else t3: T
[+ zero : Nat

- t: Nat
I+ iszero t : Bool

[15z]

[ t:Nat

[+ succ t : Nat [

[17]
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Properties of the simply typed \-calculus (1)

Theorem (Strong normalization) :

In A\_,, every expression reduces to a value in a finite number of steps.

@ It is an example of programming language / model of computation
where termination is decidable.

@ Hence it is incomplete, and cannot express some computable functions.
(restricted to the Church naturals, it can only compute extended polynomials)

@ PCF defined as \_, extended with recursion and a type for naturals is
a Turing-complete language.
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Properties of the simply typed \-calculus (2)

The type system of \_, is coherent with regard to 3-reduction :

Theorem (Type preservation) :

If t : T is typable, and t =5 u, then u: T is typable.

Theorem (Progress) :

| G

If t : T is typable, then either t is a value or it can be 3-reduced further.

\

Definition (Type safety)

A programming language possessing a type system with the preservation
and progress properties is said to be type-safe.
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What is the manifestation of type-safety in classic programming languages?

char x = 12345; // Char int a = INT_MIN;

void xpx = &x; // v int b = -1;

int xpy = px; // v return a/b;

int y = xpy; //Int // — Runtime failure
Non-preservation Non-progress
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Types as approximations

Values of a given type are composable and interchangeable.

Substitution lemma

Given an expression t : T containing a sub-expression x : S, then x can be
substituted to any expression s of type S without affecting the type of t.

Mx:SkEt:T M=s:S
Mex—=sle: T
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Not every expression is typable

Limits of type systems : Incompleteness

There exist \-expressions that are not typable in A_,.

Example

The expression nt ::= Ax.(x x) is not typable in A_;.

Sketch of proof :
@ If nt were typable, x would have a type T.
@ Since x appears on the left of an application, T = U— V.
@ But x also appears on the right of the same application, hence T = U.
@ There is no type in Typ such that U=U—V.
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Conservativeness of typing

Limits of type systems : Conservativeness

A type system is in general conservative : there exist expressions in \_,
that are not typable even though they evaluate safely.

@ Simple programs mixing different types of values :

let pi = fun b — if b then 3.14 else "Pie";;
if (pi true > 3.) then print_string (pi false);;

@ The fixed-point combinator (also called the Y-combinator) :
Y= )\f.(/\x.f,(x,x)),()\x.f’,(x,x))

... that can be used to encode recursion into the language.
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Partial functions

Limits of type systems : Liberalness

A type system is in general liberal : it cannot discriminate all the stuck
expressions of a programming language with simple arithmetic.

Consider the addition of a predecessor function to A_, :

pred succ t =g t

- t: Nat
[+ pred t : Nat

t—pgt’ [PRE]

pred t -8 pred t’

The expression pred zero is well-typed and yet stuck. Possible solutions :
@ either consider that the evaluation can progress (on floats, return inf)

@ or add a mechanism that redirects the evaluation (e.g exceptions).
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Designing a language with types

1. Define a programming language as the set of expressions of a grammar.
2. Define an operational semantics that performs a computation.

3. Select a set of values that are the results of the evaluation.

Usually, the evaluation function cannot be meaningful on the complete
language : some expressions remain stuck.

4. Set typing rules and restrict the language to well-typed expressions.

Type-safety ensures every computation to be either infinite or yield a value.
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Example : handling state

Syntax and Types

t = - expressions
() unit
ref t reference Vv Ii= . values
It dereference O unit
g location E location
t :=t assignment
t 5 t sequence

@ The locations are the internal representations of references, i.e the
result of the computation of an expression ref t.

@ The associations between locations and values are saved into a store.
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Example : handling state

@ A store p is a dictionary mapping locations to values :
=Ly = vy, =,

@ The store acts as a context and is modified during the evaluation.

Evaluation rules

¢ & dom(p) p [t=v]u
7 =V L:i=v—=g O
ref v—p 14
u W w !
/J/(ﬁ) =y ty —>[-} Vi to —>/3 V,
T W
W —g v ti;ta =g v,
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Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
T:= ... MEref t
unit type
reference type r |_ r
E1r
Mer Mt
Mlr:=t
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Example : handling state

Types Typing rules

s M-t
r|—s;t
-t
TE= oo [ reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t
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Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
-t
TE= oo [ reft
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t
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Example : handling state

Types Typing rules

s Unit M=t:T
MNEs;t: T
M=¢:T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type r |_ r
E1r
MNe=r M-t
MN=r:=t

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : handling state

Types Typing rules

[+ s:Unit M=t T
MNes;t: T

M=t:T
Tu= ... [ F ref t : Ref[T]
Unit  unit type
Ref[T] reference type [ r: Ref[T]

Mr Mt
Mlr:=t
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Example : handling state

Types Typing rules

[+ s:Unit M=t T

MN-s;e: T
M=t T
TE= oo ['F ref t : Ref[T]
Unlt unit type
Ref[T] reference type Ner: Ref[T]
M=t T

I'F r: Ref[T] M=t T
M=r:=t:Unit
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Example : algebraic datatypes

Definition (Algebraic Datatype)

An algebraic datatype is a type associated to a set of values defined by
a regular tree grammar.

Example : lists containing only integers
NatList — Nil | Cons(Nat,NatList)

Nil is a terminal of arity 0, Cons is a terminal of arity 2.

In order to introduce such a datatype into the language, it is necessary to :
@ add a way to construct the values,

@ and another to deconstruct them.
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Example : algebraic datatypes

@ Construction : associate to each terminal a keyword acting as a
function with the same arity :

Nil (+ Nil is a constant )
Cons(2, Nil) (* Cons takes 2 arguments x)
Cons(1, Cons(2, Cons(3, Nil))) (* their composition yields complex lists x)

@ Deconstruction / Pattern-matching : associate to each non-terminal a
mechanism to select its associated production rules :

let length 1 = case 1 of (* selection depending on 1 being )
| Nil — 0 (* either Nil x)
| Cons(x, xs) — 1 + length xs (% or a Cons with two arguments *)
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Example : algebraic datatypes

Syntax and Types

t =
Nil
Cons(t,t)
Nil —t
case t of
Cons(x,y)—t

expressions
nil

cons

case

Note that x and y in the case-expression are special
variable names that cannot be modified in this example.

= .. values

Nil nil

Cons(v,V) cons

NatList list type
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Example : algebraic datatypes

Evaluation Rules

Cons(ty,t,) —B Cons(ti,ts)

Cons(v,ty) —8 Cons(v,t})

case Cons(vy,Vs) of [

case t; of —rp case tj of
Cons(x,y)—ts Cons(x,y)—t3

) Nil — —ty
case Nil of —B t

Cons(x,y)—t,

Nil  —t,
Cons(x,y)—t,

] -3 [x = Vi,y vz]tz
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Example : algebraic datatypes

Typing Rules

rl—casetof[

Cons(x,y)—t,

[ Nil
M-t Mt
[ F Cons(ty,ty)
M=t M=t I, x ,Y I~ &
Nil  —t,

|
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Example : algebraic datatypes

Typing Rules

M=t

" = Nil : NatList

M=ty MEt,
[ Cons(ty,ts)
M-t I, x

)

y Ft,

rl—casetof[

Nil

—t;

Cons(x,y)—t,

|
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Example : algebraic datatypes

Typing Rules

" = Nil : NatList
M t; : Nat MEt,

: NatList

M-t

"+ cons(ty,t,) : NatList

Mt I, x

)Y |_t2

Nil
rl—casetof[ !

—t,
Cons(x,y)—t,
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Example : algebraic datatypes

Typing Rules

" = Nil : NatList

M t; : Nat I t, : NatList
"+ cons(ty,t,) : NatList

[+t : NatList Mt T I,x: Nat,y: NatList - t, : T
Nil =ty |
Cons(x,y)—t,

rl—casetof[
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Summary on the simply-typed lambda-calculus

We showed how to endow a language with a type system and how to
perform verifications at a syntactic level.
@ Type systems and languages are modular and can be extended easily;

@ Type safety is a key property for a typed language, ensuring stability
properties of programs respecting well-defined bounds ;

@ Nevertheless, type systems are by essence both conservative and
liberal in their verifications.

Next, we consider the different decision problems for typed expressions.
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Type checking and inference

Generally the main problems with regard to typing are :
@ Typability : for an expression t, is there a type T and a derivation
tree proving that t : T 7

@ Type checking : given an expression t, a type T and an environment
typing the variables of t (free or bounded), build a derivation tree
which proves t : T or find an inconsistency;

@ Type inference : for a typable expression t, compute a type T such
that there exists a derivation tree which proves t : T.

In order to solve these problems, we shall :
@ derive a system of equations called constraints from the expression ;

@ compute a solution to this system if any, or prove that there is none.
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Definition (Substitution)

A substitution o is an application from type variables to types.
It can be extended as a function from types to types.

Example

Consider the substitution o ::= {X < (Y—Y),Y < Nat}. Then :
e o(X)=Y—=Y, o(Y) = Nat
@ o(Y— Bool) = Nat— Bool
@ 0o 0(X) = Nat— Nat

@ Not very different from the substitutions defined for expressions.

@ Cycles in substutions should be handled carefully.
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Definition (Type constraints)

A constraint is an equation of the form S = T where S, T € Typ.
A constraint set C is a finite set of constraints.

