
ENSEIRB-Matmeca
Year 2024-2025

IT234
STP

Tutorial #2 - A first flavor of types

Exercice 1: Simple extensions
In this exercise, we propose to extend the language so as to contain rules for booleans
and integers. For the record, these rules are the following :

Syntax

t ::= . . . expressions

true, false booleans

zero, succ t naturals

if t then t else t if-then-else

iszero t zero-equality

v ::= . . . values

true, false boolean value

nv numeric value

nv ::= numeric values

zero zero value

succ nv successor value

Evaluation rules

t1 →β t’1

if t1 then t2 else t3 →β

if t’1 then t2 else t3

if true then t2 else t3 →β t2

if false then t2 else t3 →β t3

t →β t’

iszero t →β iszero t’

iszero zero →β true

iszero (succ t) →β false

The first objective consists in extending the language with the boolean expressions
(true, false and if .. then .. else). For the sake of safety, copy your entire code in a
new directory.

1. Extend the OCaml grammar for term with boolean expressions (4 constructors).
2. Modify the parser file parser.mly so as to use these constructors (this mostly

consists in adapting the file comments to your code).
3. Extend the printer term_to_string and the matcher is_value.
4. Extend in order : substitute, rename and reduce_one (the reduce function should

continue to work as before).

1



The goal now is to keep this version of your code safe (possibly by making a copy
into a new directory), and apply the same operations to handle the natural numbers.

Syntax

t ::= . . . expression

zero, succ t naturals

iszero t zero-equality

v ::= . . . values

nv numeric value

nv ::= numeric values

zero zero value

succ nv successor value

Evaluation rules

t →β t’

iszero t →β iszero t’

iszero zero →β true

iszero (succ t) →β false

5. Extend the OCaml grammar for term with integer expressions (2 constructors).
6. Modify the parser file parser.mly so as to use these constructors (this mostly

consists in adapting the file comments to your code), term_to_string and is_value.
7. Extend in order : substitute, rename and reduce_one (the reduce function should

continue to work as before).

2



Exercice 2: From typed to untyped
Consider now adding types to our λ-calculus.

The set of all possible types is defined inductively as follows :

— Type variables : T, U . . . are an infinite set of abstract type variables.
— Type constants : Nat, Bool . . . are a finite set of constant type names.
— Function type : if T1 and T2 are types, then T1→T2 is also a type.

A type is said to be concrete if it contains no type variables as a sub-expression
(and therefore is constructed only with constants and arrows).

1. Propose an OCaml grammar to represent types.

At first, we restrict ourselves to the language restricted to the booleans (this is a
subset of the one studied before) :

Syntax

t ::= expressions

true, false booleans

if t then t else t if-then-else

v ::= . . . values

true, false boolean value

Evaluation rules

t1 →β t’1

if t1 then t2 else t3 →β

if t’1 then t2 else t3

if true then t2 else t3 →β t2

if false then t2 else t3 →β t3

Following the model given for propositional logic, we propose to construct a
proof that an expression is correctly typed using a system of sequents. For this,
we define a typing e : T as a pair of a λ-expression and a type. An environment
Γ is a list of typings.

To deduce a typing from Γ, noted Γ ⊢ t : T, consists in proving that the expression
t is related to a type T by building a derivation tree using Γ as a set of axioms
and a finite set of typing rules. The properties of the typing-relation will result
from the form of these typing rules.

An expression possessing a typing for which there is a derivation tree is said to
be typable.

An inference rule for deducing a simple typing looks like :

Hypothesis

Deduction

Γ ⊢ v : Nat
Γ ⊢ iszero v : Bool

3



2. Propose a set of typing rules for the language restricted to boolean expressions
(one per constructor).

3. Construct a derivation tree for the expression if true then false else true.

Now consider the previous language extended with natural values :

Syntax

t ::= . . . expression

zero, succ t naturals

iszero t zero-equality

v ::= . . . values

nv numeric value

nv ::= numeric values

zero zero value

succ nv successor value

Evaluation rules

t →β t’

iszero t →β iszero t’

iszero zero →β true

iszero (succ t) →β false

4. Propose a set of typing rules for this extension (again, one per constructor).
5. Construct a derivation tree for the expression : if (iszero zero) then zero else (succ zero).
6. Write a type_check function in OCaml that, given an expression in this λ-calculus,

returns a boolean expressing whether this expression is typable or not.

And finally for the remainder of the language :

Syntax

t ::= expressions

x variable

λx.t abstraction

(t t) application

v ::= values

λx.t abstraction value

Evaluation rules

t1 →β t’1

(t1 t2) →β (t’1 t2)

t →β t’

(v t) →β (v t’)

(λx.t1 t2) →β [x 7→ t2]t1

7. Propose a set of typing rules for the full λ-calculus (again, one per constructor).
Remark : these rules are more complex than the previous ones, but can be
deduced without too much difficulty from the ones for propositional logic.

8. (Difficult) Extend the type_check function to handle these new constructors (and
explain how you do it with some semblance of precision)

or
(Somewhat less difficult) Express why it is difficult to extend the type_check

function (possibly with examples of difficult cases).

4


	Simple extensions
	From typed to untyped

