
ENSEIRB-Matmeca
Year 2024-2025

IT234
STP

Tutorial #5 - Inclusion polymorphism

Exercice 1: Inclusion polymorphism in Java
The Java type system follows a hierarchy that is described in the language specifi-
cation (accessible at http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html) and that
more or less corresponds to the following diagram :

Class types
Object

Abstract
Action

Abstract
Collection<E>

Number ZoneView

Abstract
List<E>

Abstract
Queue<E>

Abstract
Set<E>

Integer Float Double

Vector<E>ArrayList<E>

· · · · · · · · ·

Interface types

Comparable<T> Iterable<T>· · ·

Cloneable Readable

Collection<T>

List<T>

Arrays

Reference types

int byte short long float double boolean char

Primitive types
null

Null type

1. Where are the existential types in this architecture ? The universal types ?
2. What are the subtyping relations between the primitive types ?

What are the relations between arrays and the other reference types ?
3. Aside from the Object type, give two examples of recursive types in the API

(i.e types whose definition involves themselves somewhat). The Java classes
are listed at https://docs.oracle.com/javase/8/docs/api/overview-tree.html.

4. What is the difference, from the point of view of subtyping, between the in-
terface types and class types in Java ?

The Scala programming language is a programming language developed at the EPFL
(http://www.scala-lang.org), that can be compiled to Java bytecode and run on the Java
virtual machine. A key property of the language is the possibility to mix Java and
Scala .class files together. Its type system is described on this diagram 1.

5. What are the differences between the Scala types and the Java types ?

1. This diagram appears in chap. 11 of Programming in Scala, by Odersky et. al.

1

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
https://docs.oracle.com/javase/8/docs/api/overview-tree.html
http://www.scala-lang.org
https://www.scala-exercises.org/assets/scala_tutorial/scala_type_hierarchy.png


Exercice 2: Record polymorphism in OCaml
One of the specificities of the OCaml language is its support for objects (the "O"
originally standing for "Objective"). The OCaml object layer shares a lot of simila-
rities with the record types studied in the course. For reference, the documentation
on objects is reachable at https://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html.

▷ Objects can be defined independently from classes, as immediate objects :

let o = object (self)
val mutable x = 0 (∗ Attribute ∗)
method get = x (∗ Method ∗)
method move d = x ← x + d

end;;

The object o has the following type :
< get : int; move : int → unit >

The type of the object is inferred as a record type. Notice that the attributes
do not appear in the type, and that the methods may have a constant type
(such as get:int) even though they are not constant. The (self) part names
the reference to the object inside the code.

Calling a method on an object is done the following way :

o#get;; (∗ → 0 ∗)
o#move 2;; (∗ → unit ∗)
o#get;; (∗ → 2 ∗)

▷ A class is simply a constructor for an object :

class point = fun init → object (self)
val mutable x = init
method get = x
method move d = x ← x + d

end;;

class point : int → object
val mutable x : int
method get_x : int
method move : int → unit

end

Class definitions possess a nominal type (in this case point), whereas imme-
diate objects possess a structural type, but in OCaml they are interchangeable.
The creation of an object from a class is done the following way :

let o = new point 3;;

It is possible to coerce a value v into a supertype t with the expression v :> t.

Let us approximate the Object type to the following :

Object ::= {clone : Unit→Object, equals : Object→Bool, }

1. Create the record type for Object in OCaml, and propose an implementation
of the class. Remark : both constructions must be recursive.

2

https://caml.inria.fr/pub/docs/manual-ocaml/objectexamples.html


Let us now consider a more utilitarian class :

2. Create a (recursive) record type olist to represent lists constructed with a head

and a tail. The type should contain 3 methods : hd, tl, and is_empty. Remark :
for the sake of this exercise, it is not necessary to create a polymorphic list.

3. Write an immediate object that represents the empty list. Its non-trivial func-
tions may return an error using failwith.
Write a class that represents a non-empty list, with the usual head and tail
elements passed to the constructor.

4. What would be an example of a subtype of olist ?

Consider now writing an external function dealing with objects of type olist :

5. Write the length function for such lists, and analyze its type. Write this type,
once with a universal variable and once with an existential variable.

6. Write the type for a dictionary containing pairs (key,value), that is compatible
with the length function.

Exercice 3: Java selection method
Consider the selection algorithm for the Java 1.1 language that was described in
the Java Language Reference by Mark Grand (1997) 2. Given an expression in Java
containing a method call, this algorithm selects the appropriate method to apply
when multiple choices are possible. It is described at http://web.deu.edu.tr/doc/oreily/

java/langref/ch04_js.htm, corresponding in the book to the chapter 4, subsection « Me-
thod call expression ». The examples from this chapter are given in the sources of
this tutorial.

2. The older version of the Java language has a significatively simpler algorithm for method
selection than the subsequent versions.

3

http://web.deu.edu.tr/doc/oreily/java/langref/ch04_js.htm
http://web.deu.edu.tr/doc/oreily/java/langref/ch04_js.htm


// First class hierarchy A ← B ← C ← D
class A {}
class B extends A {}
class C extends B {}
class D extends C {}

// Second class hierarchy W ← X ← Y ← Z
class W {

void foo(D d) {System.out.println("W.D");}
}
class X extends W {

void foo(A a) {System.out.println("X.A");}
void foo(B b) {System.out.println("X.B");}

}
class Y extends X {

void foo(B b) {System.out.println("Y.B");}
}
class Z extends Y {

void foo(C c) {System.out.println("Z.C");}
}

// Main program
public class CallSelection {

public static void main(String [] argv) {
Z z = new Z();
((X) z).foo(new C());

}
}

// Small class hierarchy A ← B
class A {}
class B extends A {}

// Examples of ambiguous calls
class AmbiguousCall {

void foo(B b, double x){}
void foo(A a, int i){}
void doit() {

foo(new A(), 8); // Matches foo(A, int)
foo(new A(), 8.0); // Error: doesn’t match anything
foo(new B(), 8); // Error: ambiguous, matches both
foo(new B(), 8.0); // Matches foo(B, double)

}
}

1. Read the article and describe the three (3) steps of the selection algorithm.
2. Determine in the article the two (2) potential sources of errors that can occur

during the selection algorithm.
3. Determine which part of this algorithm deals with overloading (adhoc poly-

morphism) and which part deals with overriding (inclusion polymorphism).
4. Determine which part of this algorithm is done statically and which part is

done dynamically (Remark : the answer is different from the previous question)

4


	Inclusion polymorphism in Java
	Record polymorphism in OCaml
	Java selection method