Definition (Unification)

The substitution o is said to unify C iff for all equation S = T in C, oS
and oT are syntactically equal.
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Example : type checking (1)

[ if b then (f zero) else (f true) ]
b : B
: F
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Example : type checking (1)

if b then (f zero) else (f true)

b : B
f :F
B = Bool
F=U=>V

Type Systems and Programming RS
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Example : type checking (1)

if b then (f zero) else (f true)

b : B

f :F

B = Bool
F=U=V
U = Bool
U = Nat

Type Systems and Programming RS
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Example : type checking (1)

[ if b then (f zero) else (f true) ]
b : B
f:F
B = Bool
F=U=>V
U = Bool
U = Nat

= Type error : Bool used where Nat expected.

Type Systems and Programming RS
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Example : type checking (2)

[ if b then (f,zero) else (f,succ zero) ]
b : B
- F
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f:F
B = Bool
F=U=V
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained
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Example : type checking (2)

[ if b then (f zero) else (f succ zero) ]
b : B
f :F
B = Bool
F=U=>V
U = Nat

V is unconstrained

Type checks : the following substitution unifies the constraints :

{B — Bool, F — (U—V),U — Nat}
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Definition (Constrained typing)

To deduce a constrained typing '+t : T | C means that t has type T
under the assumptions in [, whenever the constraints in C are satisfied.

t: Terl
M=+ T {}

[vaRr]

T17T2 fl’eSh r,X 5 T1 l_ u T2 | C Cf::: CU {U = T1_> Tz}
M Xxu:U | Cr

[aBs]

Mo T, |G NEu:T, | Co Cri=CruCou {T, =T,— U}
rl—(t,u):U|Cf

[aPP]
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Example : deduction of a typing

GEMM(F(FXx):T
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Example : deduction of a typing

{f: T} EA(F (F x)): T,
GEMM(F(Fx):T
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Example : deduction of a typing

Fo={f:Ty,x: Tt E(F(Fx)): T,
{f: T} EA(F (F x): T,
GEMMF(Fx):T
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Example : deduction of a typing

M- T, [ (Fx): T

Fo={f:Ty,x:TstE(F (Fx): T,

{f: T} EA(F (F x): T,

GEMM(F(Fx):T
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Example : deduction of a typing

f:T,el
MEf:Ts F=(fx):Te
Fo={f:Ty,x:TsrE(F (Fx)): T,
{fF T} EAx(F (fx): T,
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,erl F=f:7T, Ex:Tg
MEf:Ts F=(fx):Te
Fo={f:Ty,x: Tt E(F (Fx): T,
{f T} EAx(f (fx)): T,
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,erl x: 1€l
f:T,eTl Fr=f:T, MNEx: T
M=f:Ts FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T, el x: T3l
f:T,erl FE=f:T, MNEx:Tg
rl—f:Tsf{TI:Ts} rl—(f,x):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} MNEx:Tg
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,

{f: T} EA(F (F x)): T,

FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FE(fFx):Te

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T
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Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

Fo={f:Ty,x: Tt E(F (Fx): T,
{f: T} EA(F (F x)): T,
FEMM(F(Fx):T
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Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{F:TiEA(F(Fx)):T,
FEMM(F(Fx):T
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Example : deduction of a typing

fZTIEF X:T3€r
‘F:Tler rl_f:T7|{T1=T7} r|_X:T8|{T3=T8}
FEf:Ts | {ri=7s} FTEEx):Te [ { Tr=Tom e}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} H )\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMM(F(Fx):T
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Example : deduction of a typing

f:T,€el x:Tz€el
f:T,erl Free: T, | {ra=7-} FEx:Tg | {ts=Ts}
FEf:Ts | {ra=Ts} FTE(FX):Te| { . Tr=TemTe}

= {f Ty, x T3} F (f (f x)) 1T, | {...T5:T5—>T4}
{f : Tl} F )\x.(f (f x)) 0T, | {...TZ:T3~> T4}
FEMME(FX):T|{. T=TinT2}

List of constraints :

Tl = T57T1 = T77T3 = T87
T7 == T3_> T67T5 = T6_> T47
T2 — T3_> T4,T - T1_> T2
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Example : resolution of a list of constraints

Tl = T57T1 = T77T3 = T87
T7 - T8_> T67T5 == T6_> T47
T2 — T3_> T4,T - T1_> T2

Deduction of the constraints :
e T, =T;,=T,
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Example : resolution of a list of constraints

T1 = T5,T1 = T77T3 = T87
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :
e T, =T;,=T,
o T,=T,
0 Tg—=Teg=Te—T,
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Example : resolution of a list of constraints

To=TeTi=TrTa=Te,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,
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Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Too Te, Ts = Tes Ta,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

o T,=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,
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Example : resolution of a list of constraints

T,=Ts, T, =T, T3 =Tg,
T, =Tg—=Te, Ts =Te— Ty,
T,=T;—-T,, T=T,—T,
Deduction of the constraints :

e T, =T;,=T,

0o T;=T,

0 Tg—=Teg=Te—T,

0T, =Tg=Ts=T;,

e T=T,->T,=(T,—>T,)—>T,—T,

)\f.)\x.(f (f X)) (T4_> T4)_> T4_> T4
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Definition (Unification algorithm)

unify(C) takes a list of constraints and returns a substitution :
@ unify({}) = id the identity on Typ;
e if C::={S=T}UC then:
e if S =T syntactically, return unify(C’)

o if Sis a variable T is a type expression,
if S €T, fail, otherwise return unify([S — T]C') o [S — T],

@ proceed symetrically if S is a type expression and T is a variable

e ifS= 51—) Sg and T = T1—>T2,
then return unif‘y(C’ U {Sl = T]_, 52 = T2})

@ otherwise fail.
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Principal types

Theorem (Principal types) :

Given a constraint set C for an expression e : T, the unification algorithm
returns a substitution o that unifies all the constraints.

Moreover, o is the most general solution in the following sense : every
unifier 7 of C can be decomposed as 7 = v o 0.

@ o is called the most general unifier (or mgu) of the set C.

@ o(T) yields a type for e that is called the principal type of e.
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Summary on type checking and inference

In this context, both problems of type checking and type inference are
reduced to a single constraint solving problem.

@ The description of languages and type systems by sequents is
modular and extensible;

@ The algorithms for checking and inference are effective (quadratic
complexity in general) for \_, ;

@ The sequent description and the algorithms are tightly linked,
involving the same inductive approach.

Other algorithms may prevail for different type systems, in particular for
languages with explicit type annotations.
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There is a strong relation between type systems and logics :

Curry-Howard correspondence

Given a derivation tree proving I = P in the propositional calculus, one
can construct a well-typed expression e and a derivation tree [ - e : P in
the simply-typed A-calculus, and conversely.

types < theorems
expressions <  proofs
From this seminal idea stemmed numerous developments in proof theory :
@ de Bruijn's Automath (1967),
@ Martin-L6f's intuitionistic type theory (1972),
@ Milner's LCF (1972) = HOL (1988) and Isabelle (1986),
@ and Huet and Coquand's calculus of constructions (1988) = Coq

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



General tactics

Associate a typed A-calculus and a logic system.

Constructs in logic are associated to constructs in the calculus :

@ The proposition A = B is associated to the function type A— B.
“Given an expression/proof of A, | can derive an expression/proof of B"

@ The proposition AV B is associated to a sum type A®B.
“I contain either an expression/proof of A, or an expression/proof of B”

@ The proposition A A B is associated to a pair type A®B.
“I contain both an expression/proof of A, and an expression/proof of B

And the expressivity of the logic and of the calculus are intertwined.

This is called the Brouwer-Heyting-Kolmogorov interpretation for intui-
tionistic logic (introduced between 1908 and the 1930’s).
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Summary on the simply-typed \-calculus

Up until now, the framework we developed around \_, contains :

@ A language containing functions, integers and booleans, that can be
easily extended (cf. references and algebraic data types),

@ A family of types Typ sufficiently rich to accomodate for all these
constructs,

@ A framework for type checking and inference within the language.

More importantly, this framework boasts type-safety : a type is always an
approximation of an expression and remains invariant through evaluation.
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Limits of the simply-typed A-calculus

In some sense, this remains unsatisfactory. Take the following expression :

fst := Ax.Ay.x : X—=Y—= X

It is sufficiently generic to be reused in different computations :
@ fst true zero
@ fst (succ zero) false

Yet it is impossible in A_, to use both applications in the same program,
because it would yield the following contradictory set of constraints :

{X = Bool, X = Nat,Y = Bool, Y = Nat}
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Let-polymorphism

What we would really like is a quantification on the free type variables :
fst i= Ax. Ay.x 1 VX, VY, X=>Y—= X

Intuitively, this just consists in separating the different applications of fst,
each time replacing the quantified variables by fresh type variables.

let fst = AX.AY.X in if b then (fst zero true) else (fst true true)
—— ~ ~
VX, VY, X=Y—=X Xi1=Nat,Y;=Bool X2=Bool,Y>=Bool

This typing process is called the let-polymorphism.
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Hindley-Milner type system

1. Extend the type family with type schemes.

Type scheme : if X; ... X, are type variables and T in Typ,
then VX;...X,, T is a type scheme.

2. Introduce the let-in mechanism for the construction of type schemes,
[T I, x : generalize(T,) Ft, : T,
rl_letx=t1 int2:T2
3. Allow the application of a “quantified” expression at different places
involving potentially different types.
x:VX1... X, Terl
MEx:[Xy—= Yo, X, = YT
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Hindley-Milner type system

The result is the Hindley-Milner type system.
@ Used in OCaml and the other languages from the ML family.
@ It's an example of a language with an inferred polymorphism.

let fst x y = x;; (xvalfst:'a— 'b— ‘a= <fun>x)

@ A polymorphic function may then be reused in different contexts.

let fst x y = x in (+ fst : VX, VY, X=>Y—=X %)
fst (1, true) + (* X=Nat,Y = Bool )
fst (2, "true”));; (* X = Nat, Y = String *)
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What can be learned from the H-M type system

o Different type systems entail different families of types, with different
sets of properties (ex. : with or without type schemes);

@ In some systems, the types can be polymorphic, and represent sets of
concrete types :

VX, VY, XY= X = {X—) Y— X, for X,Y € Typ}

@ The correspondence between type systems and logics steers the kind
of properties we can expect from types (ex : the V quantifiers).

In the following, we explore further the concept of polymorphism.
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Polymorphism

Polymorphism

An expression in a programming language is said to be polymorphic
whenever it may be typed with multiply different types.

Examples

fst : Nat— Bool— Nat or Bool— Nat— Bool or ...

plus : Int— Int— Int or Float— Float— Float or ...

@ Applies to functions, but also to non-functional values.

@ Polymorphism is a natural property aimed at genericity / code reuse

“Write code once, use it anywhere!.”

1. Type conditions may apply.
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Considerations on types

General idea (Types as sets)

A type represents a set of values.

Definition (Set of values)

The set of values associated to a type T, noted vals(T), is the set of
values of the language that can be typed by T.
Equivalently, e € vals (T) < e: T.

| '
\

Definition (Subtype)

The type T is said to a subtype of the type U, noted T<: U, if and only
if vals (T) C vals (V).

\

\
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@ The “types as sets” proposition leads to the following kind of picture :

\ 1 \ \
[ 1 ! ]
I 1 ! 1
[ 1 ! )
[ 1 ! )
] \ s

1
:
1
| true, false

1,2,3, o AXxH] Ax.not(x)
S 7~ > \ \\, //
__________ \\ LN -
\\\ ,’, \\\ //’
\ ,' \ '

1 1 1
1 A 1 ]
SRS
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@ The “types as sets” proposition leads to the following kind of picture :

Nat Bool Nat— Nat Bool— Bool

1,2,3,... | true, false Ax.x+1 Ax.not(x)

@ The identity function id ::= Ax.x does not have a satisfactory type in \_,.
@ An extension of \_, is the addition of a new type T;q for id such that :

vals (T;q) = vals (Nat— Nat) vals (Bool— Bool)

@ In this type system, id : T;gy may be applied either to Nat or Bool values.
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Properties of subtyping

Definition (Subsumption rule)

Whenever S <: T, every expression typable by S is also typable by T.

MFt:S S<T

MF=¢: T

[suB|

@ Extended Substitution Lemma

Consider an expression t : T containing a free variable x : S.
Then x can be substituted to any expression s of type S'<:S without

.

affecting the type of t.

Mx:SkEt:T M-s:9

S’ <:S

Mex—s]e: T
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General idea

Create type systems expressing more sophisticated families of types.

Some of these families are well-identified [CW85] :

Parametric :  define sets of values with the help of universally
quantified type parameters (ex : VX, X— X— X)
Inclusion : define sets of values that are related by inclusion or

refinement (ex : Object ~ Number ~~ Integer)
Overloading :  combine sets of values in an adhoc manner, without
a particular structure (ex : Nat & Bool)

... while other families do not fit well in that classification
(cf. for example the Haskell type classes or OCaml open object types)
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Parametric polymorphism (1)

Consider the following extension to our Typ family :

Definition (Parametric types)

Given a type T containing the variable X, then VX, T is also a type, called
a parametric or universal type.

The variable X in VX, T is said to be bound. Unbound variables are free.
A type scheme is a parametric type without free variables.

Example

A type for the first projection fst ::= Ax.\y.x is VX, VY, X—Y— X
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Parametric polymorphism (2)

Parametric types may be considered as functions and be applied :

Definition (Parametric expression)

Given an expression t : T, then AX.t is also an expression, called a para-

metric expression with type VX, T.
A parametric expression e : VX, T can be applied to a type U, noted e[U],
which consists in substituting X by U inside T.

This extension introduces a form of computation at the type level :

([/\X./\Y.(/\x X (Ay Y.x))} [Int][BooI]) 1 true
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Syntax and types Typing rules
t = Ce . expressions t — B t’
)\X.t type abstraction t[T] _>B t? [T]
T e application
Tl oo soptce (AX.0)[U] =5 [X > U]t

v ii= boa values
Mr=t:T
AX.t type abstr. value e VX, =
T = D oo types o
VX’ T universal type r l_ | VX’ T

FFeU]: [X— UT

Notice the ressemblance with the untyped lambda-calculus
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This defines \» the polymorphic or 2"-order calculus, or also System F.

@ It was introduced independently by Girard (1972) and Reynolds (1974).
@ It possesses the following properties :

Theorem (Strong normalization) :

In \p, every expression reduces to a value in a finite number of steps.

@ It is also incomplete, and cannot express all computable functions.
(restricted to the Church naturals, it can only compute the functions definable
in 2"_order Peano arithmetic, among which the Ackermann function)

Theorem (Impossibility of type inference) :

Type inference in A2 (without annotations) is undecidable.
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Example :

Syntax

tii=... exprs
nil empty list

cons t t cons list

head t list head
tail t it tail
Vv ii= values
nil empty list
CONS V V cons list
T = types

 Lis[T]

list type

polymorphic lists

Evaluation rules

togt’

cons t u—gcons t’ u

t—}B t,

cons vt »zcons v t’

togt’
head t -4 head t’

t —B t,
tail t -4 tail t’

head(cons vy va) =5 Vi
tail(cons vy va) =4 Va

Typing rules

r+nil: List[T]

Fr-X:T r1: List[T]

r+cons x 1:List[T]

r1:List[T]
r-head 1:7

re 1. List[T]
retail 1:List[T]
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Compare the syntax of polymorphic lists in different languages :
@ in Scala :
abstract class List[+A] {
def map[BI(f: (A) = B): List[B] }
@ in Java:

\interface List<E> { E set(int index, E element); }

o in C#:

public interface IEnumerable<out T> {
IEnumerable<R> Select<S, R>(this IEnumerable<S> src, Func<S, R> f)

@ in C++ via iterators :

template<class InputIt, class Function>
Function for_each(InputIt first, InputIt last, Function fn);

@ in OCaml ("2 1ist) and in Haskell (ra1)

|val map : ("a — ’'b) — ’a list — ’b list
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Boehm-Berarducci encoding of lists

As a matter of fact, there exists a general technique to encode algebraic
types such as the lists in Ay, called the Boehm-Berarducci encoding :

List[T] := VX, (T=> X=>X)— X —X
cons nil

@ The empty list is the following value :

.n

nil 1= ')\X.)\c (T—=X=X).An: X

@ Consider x : T and xs : List[T]. The list beginning with x and ending
with xs is the following value :

cons X Xs Ii= ‘)\X.)\c S (T—X—=X).An: X|.c x (xs[X] ¢ n)
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Type substitution

Definition (Type substitution)

A type substitution o is a finite mapping from type variables to types.
We write [X; — T;] for the substitution mapping X, to T,.

The application of o to a type U = VX, ...VX,, T, noted oU consists
in substituting the free occurrences of X; inside T by T, simultaneously,
and then generalizing the type. Variables bound inside T are left invariant.

\ J

Examples

@ [X — Nat,Y  Bool] (VX Y, X— Y- X) = Nat— Bool— Nat
o [X—Z—Z)(VX, X=X) =(Z—Z)—»Z—Z
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Parametric subtyping

Lemma (Parametric subtyping) :

For all substitutions o and all types T, T <:oT.

List[Nat]— List[Nat] List[Bool]— List[Bool]
VT, List[T]— List[T] The set of values typed by Bool— Bool contains
the set of values typed by VT, T— T, which also
= (Ve (Bl Eieel contains those typed by VT, T.
e List[Bool]
VT, List[T]
Bool List[Nat]
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Principal types

What is the “best type” for a given expression ?

Definition (Principal type)

Given a typable expression e, the principal type of e is the maximum type
T for the subtype relation (when it exists) such that e : T.

@ Our inference algorithm infers types that are principal for the
Hindley-Milner type system.

@ The System F type system does not have principal types.

ty 1 (VX, X— X)— Nat

t :i= Af.if f(true) then f(1) else f(0)
t, : (WX, X— Bool)— Bool
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Implementations of the parametric polymorphism

To compile (parametric) polymorphic code ...

class HashTbl<Key, Val extends Object> {
HashTbl() { .. }
Val get(Key k) { .. }
Val put(Key k, Val v) { .. }

3
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Implementations of the parametric polymorphism

To compile (parametric) polymorphic code, two main strategies coexist :

@ Homogeneous translation : generate code where the generic data
has a uniform representation, independent of its real type.

class HashTbl<Key, Val extends Object> { class HashTbl {

HashTbl() { .. } HashTbl() { .. }

Val get(Key k) { .. } P Object get(Object k) { .. }

Val put(Key k, Val v) { .. } Object put(Object k, Object v) { }
} 3

Example : Java with type erasure.
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Implementations of the parametric polymorphism

To compile (parametric) polymorphic code, two main strategies coexist :

@ Heterogeneous translation : duplicate and tailor the generated code
for each possible concrete type effectively used.

class HashTbl_Int_String {
HashTbl_Int_String() { .. }
string get(int k) { .. }

class HashTbl<Key, Val extends Object> { string put(int k, string v) { 3}
HashTbl() { .. }
Val get(Key k) { .. } —<
Val put(Key k, Val v) { .. }

3 class HashTbl_Char_File {

HashTbl_Char_File() { .. }
File get(char k) { .. }
File put(char k, File v) { }}

Example : C++ via the preprocessor, Rust monomorphism.

The most general approach is a combination of both styles.
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Summary on the parametric polymorphism

@ The parametric polymorphism allows the definition of types as logic
formulas containing universally quantified variables.

VT, F[TI= () F[U]
UeTyp

@ Type substitution on these variables induces subtyping relations.
VT, F[T] <: F[U] where U concrete

@ For a polymorphic expression, the maximal type wrt subtyping is called
the principal type. Not all type systems possess maximal types.

@ The inference of parametric types is possible in the Hindley-Milner
type system, but undecidable in System F.
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Sometimes, a polymorphic type may be too generic.
Take the example of an equality function, with the following type :

VT, T— T— Bool

Yet not all values are comparable, for instance functional values.
It is natural to restrict the possible Ts to a family of types.

VT € Comparable, T— T— Bool

This is a form of constrained polymorphism, appearing as :
@ the ’’a equality types in SML, a subset of the types of the language,
@ the Eq a type class in Haskell, defined by a form of overloading,

@ the Comparable<T> interface in Java, with inclusion polymorphism.
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Constrained polymorphism example :

In OCaml :

equality

In Haskell :

let rec belongs x 1 = match 1 with
| [1] — false
| y::ys — (x=y) || (belongs x ys)

belongs x [] = False
belongs x (y:ys) = (x==y) ||
(belongs x ys)

val belongs : ’a—’a list—bool

belongs :: Eq t = t—[t]—Bool

belongs sin [cos] compiles, but
yields an exception at runtime.

(* Exception: Invalid_argument
"equal: functional value”. x)

D. Renault (ENSEIRB-Matmeca)
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The expression belongs sin [cos]
simply does not compile.

No instance for (Eq (a@ — a@))
arising from a use of "=="




Constrained polymorphism : numeric classes

Definition (Type class)

In Haskell, a type class is a set of concrete types sharing a common generic
interface. These concrete types are then instances of the type class.

Example :

class Eq a where instance Eq Int where
(==) :: a — a — Bool (==) i j = -- specific code
(/=) :: a - a — Bool (/=) 1 j = not (i == j)

@ A type class such as Eq a represents the following set of types :
Eq[T] ::={T € Typ, T “can be used with" ==
@ It is used as a universal type variable in the type of belongs :
belongs : VT € Eq[T], T— List[T]— Bool
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The numeric types in Haskell inherit a structure from the type classes.

1 <> ==, /=

Num
[ —— \ 2 T \
' Fractional | ! Real Enum
- Nl - ~_ - succ, pred /‘
/:: ————— /11,77:: f*f*f\/\/
1 . l I v\‘ i !
.1 Floating | /1 RealFrac o Integral !
:: sin, cos N ’ ) ‘: div, mod :‘\
I I I
! ! oot it
I | [ I
I | I
H g I i 1
i ‘I: " IJ :‘ ‘:‘
I | . I
' Complex :,: Float Double |: Ratio :: \: Int Integer :\‘ Ord Eq
I |
- )
I

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming



The numeric types in Haskell inherit a structure from the type classes.

sin, cos

In the following, we investigate the inclusion relations of sets of values.
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Inclusion polymorphism

Inclusion polymorphism is based on the construction of sets of values
sharing relations of inclusion.

Object
Bool Number

Int Float

Whereas parametric polymorphism defines inclusions bottom-up
inclusions in this polymorphism are defined top-down.

For a better understanding of these relations, we introduce a new type.
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Record types

Definition (Record types)

Given a set {/;} of labels and a set {t;} of expressions of the same size n, a
record value is defined as the expression {h = t,,...,l, =t,}.

The pairs (I;, t;) are called the fields of the record.
The projection of r onto one of its fields (/;, t;), noted r+/;, evaluates to t;.
The type of r is the set of the types of its fields, noted {h : T,,..., [, : T,}.

Examples

@ {first = "Haskell”, last = "curry”} : {first : String, last : String}
o {hd =1,tl={hd =2,t/l ={}}} : {hd : Nat, t/ : {hd : Nat,t/: {}}}
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Syntax Evaluation rules

{l=Viticpa>l —p v

.. t—pgt’
tii= ... expressions ﬁ
t>l =g t’>
{l,‘ = ti}ie[l;n] record B
t+/ projection tj —)ﬁ t’j
S {..=t...}os{. . =ty...}
bo— o0oo values

{Ii = Vi}ie[l;n] record value
Typing Rules

foreach i, '+t : T,
[ {/, = t,-} : {I, : T,}

T = ... types
{li . Ti}ie[l;n] record type M {/’ — ti} : {II . T:}
MEtel: T,
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All-purpose records

Records are good examples of the saying “he who can do more, can do less".
Consider the following function :

half_size ;1= )\r.(rvsize/Z)
It can be happily applied to every record possessing a field size.
ry = {size = 2} half_size(rl) —p 1

ro i:= {size = 6, name = "Alonzo"} half_size(r,) —3 3
r3 ii= {size = 2, contents = Cons(1 ,Cons(Z,Nil))} half_size(r3) —8 1

A natural typing for this function is half_size : {size : Nat}— Nat.
Yet it is too restrictive : it only authorizes the first application. So what ?
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Inclusion subtyping

Lemma (Record subtyping) :

Let T={/;:T,} and T' = {m; : T';} be two record types.
o Width subtyping : if T D T as sets of pairs labels/types, then T <: T'.

o Depth subtyping :if T and T’ share exactly the same labels and
Vi, T,<:T';, then T<:T'.

Examples

e Width : {size : Nat, name : String} <: {size : Nat}
e Depth : if Int <: Number, then {size : Int} <: {size : Number}
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With the following definitions :
@ half_size ::= Ar.(r+size/2)
@ person ::= {size = 7, name = "Haskell"}

Let I ::= {half_size : {size : Nat}— Nat,person : {size : Nat, name : String}}

Then the expression (half_size person) is well-typed :

person € [
half_size € I I person:{size : Nat, name : String}
I half_size : {size : Nat}— Nat I person : {size : Nat}

I+ (half_size person) : Nat

In this case, the subtyping rules solve the “do-more, do-less” problem.
But what implications does this have on our sets of values?
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Existential types

Proposition

A record type is by nature an existential type.

All records having a field size of type Nat can be typed with {size : Nat}.

{size : Nat} = U {size : Nat}UT
T
IT.{size : Nat} U T

Example

half_size : (3T.{size : Nat} U T)— Nat
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Aside : upcast, downcast

Definition (Casting)

Casting (or ascription) consists in ascribing a particular type to an expres-
sion in an explicit manner. It has no effect on the value.
The expression v as T is a called a cast from v into the type T.

Mr-t:7?
vas T =gV TFtasT:T

@ A cast can be seen as an operation redefining the type of an expression.

o Casting into a supertype is also called an upcast. ret:s soT
Upcasts are implicit with the subsumption rule. r-tasT:T
@ Casting into a subtype is also called an downcast. ErvV:T

Downcasts are usually checked dynamically. VasTopV
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Consider the following function :

cut_in_half ::= )\r.{rvsize := (half_size (r+size)); r}
It basically takes a record with a size field and returns a record where this

field has been modified and the others left untouched.

What is a good type for cut_in_half?
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Consider the following function :

cut_in_half ::= )\r.{rvsize := (half_size (r+size)); r}

It basically takes a record with a size field and returns a record where this
field has been modified and the others left untouched.

What is a good type for cut_in_half?
@ cut_in_half : VT, T— T7?
Too generic, no way of ensuring the existence of the size field.

@ cut_in_half : {size : Ref[Nat]}— {size : Ref[Nat]}?
Too restrictive, the return type constrains the result.
Same behavior as the clone method in Java, requiring downcasts.
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Consider the following function :

cut_in_half :1= )\r.{rvsize := (half_size (r»size)); r}
It basically takes a record with a size field and returns a record where this
field has been modified and the others left untouched.

What is a good type for cut_in_half?

What about : VT, ({size : Nat} U T)—> ({size : Nat} U T> v

Or is it an existential type ?

(ET.{sizs . Nat} U T§—> gHU.{size . Nat} U u) X

3T. ({size SNat}UT {size : Nat} U T) )(

—
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Aside on existentials and universals

Beware : VT, {size : Nat} UT # 3T.{size : Nat} U T

A universal type T can substitute for all possible types.
An existential type T can substitute for only one.

Nevertheless, there are equivalences :

Equivalence theorem

(Hx.P(x)) = Q & Vx. (P(x) = Q)

Example
(EIT.{size : Nat} U T) — Nat = VT, ({size :Nat} UT— Nat)
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Naming the existential variables prompts for more precise types :

@ Existential types in PureScript :

cut_in_half :: forall b. { size :: Int | b } — { size :: Int | b }

@ Open types in OCaml :

cut_in_half : (<get_size : int; set_size : int — unit; ..> as ’a) — ’a

But in general, libraries contain few functions requiring such types.
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Existentials as an abstraction means

Definition (Abstract data type)

An abstract data type or ADT consists of :

@ a type variable T and a set of operation types acting on values of type T.

@ a concrete type S and an implementation of these operation types where the
variable T is substituted by S.

Akin to interfaces in Java or module signatures in ML.

interface Counter { class CImpl implements Counter {

private int val = 0;

CImpl(int in) { val = in; }

int get(); int get() { return val; }

Counter incr(); Counter incr() { return new CImpl(val+1); }

3 3

The existential type corresponds here to the “abstract” part of the ADT.
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Existentials as an abstraction means

Definition (Abstract data type)

An abstract data type or ADT consists of :

@ a type variable T and a set of operation types acting on values of type T.

@ a concrete type S and an implementation of these operation types where the
variable T is substituted by S.

Akin to interfaces in Java or module signatures in ML.

module type COUNTER = sig module C : COUNTER = struct
type counter type counter = int
val new_c : unit — counter let new_c () =0
val get : counter — int let get ¢ = ¢
val inc : counter — counter let incc =c + 1
end end

The existential type corresponds here to the “abstract” part of the ADT.
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Existentials vs Universals

o Existentials are items of abstraction.
Allowing multiple implementations,
Offering a precise protocol of exchange.

@ Universals are items of genericity.
Maximising code reuse,
With few knowledge on the values they manipulate.

In that, the combination of both polymorphisms is natural.

<T extends Comparable<T>> void sort(List<T> list)

VT, 3U.List{Comparable[T] U U]— Unit

3T.T
Comparable
List[Nat]
VT, List[T]

2 \\
VT, T
- v
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ITUTSU (T}

List[Bool] — List[Bool]
! List[Nat] — List[Nat]/
/ \ N

'
'

'

i {hd :Nat}  pO.{il : Unit — O}
'

'

'

. Int—1Int  Nat— Nat Bool — Bool VT.List[T] — List[T]

'

'

'

'

'

'

'

'

Nat 1O.{hd : Nat, ¢l : Unit — O}
Unit  Bool Int Nat — Int Ve @ ----------=======- VT.4O.{hd : T, tl : Unit — O}

YTUT U LozzmoT

List types
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Object types (1)

Objects can be modelled as records with access to self : they are recursive.

let (c:cpt) = let rec sel
V =
get =
set =
inc =
in self;;

f = {  (x Recursive definition x)
9;
(fun () — self.v);

(fun y — self.v < y);

(fun () — self.set (self.get() + 1)); }

In OCaml, classes are indeed identified to their recursive constructors :

val mu

method
end;;

class cpt = fun init — object (self)

table v:int = init

method get =v
method set d = v < d

inc () = self#tset (self#get + 1)

D. Renault (ENSEIRB-Matmeca)

Type Systems and Programming Apr. 9th 2025, v.1.5.1

112/169



Object types (2)

A class, representing a set of values, can be identified to a type.

Accordingly, these types are also recursive :

Object = fix(AT.{
equals : T— Bool,
clone : Unit— T

)

. where fix is a fixed-point operator.

This definition yields an infinite type represented by a rewriting rule.

Usually, this fixed-point is made invisible by nominal types :

Object == {
equals : Object— Bool,
clone : Unit— Object

}
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Summary on the inclusion polymorphism

@ The inclusion polymorphism allows the definition of types by refining
sets of values into more specific subsets.

@ These sets of values can be identified as logic formulas containing
existentially quantified variables.

ITF[TI = |J FY]
UeTyp

@ Subtyping relations with existential types promote abstraction by
masking concrete types :

F[U] <: 3T.F[T] where U concrete

@ Object types are at the same time existential and recursive types.
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Aside on Inheritance

Inheritance is a mechanism to derive new classes from old ones by :

(i) adding implementation for new methods
(i) and / or overriding implementations of old methods.

Consider a method m defined in Number and overriden in its subclasses.

Number class Number {mC..); } m(x : Number,...)
A
Int class Int extends Number { m(..); } m(x cnt, .. )
A
Nat class Nat extends Int {mC..); % m(x : Nat, .. )

The method m can be considered as a function whose definition is selected
depending on the value of its first parameter.
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Overloading

Overloading

Overloading is a mechanism allowing the use of a single identifier for the
representation of multiple values, distinguished according to their type.

Example : string concatenation in C++

string operator+ (const string& lhs, const string& rhs);
string operator+ (const string& lhs, const charx rhs);
string operator+ (const charx lhs, const string& rhs);
string operator+ (const string& lhs, char rhs);
string operator+ (char lhs, const string& rhs);

Example : default values in Haskell

class Default a where def :: a -- | The default value for this type
instance Default Int where def = @

instance Default [a] where def = []

instance (Default a, Default b) = Default (a, b) where def = (def, def)
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@ A manner to represent overloaded values consists in packing all the
implementations together in a single object.

def =0 [] packing @ and [] together
plus ::= plusiyt @D plusp it  packing addition and concatenation

@ For typing purposes, an overloaded value possesses the types of all the
values it merges :
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@ A manner to represent overloaded values consists in packing all the
implementations together in a single object.

def =0 [] packing @ and [] together
plus ::= plusiyt @D plusp it  packing addition and concatenation

@ For typing purposes, an overloaded value possesses the types of all the
values it merges : an intersection type.

def : Nat & VA, List[A]

@ It is not a union type : as a value, def has the possibility to be used
indifferently as a number and as a list (but only one at a time).

Consequence

If an identifier is overloaded, a correct implementation must be selected
every time the identifier is used (at compile-time or at runtime)
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Syntax Evaluation rules Typing rules

ti =gt MFt,:T, MFt:T,
LDt =t D, M-t et T,&T,
T 80= ooo expressions
t Dt merge t2_>,3t’2 FM=t:T,8&8T,
t1@t2_>ﬂt1@tyz MrM=t:T,
To= ... types
T&T intersec. type V1®V2_>'BV1 I-'_t:Tl &Tz
o FFe:T,

@ Caution : these rules break the type safety of the system.

@ At least, a mechanism must be introduced to ensure that the value used at
runtime is compatible with the type checked at compile-time.

Lemma (Intersection subtyping) :

If T, and T, are two different types, T, & T,<<T,and T, & T, < T,
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at compile-time (cf. Haskell),

I def : Bool & Nat I - def : Bool & Nat
I - def : Bool I - def : Nat
I = def as Bool : Bool o: Nat I = def as Nat : Nat
[+ if def as Bool then @ else def as Nat : Nat
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at runtime (cf. Python),
£ | def : Bool & Nat
def —g def as Bool
if def then 0 else def —3 if def as Bool then 0 else def —g - -
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Some tactics to select an overloaded method (1)

Let def ::= 1 @ true : Bool & Nat be an overloaded value.
How can we evaluate the expression : if def then @ else def ?

@ Decide the implementation used at compile-time (cf. Haskell),
[ def : Bool & Nat [k def : Bool & Nat
[ F def : Bool I F def : Nat

I - def as Bool : Bool o: Nat [ def as Nat : Nat
[+ if def as Bool then @ else def as Nat : Nat

Decide the implementation used at runtime (cf. Python),
€ F def : Bool & Nat
def —g def as Bool
if def then 0 else def —3 if def as Bool then 0 else def —g - -

@ ... or use a combination of both (cf. Java, C++).
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Static/ Late binding

The presence of subtyping allows the following technique :

Static / Late binding

To every object value is attached a type called its concrete type.
It may differ from the apparent type of this same value in an expression.

At the callpoint of an overloaded method, the appropriate code is selected.
In static binding, the selection depends on the apparent type.
In late binding, the selection depends on the concrete type.

Example

String s = new String("Concrete") // Apparent : String / Concrete : String
Object o = (Object) s; // Apparent : Object / Concrete : String
0.equals(s); // Which equals method is called ?
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.at++; super.set(v); 3}
void inc() { this.set(this.get() + 1); } 8 // inherit inc
9 int get_a() { return a; }
3 10 3
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;3};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.a++; super.set(v); 3}
void inc() { this.sel(this.get() + 1); } 8 // inherit inc
El int get_a() { return a; }
3} 10 3

Consider the call to set inside the inc method in Counter :

@ In early binding, this call is attached to the apparent type.
For an object of type CounterExt, the set method of Counter is used.
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Consider the following examples based on a Counter class :

class Counter { 1 class CounterExt extends Counter {
int v; // count calls to inc 2
3 int a; // count calls to set
4
public Counter(int v) { this.v = v; }; 5 public CounterExt(int v) { super(v); a = 0;3};
int get() { return v; } 6 // inherit get
void set(int v) { this.v = v; } 7 void set(int v) { this.a++; super.set(v); 3}
void inc() { this.sel(this.get() + 1); } 8 // inherit inc
El int get_a() { return a; }
3} 10 3

Consider the call to set inside the inc method in Counter :

@ In late binding, this call is attached to the concrete type.
For an object of type CounterExt, the set method of CounterExt is used.
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Summary on the overloading polymorphism
@ Overloading polymorphism allows the definition of values sharing multiply
different implementations :
ma={m :Ty,m:To..oym,:T,}

The types T; may not share a common structure.

@ Overloaded types may be modelized as finite intersection types.

T,aT,8 ... &Tn:ﬂT,-

@ In order to use this polymorphism, a selection of the correct
implementation for m is necessary, be it static or dynamic.

@ The late binding is an example of dynamic selection in the case of
overloaded types. It appears naturally in object-oriented programming.
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@ Simple lambda-calculus
© Polymorphism

© Subtyping
@ Variance
@ The contravariance curse
@ Principles for variance

o Proofs with types
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The subtyping test (1)

Rationale

@ A value can have multiple types, and the types share inclusion relations.
@ By definition, a value v : T can also be typed v : T’ whenever T <: T'.

Consequence :

@& Substitution Lemma

T <: T’ iff every value v : T can be used in a context where T’ is expected.

Subtyping test (example in Java)

Attempt to assign a value of type T into a variable of type T’ unchanged.

Integer one
Number super_one

1; Number pi

3.14;
one; // OK Double sub_pi

pi; // Type error
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The subtyping test (2)

Problem : implicit conversions

As a subtyping test, it has false positives, because many languages allow
implicit conversions of values.

Example in C

Initializing an int variable with a float value forces an implicit conversion :

int main(void) { % clang implicit.cpp -Wall -Wextra
. /1 implicit.cpp:4:11: warning: implicit conversion
int z = 3.14; // o from ’double’ to ’int’ changes value from 3.14 to 3
z+=2.92; /I mezs
prlntf(”%d\n” , Z) H } 1 warning generated.

@ The subtyping relation is supposed to be antisymmetric, but the
implicit conversions blur this property.

@ In this course, we consider subtyping without implicit conversions.
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Summary on the different kinds of polymorphisms

@ Each form of polymorphism defines new families of types, and these
families share subtyping relations.

@ The more families of types exist, the more complex the subtyping
relation between types becomes.

@ In this section, we explore some characteristics of this relation, and
examine some implications in terms of programming.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 126 /169



Recall the subtyping theorems established for each form of polymorphism :

») Lemma (Parametric subtyping) :

Let VT,..T,, U be a parametric type.
e Parametric subtyping : VT,..T,, U<[T, —» U,,..T, — U,]U.

») Lemma (Record subtyping) :

Let T={/;:T,} and T' = {m; : T';} be two record types.
e Width subtyping : if T D T’ as sets of pairs labels/types, then T <: T'.

@ Depth subtyping :if T and T’ share exactly the same labels and
Vi, T,<:T';, then T<:T'.

®) Lemma (Intersection subtyping) :

If T, and T, are two different types, T, & T, <:T; and T, & T, <: T,
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Where do subtyping relations come from ?

@ Some relations are structural, meaning that they are related to the
form of the underlying type families.

@ Some relations may be deduced as consequences of existing subty-
ping relations.

Given for instance :
o the List[-] type as a type function T — List[T],

@ two types Banana and Fruit such that Banana <: Fruit.

Can we deduce a subtyping relation between List[Banana] and List[Fruit] ?
?
For example : List[Banana] <: List[Fruit]

= In other words, is the List[-] function increasing on types?
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Variance

Definition (Covariance / Contravariance / Invariance)

Let f: Typ — Typ be a function on types.
o f is said to be covariant iff it is increasing with regard to <:

VT,U, T<U = f(T)<f(U)
o f is said to be contravariant iff it is decreasing with regard to <:
VT,U, T<U = f£(T):>f(U)
o If the images f(T) and f(U) are always incomparable when T # U,
f is said to be invariant.

Example

The type of the immutable lists List[-] can be considered to be covariant.
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@ The Java generics are invariant, the variance appearing in wildcards.

// "7 extends Number" refers to any subtype of Number
ArrayList<? extends Number> a = new ArraylList<Integer>();

o C+ support variance for generic interfaces, but the classes are invariant.

public interface IEnumerable<out T> { // "out T" indicates the covariance
public IEnumerable<T> Append<T> (IEnumerable<T> source, T elem); }

@ Scala supports variance for generic interfaces and classes.

class List[+A] { // "+A" indicates the covariance
def append[B >: AJ(x : B) : List[B] } // append is called "::" in Scala
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Function subtyping

Variance of the function type

The type T— U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit— Nat, set : Nat— Unit}

Could such a store be replaced with one of the following types?

o {get : Unit— Int,set : ..} where Int <: Nat
@ {get : Unit— Number,set : ..}  where Nat <: Number
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Function subtyping

Variance of the function type

The type T— U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit— Nat, set : Nat— Unit}

Could such a store be replaced with one of the following types?

o {get : Unit— Int,set : ..} where Int <: Nat v
@ {get : Unit— Number,set : ..}  where Nat <: Number X
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Function subtyping

Variance of the function type

The type T— U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit— Nat, set : Nat— Unit}

Could such a store be replaced with one of the following types?

o {get : ..,set : Int— Unit} where Int <: Nat
@ {get : ..,set : Number— Unit} where Nat <: Number
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Function subtyping

Variance of the function type

The type T— U can be considered as a function (on types) of T and U.
What kind of variance relations does it induce ?

Recall that subtyping can be thought of in terms of substitution.

Consider the following record type for storing Nat values :

S ::= {get : Unit— Nat, set : Nat— Unit}

Could such a store be replaced with one of the following types?

o {get : ..,set : Int— Unit} where Int <: Nat X
@ {get : ..,set : Number— Unit} where Nat <: Number v
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Lemma (Function subtyping) :

A function type is covariant in its result type and
contravariant in its parameter type.
If T,',,f < Tsup and U,',,f < Usupv then (Tsup_> U,‘,,f) <:(T,‘nf_> Usup)

Number Number

.
£ — can be replaced by g : —

D. Renault (ENSEIRB-Matmeca)




The contravariance curse

Subtyping is often used as a means to refine types (e.g. with inheritance).
But the variance rules somewhat hinder these forms of refinements.

@ Consider the example for a record type that compares numbers :
EqNumber ::= {val : Number, equal : Number— Bool}
@ Consider now inheriting from this with more precise internal numbers :

EqFloat ::= {val : Float, equal : Float— Bool}

Deceptive (but also disappointing) fact

EqFloat<: EQNumber
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class Point {

int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&

(other.y == y); 3}
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&
(super.equals(other)); }

3

static boolean isOrigin(Point p) { return p.equal(new ColPoint(@,0,0)); }

@ What happens when calling isorigin(new ColPoint(0,0,7)) ?
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class Point {
int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&
(other.y == y); 3}
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&
(super.equals(other)); }

3

static boolean isOrigin(Point p) { return p.equal(new ColPoint(@,0,0)); }

@ What happens when calling isorigin(new ColPoint(0,0,7)) ?
@ ColPoint.equal <: Point.equal because of the contravariance rule.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming _



class Point {
int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&
(other.y == y); 3}
}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&
(super.equals(other)); }

3

static boolean isOrigin(Point p) { return p.equal(new ColPoint(@,0,0)); }

@ What happens when calling isorigin(new ColPoint(@,0,7)) 7

@ ColPoint.equal «: Point.equal because of the contravariance rule.
@ equal is overloaded, it uses Points in isorigin and returns true.
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class Point {
int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&
(other.y ==y); }

}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

@ What happens if we suppose that ColPoint.equal <: Point.equal anyway ?
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class Point {
int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&
(other.y ==y); }

}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

@ What happens if we suppose that ColPoint.equal <: Point.equal anyway ?
@ the call isoriginBis(new ColPoint(e,0,7)) is well-typed,
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class Point {
int x, y;
Point(int _x, int _y) {x=_x;y=_y; }
boolean equal(Point other) { return (other.x == x) &&
(other.y == y); 3}

}

class ColPoint extends Point {
int c;
ColPoint(int _x, int _y, int _c) { super(_x, _y); ¢ = _c; }
boolean equal(ColPoint other) { return (other.c == c) &&

(super.equals(other)); }
}

static boolean isOriginBis(Point p) { return p.equal(new Point(0,0)); }

@ What happens if we suppose that ColPoint.equal <: Point.equal anyway ?

@ the call isoriginBis(new ColPoint(e,0,7)) is well-typed,
@ it uses the ColPoint equality with a Point parameter, and gets stuck.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 135 /169



A type playing the role of a supplier can vary covariantly and must not

vary contravariantly.
For example : r-values, getters, results of functions

A type playing the role of a receiver can vary contravariantly and must

not vary covariantly.
For example : |-values, setters, parameters of functions

In Java, this takes the form of the “Get and Put principle” popularized

by Naftalin and Wadler in Java Generics (2006) :
“Use an extends wildcard when you only get values out of a
structure, use a super wildcard when you only put values into a
structure, and don't use a wildcard when you both get and put.”
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Consider two types ColPoint <: Point, and the following generic interfaces :

GetF[T] == {get:Unit—T} covariant co fiant
SetF[T] == {set: T— Unit} contravariant M

@ The following examples are unsafe if the variance is reversed :

let gpt : GetF[Point] = ... in let gcpt : SetF[ColPoint] = ... in
(+ Valid if GetF[ -] is contravariant ) (+ Valid if SetF[ -] is covariant )

let gcpt : GetF[ColPoint] = gpt in let gpt : SetF[Point] = gcpt in
(* Unsafe access to inexistant color field ) (* Unsafe setting of missing color field )
gcpt.get().color gpt.set(new Point())

@ The following is an example of type unsafety in Java :

String[] strings = new String[1];
Object[] objects = strings; // Arrays are covariant
objects[0] = new Integer(1); // Runtime failure

The Java arrays implement both GetF and SetF, and should be invariant.
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Summary on subtyping

@ Subtyping is an important property of a type system, enabling to use
the polymorphism at full strength.
@ The subtyping relations are refined by the notion of variance.

@ Many constructions of the language (functions, records ...) are the
source of specific subtyping rules.
It is also possible to refine these relations by defining variance relations
for particular type functions.

@ Depending on the coherence of the relations, type unsafety
problems may appear when programming.

@ Deciding the subtyping relation also relies on verifying the coherence
of the different local subtype relations.
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The type lattice
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Deciding the subtype relation (1)

In order to deal with object types, it is necessary to decide the subtyping
relation on a wide family of types, among which recursive types.

Subtyping decision algorithm
The function subtype(.A, S, T) decides whether S <: T.

@ It considers a set of assumptions A, each assumption being a pair
(S, T;) such that S, <: T,. Initially, the set is empty.

@ Depending on the form of S and T, it deduces new assumptions.

@ It terminates either when finding an incoherent set of assumptions or
returns a set of coherent assumptions.

Basically, subtype builds a subset of the type lattice.
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Definition (Subtyping decision algorithm)

The function subtype(.A, S, T) is defined as :
@ ifS=Tor(S,T) €A, return A
e if (T,S) € A, fall
o else let 49 = AU (S, T) and depending on (S, T) :
© S={li:S}icit.nym and T ={/i : Ti}i—[1..n}, then
compute in sequence A; = subtype(A;_1,S;, T;) for i € [1..n],
return fail if any computation fails otherwise return A,,.
@ S=5-S,and T=T,—T, then
let A; = subtype(Ag, T1,S;) and Ay = subtype(. A1, S,, T) in
return fail if any computation fails otherwise return Aj.
o T = pX.T, then compute subtype(Ag, S, [X — uX.T,]T;)
@ S = uX.S; then compute subtype(Ag, [X — uX.5]S;, T)

@ otherwise fail.
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Deciding the subtype relation (2)

Consider the following two object types :

O == wuX{clone: Unit— X}
S == pY.{clone: Unit—Y,val : Nat}
The computation of subtype(S, O) passes through the following steps :
o subtype(S, O)
@ subtype(S, {clone : Unit— O})
@ subtype({clone : Unit—S,val : Nat}, {clone : Unit— O})
@ subtype(Unit— S, Unit— O)
@ subtype(Unit, Unit) and subtype(S, O) then terminates successfully.

As a result, this proves S <: O, even if they both are recursive types.
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@ Simple lambda-calculus

© Polymorphism

© Subtyping

@ Proofs with types
@ Phantom types
@ Refinement types
@ Dependent types
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General idea

Use types to enforce logic properties on the values they represent.

Examples

@ having values that can be compared (Comparable, Eq a . ..)
@ having numeric-like values (Number, Num a . ..)
@ having a list-like representation (Cons, Nil)

More generally, any form of interface can be seen as a logic property.

Can we generalize and find other sorts of properties represented by types?
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Representation of particular sets of values

Consider the following algebraic data type for representing lists :

List[T] ::= Nil | Cons(T, List[T])

Suppose that this type is realized with the following constructors :

@ nil : List[T] is the empty list
@ cons : T— List[T]— List[T] is a constructor for lists.

The usual accessors head and tail are provided :

@ head : List[T]— T returns the first element
@ tail : List[T]— List[T] returns all but the first element.

These accessors are problematic : they are not defined for nil.
Could these accessors be typed for only non-empty lists ?
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Refinement of sets of values

In this very case, it is natural to define two types :

@ EmptyList containing the nil value

@ NonEmptyList[T] containing the non-empty lists
Both types are naturally subtypes of List[T].

With this refinement, the accessors can be defined as total functions :

@ head : NonEmptyList[T]— T returns the first element
@ tail : NonEmptyList[T]— List[T] returns all but the first element.

(head nil) becomes a non-typable expression instead of stuck at runtime.
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This idea can be generalized, restricting values to :
@ non-zero or positive numeric values,
@ open file descriptors in contrast to closed ones,

@ non-null pointers in contrast to null ones.

It is desirable to have the possibility to refine the implementation and the

logical properties independently.
@ Otherwise, an implementation of an AssocList[T] <: List[T] must
provide code for both empty and non-empty lists.
@ One must devise a mechanism for attaching logical properties to
existing types without hindering the usual inheritance mechanisms
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Phantom types

Definition (Phantom type)

A type T is said to be a phantom type if it has no influence at runtime,
i.e its values never occur in any computation.

A type variable T in a parameterized type F[T] is said to be a phantom
type if it is only meant to be applied to phantom types.

Examples

interface Phantom {} // In Java type phantom  (x In OCaml «)

A sufficient condition to be a phantom type is to stand for the empty set of values.
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Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readurite] can be modified.

(+ Interface x) (* Implementation *)

module type REF = sig module Ref : REF = struct
type ’a t type 'a t = int ref
val create : int — readwrite t let create x = ref x
val set : readwrite t — int — unit let set r x =r :=x
val get :’at — int let get r =Ir
val freeze : ’a t — readonly t let freeze x = x

end end

let rw = create 4;;

let ro = freeze rw;;

set ro 7;; (x Type error : This expression has type readonly t )
(* but an expression was expected of type readwrite t *)
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Example : write-restricted objects

Consider two phantom types readonly and readwrite.

Let us create a parameterized type Readable[T] such that T constrains its
capabilities : only Readable[readurite] can be modified.

class Readable<A extends Access> {
int val;
Readable(int t){ val = t; }

static Readable<ReadWrite> create(int t) {..3%
static void set(Readable<ReadWrite> c, int t) { .. }
static int get(Readable<?> ¢) {..1%
static Readable<ReadOnly> freeze(Readable<?> c) { ..}

Readable<ReadWrite> rw = Readable.create(5);

Readable<ReadOnly> ro = Readable.freeze(rw);

Readable.set(ro, 11); // Incompatible types: Readable<ReadOnly> cannot
//  be converted to Readable<ReadWrite>
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GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ©- containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int — int data
| Str : string — string data

| Pair : ’a data * 'b data — (’a * ’b) data

let x = Int 1 and y = Str "one” in Pair(x, y);; (x — (intxstring) data =)
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GADTs

Definition (GADT)

A generalized algebraic datatype is an algebraic datatype ©- containing
a phantom type, and whose constructors can enforce restrictions on the
phantom type.

Example

type _ data =
| Int : int — int data
| Str : string — string data

| Pair : ’a data * 'b data — (’a * ’b) data

let add (Int u) (Int v) = Int(u+v);; (x int data — int data — int data )
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Example : typed evaluator

In this example, a GADT is used to represent typed computations :

type _ expr =
| Bool : bool — bool expr
| Int : int — int expr
| If : bool expr x ’a expr x ’a expr — ’a expr
| Eq : ’a expr *x ’a expr — bool expr
| Add : int expr % int expr — int expr

The eval function returns the value encapsulated inside the expression :

let rec eval : type a. a expr — a = function  (x with type VT, (Expr[T]— T) *)

| Bool b — b

| Int i — i

| If (b, 1, r) — if eval b then eval 1 else eval r

| Eq (a, b) — (eval a) = (eval b)

| Add (a,b) — (eval a) + (eval b) ;; (x Addition on integers x)

@ A GADT value is an existential value, involving runtime checking.
@ The compiler checks the constraints for each constructor individually.
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Reification of types

@ Once phantom types have been attached to other types, it becomes
natural to apply computations on these.

plus(int, float) = float append(Int, String) = Vector<Any>
plus(int, int) = int append(Char, String) = String

@ Not all languages allow computations at the type level, and therefore
mimic these computations at the value level.

Definition (Reification)

A set of types T ::= {T,} is said to be reified into a set of values V ::= {v;}
if there exists a bijection between the 7 and V.

Ideally, the set V is represented as (another) type supporting this bijection.
If both sets are of size 1, the type is called a singleton type.
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Example

reification of naturals

In this example, the phantom types represent the Peano naturals :

type zero
type ’a succ

(* Type for representing zero x)
(* Type for representing the successor )

type _ nat = (* Bridge Nat[T] between values and types *)
| NZ : zero nat (* Value for representing zero *)
| NS : ’a nat — (’a succ) nat (x Value for representing the successor )

@ Nz and Ns are values typed by Nat[T] in bijection with the naturals :

(Ns -~ Ns Nz) : (succ - -- sucg zero)
~—_—
k times k times

@ Computations on types can be carried over onto values :

let rec nat_to_int :
| N2 — 0
| NS n — 1+ nat_to_int n

type a. a nat — int = fun x — match x with
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Example : length-encoded lists

Let's extend this example to create lists whose type contains their length :

type (_,_) seq = (x Ist parameter = type of elements, 2nd parameter = length x)
| Nil (’a, zero) seq
| Cons : ’a % ("a,’n) seq — (’a, ’n succ) seq

let rec head : type a n. (a, n succ) seq — a = function
| Cons(x, _) — x

let rec tail : type a n. (a, n succ) seq — (a, n) seq = function
| Cons(_, s) — s

let rec map : type a b n. (a = b) — (a,n) seq — (b,n) seq =
fun f 1 — match 1 with
| Nil — Nil
| Cons (x, s) — Cons (f x, map f s)

@ The type of map encodes the fact that it preserves the length of lists.
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Example : length-encoded lists

@ In Haskell, it's even possible to express computations on types :

data Zero -- Phantom types for naturals
data Succ nat

type family natl :+ nat2 :: x - Type family for the ":+"" function on naturals

type instance Zero :+ nat2 = nat2
type instance Succ natl :+ nat2 = Succ (natl :+ nat2)

@ This yields the following type for the concatenation on lists :

(++) :: List a lenl — List a len2 — List a (lenl :+ len2)
Nil ++ list = list
Cons el els ++ list = Cons el (els ++ list)

@ The type of ++ encodes the fact that the length of the concatenation
of two lists is the sum of the lengths of its components.
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Composition of static properties

Problem

Annotated types do not compose well in general.

Computations Computations
returning an integer applying a division

1) Consider the example of the mean function on lists of integers :

mean ;= fun 1 — let n = List.length 1 in (sum 1) / n

@ The length function must return a generic non-negative integer.

@ The division function should take a generic positive integer.
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Composition of static properties

Problem

Annotated types do not compose well in general.

Computations re- Computations taking
turning a list the head of a list

2) Consider a function returning the first even integer in a list :
fst_even :i= fun 1 — let m = filter is_even 1 in head m

Without static knowledge that m is non-empty, one must check dynamically.
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Composition of static properties

Problem

Annotated types do not compose well in general.

Computations re- Computations taking
turning a list the head of a list

2) Consider a function returning the first even integer in a list :
fst_even :i= fun 1 — let m = filter is_even 1 in head m

Without static knowledge that m is non-empty, one must check dynamically.

This is a consequence of the undecidability of evaluation : logic proper-
ties that evolve at runtime cannot be decided statically in general.
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Strategy for composing properties

In some cases, it is possible to provide a static proof of the property.

Consider the problem of accessing the n-th element of a list :
get : Nat— List[T]—> T

How could we make get access only concrete indices of the list?

@ Construct a type Leq[m, n] expressing the fact that m € [0;n[ :

data Leq[m,n] where -- Proof that :
LessZ :: Leq[Zero,Succ n] -0<n
LessS :: Leqlm,n] — Leq[Succ m,Succ n] — if m < n, then m+1 < n+1

@ A value of type Leq[m, n] is computed dynamically when required.
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Example : lists with safe access

@ The GADT reifying the property m < n :

data Leq[m,n] where
LessZ :: Leqg[Zero,Succ n]
LessS :: Leq[lm,n] — Leqg[Succ m,Succ n]

@ The less-than function computes a proof that m < n (if any) :

1t :: Nat m — Nat n — Maybe (Leqlm,n])

1t Zero (Succ n) = Just LessZ

1t (Succ m) (Succ n) = case 1t m n of Some proof — Some (LessS proof)
Nothing — Nothing

1t

Nothing

@ The type-safe get function can only access safe indices of a list :

get :: Leq[m,n] — List[a,n] — a
get LessZ (Cons x xs) = x
get (LessS k) (Cons x xs) = get k xs
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Refinement types

Going further along these lines, it is possible to attach a proof-checker to
help the compilation phase, as is done in Liquid Haskell or in Dafny.

Consider the problem of defining a type-safe divide function on integers :

type NonZero = { v : Int | v /= @ } -- type for non-zero integers

divide :: Int — NonZero — Int
divide _ @ = die "divide_by_zero”  -- can never happen
divide n d = n ‘div‘ d

@ A type attached with a logical property is called a refinement type.

@ Logical assertions are transferred and checked by a SMT solver.
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Example : iterating on vectors (1)

Here, loop iterates a function over the integers in the interval [lo; hi] :

loop :: lo:Nat — hi:{Nat|lo <= hi} — a — (Btwn lo hi — a — a) — a
loop lo hi base f = loop_rec base lo where

loop_rec acc i | i < hi = loop_rec (f i acc) (i + 1)

loop_rec _ | otherwise = acc

Typically, 1oop @ n x, f computes the sequence :
Xo given

X1 — f(k7 Xk)

The type of the 1oop function is verified by the compiler and ensures that :
@ lo < hi, forming an interval Btwn lo hi ;1= [lo; hi[;

@ f accesses only integers in the interval Btwn 1o hi.
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Example : iterating on vectors (2)

The 1oop function can then be used to write a dotProduct function :

loop :: lo:Nat — hi:{Nat|lo <= hi} — a — (Btwn lo hi — a — a) — a

dotProduct :: x:[Int] — { y:[Int] | len x = leny } — Int
dotProduct x y = loop @ n @ body where

n length x

body i acc = acc + (x ! i) x (y ! i)

@ The compiler is able to infer that the indices accessed are always valid.
@ This function only requires a proof that both vectors have same length.

@ It does not need to check that all the array accesses are safe.
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Termination proofs

Liquid Haskell is able to prove the termination of the following function :

fib :: i:Int — Int

fib i | i==20 =0
| 1 ==1 =1
| otherwise = fib (i-1) + fib (i-2)

@ Applying a series of well-chosen heuristics, the compiler finds a well
founded metric that decreases at each recursive call.

@ More generally, it can automatically prove termination for a particular
but expressive class of recursive functions (- strong normalization).

... which in itself is a pretty amazing feat.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 164 /169



The frontier of automaticity

In some cases, the compiler is not able to infer the proofs automatically.

@ More complex calculi exist with particularly powerful type systems.
Examples : Martin-Lof's type theory, the calculus of constructions . ..

@ As type inference became undecidable for )\, it is not surprising that it
remains undecidable for more powerful calculi.

These proofs may be provided, possibly with the help of a proof-assistant.

@ Proofs become another software component, at the same level as code.

Examples : languages with proof assistants such as Coq, Agda, Idris, ...
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Definition (Dependent type)

A dependent type is a type whose definition is parameterized by a value.

Note : allowing values inside types dramatically complexifies a type system

Example

The type Vec|n, A] of the vectors of n elements of type A.
It is technically called a dependent product written ,cnVec,[A].

Inductive vec a : nat — Type := (* Dependent type written as a function )
| nil : vec a 0
| cons : forall (h:a) (n:nat), vec a n — vec a (S n).

Definition hd {a} {n} (v:vec a (S n)) :a
Definition t1 {a} {n} (v:vec a (S n)) :vec an
Definition nth {a} {n} {p} (v:vec an) (H: p<n) : a

Fixpoint append {a} {n} {p} (v:vec a n) (w:vec a p) : vec a (n+p)
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Proof example

associativity of concatenation

data List a = Nil | a ::: List a deriving (Eq)
-- Definition of a concatenation function '++" on lists
Nil ++ ys = ys
(X ::: xS) ++ ys = x ::: (Xs ++ ys)
assocThm xs ys zs = (xs ++ ys) ++ zs == xs ++ (ys ++ zs)
assocPf :: xs:_ — ys:_ — zs:_ — { assocThm xs ys zs }
assocPf Nil ys zs =  (Nil ++ ys) ++ zs
== ys ++ zs
== Nil ++ (ys ++ zs)
assocPf (x ::: xs) ys zs = ((x ::: XxS) ++ ys) ++ zs
==, (X ::: (xs ++ ys)) ++ zs
==. X ::: ((Xxs ++ ys) ++ zs)
==, X ::: (xs ++ (ys ++ zs)) ? assocPf xs ys zs
==. (X ::: xs) ++ (ys ++ zs)
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Conclusion

@ Type systems offer a general framework to verify the safety of the
composition of programming expressions.

@ The association between types and logic properties is natural in this
framework and mechanisms exist to facilitate this association :

@ These logic properties constitute another form of programming.
Types / proofs become a natural component accompanying the code.

@ The mechanisms for the verification of these properties grow in
complexity accordingly with the expressivity of the properties :
type annotations, SMT-solvers ... up to proof assisants.

@ Undecidability problems occur for the highest levels of complexity,
hindering the verification capabilities for programmers.
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The present and future of type systems

@ The development of more recent type systems and even more recent
programming languages displays a high level of activity.

@ As an example, regions constitute a mechanism to describe zones of
code and memory determined statically.

o Effects systems restrict the kind of operations allowed in certain of
these regions, typically reading or writing to memory.

Many of these languages are experimentations derived from Haskell.
@ The Rust programming language is an example of the last generation
of general-purpose languages incorporating some of these advances.

@ It claims solving the problems of dangling pointers, uses-after-free and
even data races for some classes of concurrent programs.

D. Renault (ENSEIRB-Matmeca) Type Systems and Programming Apr. 9th 2025, v.1.5.1 169 /169



	Type Systems and Programming
	Simple lambda-calculus
	Propositional logic
	Untyped lambda calculus
	Simply typed lambda calculus
	Type checking and inference
	Curry-Howard correspondence

	Interlude : Hindley-Milner
	Polymorphism
	Generalities
	Parametric polymorphism
	Inclusion polymorphism
	Overloading polymorphism

	Subtyping
	Variance
	The contravariance curse
	Principles for variance

	Proofs with types
	Phantom types
	Refinement types
	Dependent types

	Conclusion
	Conclusion


